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Abstract: We deal with numerical simulations of incompressible Navier�Stokes equations in
truncated domain. In this context, the formulation of these equations has to be selected carefully in
order to guarantee that their associated arti�cial boundary conditions are relevant for the considered
problem. In this paper, we review some of the formulations proposed in the literature, and their
associated boundary conditions. Some numerical results linked to each formulation are also presented.
We compare di�erent schemes, giving successful computations as well as problematic ones, in order
to better understand the di�erence between these schemes and their behaviours dealing with systems
involving Neumann boundary conditions. We also review two stabilization methods which aim at
suppressing the instabilities linked to these natural boundary conditions.

Key words: incompressible �ow, Navier�Stokes equations, Dirichlet and Neumann boundary
conditions, energy balance,a priori estimates, well-posedness, numerical computations, stabilization
methods.

1 Introduction

The numerical simulations of incompressible Navier�Stokes equations and the choice of the boundary
conditions on arti�cial boundaries are of great importance in many engineering �elds, like biomechan-
ics for instance (see, e.g. [75, 8, 6, 40, 38, 35]). Over the last decade, this topic has been a very active
�eld of research and the subject of numerous works (see, e.g., [29, 1, 56, 76, 28, 55, 27, 13, 66, 43, 54,
73, 31]). The work summarized in this review is linked to the numerical simulation of the air �ow in
the respiratory tract. The underlying motivation is that simulations of air �ows, in patient-speci�c
geometries, may provide valuable information to physicians (e.g., in order to improve diagnosis and
therapy), in the same way as done for blood �ow or oncology (see e.g. [21, 14, 53, 5]).

In large (or medium size) bronchi, air is commonly modeled as a homogeneous, viscous, Newtonian
and incompressible �uid (see, e.g., [1, 55, 31]). As a mathematical model, we consider therefore
the system of partial di�erential equations involving the Navier�Stokes equations. The numerical
simulation of the air �ow in the respiratory system raises many questions. Among them, since the
whole respiratory tree is a very complex geometry, with a lot of bifurcations, and with di�erent scales
therein, the whole domain has to be truncated and one has to choose suitable boundary conditions
on the arti�cial boundaries.

When arti�cial boundaries are present, through which the �uid may enter or leave the domain,
there is no general agreement on which kind of boundary conditions on these boundaries are the most
appropriate on the modeling point of view. Indeed, the di�erent boundary conditions describe the
di�erent physical phenomena, and the ability of the arti�cial conditions to correctly represent the
real unbounded domain is crucial for the accuracy of the computed �ow �eld in the context of an
incompressible �uid. Indeed, these conditions may greatly in�uence the �ow inside the computational
domain, since any error on the �ow �eld at the boundary may be instantaneously propagated in the
whole domain.
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This paper is concerned with the choice of the suitable boundary conditions and its associated
formulations used to solve this problem. Indeed, whatever these conditions are, the numerical problem
to be solved must be mathematically well posed. In some real-life situations, and it is the case for
the lung, it is natural to prescribe a pressure on some part of the boundary. From a mathematical
point of view, the pressure is only a Lagrange multiplier in the incompressible Navier�Stokes system,
allowing to keep the velocity divergence free at any point. However, it is also a quantity with a
physical meaning, and many papers deal with this kind of boundary conditions (see e.g. [60, 34, 3]).
Unfortunately one cannot prescribe only the value of the pressure on the boundary, since such a
problem is known to be ill-posed. Then the fact that boundary conditions involving pressures are
often more suitable for this kind of modeling problems implies that the formulation of the Navier�
Stokes equations has to be selected carefully in order to guarantee not only that their associated
boundary conditions are physically relevant for this kind of modeling but also that the whole system
is mathematically well-posed.

There are several formulations for the momentum equation of the Navier�Stokes system. They
lead to several systems with di�erent mathematical properties. The most elementary one is based on
the basic convective form for the advection term. Using this form with natural boundary conditions,
the problem can be written:

�@t u + � (u � r )u � � � u + r p = 0 on 
 ;

r � u = 0 on 
 ;

u = 0 on � ` ;

� r u � n � pn = � p� n; on � � ; � = f in; outg:

in the tool geometry drawn in Figure 1. Using Neumann boundary conditions implies a kinetic energy

� out� in

� `

� `




Figure 1: Basic geometry

in�ow which does not allow to bound the energy. Moreover, it involves mixed boundary conditions
(Dirichlet-Neumann) on each corner. Then it leads to di�culties that we will investigate in this paper.
Although this basic form is often used (see, e.g., [40, 58, 74, 75, 22, 62, 31, 55, 1]), some numerical
studies (see, e.g., [40, 31]) have pointed out that the stability is not guaranteed when dealing with
realistic physiological or physical parameters.

In this paper, we focus on these realistic cases. In our computations, we use a tube or a bifurcation
geometry which can be seen as simpli�ed airways or a reduced artery. We also use some realistic
applied pressures and physical parameters of the air (density and viscosity). We choose to deal with
the air here, but we keep in mind that the blood and air behaviours are not the same since the density
of the blood is one thousand times higher than the air. Finally, we are confronted with numerical
di�culties which also appear in more complicated geometries.

In Section 2, we account for di�erent formulations of the Navier�Stokes equations, in particular
for the convective term, and we review some existence results for these problems. As using the basic
form with natural boundary conditions implies a lack of energy conservation and then a restriction on
the data, we detail an energy-preserving formulation which allows to facilitate the existence theorems,
using less restrictive data. We present also the method proposed in [30], in which the velocity pro�le
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is constrained on the arti�cial boundary. Then the kinetic energy �ux can be controlled, and the
authors obtain solutions for all time if the data are small enough.

In Section 3, we present some numerical methods to solve the di�erent formulations seen in
Section2. We give some computations that show the e�ectiveness of these methods and the di�erence
between all of them. The basic form of the convective term is usually time-discretized thanks to a
semi-implicit scheme [63], which is very appealing in terms of computational cost, since it leads to
a linear problem. However, as in the continuous framework, it does not allow to apply any natural
boundary conditions with too high data. Indeed, in this case, instabilities develop and lead to the non-
convergence of the computation. We will see in the theoretical part that the Navier�Stokes equations
can be discretized using the total derivative form and the characteristics method, or using the energy-
preserving form. One can also choose to apply stabilization method to overcome the problem, like
the method detailed in [6, 20, 31].

2 A theoretical overview

Firstly, we are going to introduce some material in the next section.

2.1 Preliminaries

2.1.1 Basic notations

Let 
 be a bounded domain inRd (d = 2 ; 3) and let @
 be its boundary. We denote byL 2(
) the
space of real functions whose square is integrable in
 , and by (�; �) 
 and k�kL 2 (
) the associated inner
product and norm, respectively. The corresponding space ofR-valued functions (v = ( v1; :::; vd)) will
be denoted by boldface-type, e.g.,L 2(
) = ( L 2(
)) d and we will still denote by (�; �) 
 and k � kL 2 (
)
the associated inner product and norm. We introduce some subspaces ofL 2(
) :

� H 1(
) = f v 2 L 2(
) : r v 2 L 2(
) g and H 1(
) = ( H 1(
)) d. We denote by k � kH 1 (
) the two
subspace norms ;

� L 2
0(
) = f v 2 L 2(
) such that

R

 v = 0g ;

� H 1
0;� D

(
) = f v 2 H 1(
) : v = 0 on � D � @
 g. v = 0 on � D means that the trace of v is
vanishing on � D .

For functions depending on space and time, for a given spaceV of space dependent functions, we
de�ne (for some T > 0) the spaces of functions de�ned from the interval[0; T] into V :

L p(0; T; V ) =
�

v : (0; T) �! V : v is mesurable and
Z T

0
kv(t)kp

V dt < 1
�

for p � 1, with norm kvkL p (0;T ;V ) =
� RT

0 kv(t)kp
V dt

� 1=p
, and

L 1 (0; T; V ) =

(

v : (0; T) �! V : ess sup
t2 (0;T )

kv(t)kV < 1

)

with norm kvkL 1 (0;T ;V ) = ess sup
t2 (0;T )

kv(t)kV < 1 . For functions which depend only on time, we de�ne

the space

L 1 (0; T) =

(

z : (0; T) �! Rm : ess sup
t2 (0;T )

jz(t)j < 1

)
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endowed with the norm kzkL 1 (0;T ) = ess sup
t2 (0;T )

jz(t)j < 1 .

We will use bold face to indicate Rd-valued functions as we do for function spaces. Let� =
(� 1; :::; � d� 1) be d � 1 vectors such that (n; � ) is an orthonormal basis. We denote

un = u � n and u � = u � unn with � =
d� 1X

k=1

� k

with n the outward normal vector to 
 and u � the component ofu in the tangent plane. Moreover,
we simplify the notations:

@nu = n � r u =
@u
@n

;

@� k u = � k � r u =
@u
@�k

; k = 1 ; :::; d � 1

and @� u =
d� 1X

k=1

@� k u:

2.1.2 Tool model

For each x 2 
 , and at any time t > 0, we denote byu(x; t) = ( u1; :::; ud)(x; t) and p(x; t) the �uid
velocity vector �eld and the �uid pressure, respectively. Moreover, we consider an incompressible
Newtonian �uid and we denote by � its density and by � its viscosity, which are both assumed to be
constant. Under the previous assumptions, the motion of the �uid is described by the Navier�Stokes
equations:

(
�@t u + � (u � r )u � r � � = 0 ;

r � u = 0 :
(2.1)

where � is the Cauchy tensor. Here we disregard external forces. The previous system has to be
supplemented with initial conditions:

u(x; 0) = u0(x); r � u0(x) = 0 ; x 2 
 ; (2.2)

and appropriate boundary conditions. To �x ideas, let us begin by considering a common test problem,
consisting in computing non-steady �ows in a rectangle (or a three-dimensional tube). The velocity is
required to be zero on the upper and lower boundaries (we denote by� ` the union of the two portions),
while an upstream/downstream boundary condition is prescribed at the inlet/outlet (� in / � out ). So
we have@
 = � in [ � out [ � ` , with � in \ � out \ � ` = ; (see Figure2 for the two-dimensional case).
We assume that the lateral boundaries meet both� in and � out with an angle of �= 2. Then, for now,
the boundary conditions are:

u(x; t) = 0 ; x 2 � ` ; t > 0; (2.3)

supplemented with upstream and downstream boundary conditions on� in and � out , respectively.
We will specify these conditions in the following sections. Indeed, on the �ow-through parts (� in

and � out ), many types of boundary conditions can be set up to make the problem well-posed. For
instance, we can impose a velocity pro�le at the inlet: u(x; t) = uD (x; t); x 2 � in ; t > 0 on � in . We
denote by � D the boundary where we impose a Dirichlet condition: � D = � ` [ � in if we impose a
velocity pro�le, � D = � ` if not. Then we have � = @
 n � D .

We note that this tool geometry can be seen as simpli�ed airways or a reduced artery. In our
computations in Section3, we use a bifurcation.

4



� out� in

� `

� `




Figure 2: Basic geometry

2.1.3 Navier�Stokes equations and boundary conditions

Mathematical formulation of the tool problem. The mathematical Cauchy tensor is � =
2� D (u) � pI , with D (u) = 1

2

�
r u + t r u

�
. Using r � u = 0 , we haver � � = � � u � r p. Then, (2.1)

reads:
(

�@t u + � (u � r )u � � � u + r p = 0 ;

r � u = 0 :
(2.4)

However, in this paper, we focus on arti�cial boundary conditions. We will see in Remark2.1 and
Section3.2 about this stress tensor that incompressibility of the �uid allows to use a slightly di�erent
formulation, which leads to the same system (2.4) but with di�erent boundary conditions. Indeed,
always usingr � u = 0 , we haver � � = � � u � r p = r � (� r u � pI ). Here we detail the mathematical
formulation of the Navier�Stokes equations using only the gradient ofu.

Both the mathematical analysis and the numerical treatment of the Navier�Stokes problem are
based on weak formulations. The variational formulations of the problems will require the functional
spaces:

V = H 1
0;� D

(
) ;

V div = f u 2 V ; r � u = 0g � H 1(
) ;

H = V div
L 2 (
)

� L 2(
) ;

with V a closed subspace ofH 1(
) such that H 1
0(
) � V � H 1(
) , and H the compete closure ofV

for the L 2 norm. We de�ne the following bilinear and trilinear forms (they may be rede�ned in the
next sections):

a : H 1(
) � H 1(
) �! R

(u; v) 7�! a(u; v) = �
Z



r u : r v;

b : H 1(
) � H 1(
) � H 1(
) �! R

(u; v; w) 7�! b(u; v; w) = �
Z



(u � r )v � w;

d : H 1(
) � M �! R

(v; q) 7�! d(v; q) = �
Z



qr � v:

Variational formulation. The standard variational formulation of the Navier�Stokes problem
(2.1)-(2.2) with the boundary condition ( 2.3) reads as follows:

Problem P2.1. Variational formulation without speci�ed in/out boundary conditions
Let u0 belong to V div , �nd u in L 2(0; T; V ) and p in L 2(0; T; M ) such that for all v in V , for all q
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in M and for all t � 0:
(

� (@t u; v) + a(u; v) + b(u; u; v) +  ([u; p]; v) + d(v; p) = 0 ;

d(u; q) = 0 ;

with ujt=0 = u0,

where  ([u; p]; v) =
R

� (pn � � r u � n) � v is the boundary term coming from the integration. Next,
considering free-divergence test functionsv, we obtain a second variational formulation of the problem
([70, 40]):

Problem P2.2. Variational formulation without speci�ed in/out boundary conditions
with free-divergence test functions
Let u0 in V div , �nd u in L 2(0; T; V div ) and p in L 2(0; T; M ) such that for all v in V div , for all q in
M and for all t � 0

� (@t u; v) + a(u; v) + b(u; u; v) +  ([u; p]; v) = 0

with ujt=0 = u0.

The term  ([u; p]; v) will be simpli�ed when we will choose the applied boundary conditions on
� . In the next section, we study the energy balance without speci�ed in�ow and out�ow boundary
conditions. We discuss their role later.

Energy balance. Suppose that the solution of the problem exists and is regular enough. To
perform an energy balance, we multiply the �rst equation of (2.4) by u, we integrate over 
 and by
integration by parts, we obtain:

�
Z



@t u � u + �

Z



(u � r u) � u + �

Z



jr uj2 + boundary terms = 0

which can be written as:

�
Z




1
2

@t juj2 + �
Z



(u � r u) � u + � kr uk2

L 2 (
) + boundary terms = 0 :

Since the domain is rigid, it does not depend on time and thus
Z




1
2

@t juj2 =
1
2

d
dt

Z



juj2 =

1
2

d
dt

ku(�; t)k2
L 2 (
) :

Moreover, we integrate by parts the convective term:

Z



(u � r u) � u =

Z




 
X

i

u i @i u

!

� u;

=
Z




X

j

u j

X

i

u i @i u j ;

=
1
2

Z




X

i

u i @i juj2;

=
Z



u � r

juj2

2
;

=
Z

@


juj2

2
u � n �

Z




juj2

2
r � u:
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Since the velocity divergence is zero, denotingE(t) = �
2ku(�; t)k2

L 2 (
) the �uid kinetic energy, it
remains:

d
dt

E(t) = � �
Z

@


juj2

2
u � n � � kr uk2

L 2 (
) + boundary terms

which expresses the rate of variation of kinetic energy through the power dissipated by the �uid
viscosity (� kr uk2

L 2 (
) ) and the �ux of kinetic energy entering (or exiting if u � n > 0) the domain

( �
2

R
@
 juj2u � n).

Until now, we have exposed the tool model and its variational formulation. Now, we have to
specify the in-out boundary conditions and then simplify the term

R
� (pn � � r u � n) � v.

Essential boundary conditions. To �x ideas, we begin here with imposing a fully speci�ed ve-
locity:

u(x; t) = 0 ; on @
 :

Since we are imposing essential boundary conditions on all@
 (� = ; ), there is no condition on
the pressure but only on its gradient, so the solutionp will be determined only up to an arbitrary
additive constant. Then, we need to useM = L 2

0(
) to determine the pressure (otherwise, we can
chooseM = L 2(
) ). Moreover, in this case,� D = @
 , and then we choose the test function to be
zero on all the boundary, and the term

R
� (pn � � r u � n) � v disappears in the variational problems.

In the energy balance, it remains only:

d
dt

E(t) = � � kr uk2
L 2 (
) :

We note that the �ux of kinetic energy is equal to zero here, which allows to get an energy balance.
Time integration over an interval (0; T) gives

E(T) = E(0) � �
Z T

0
jjr ujj2

L 2 (
) :

The fact that the �ow is viscous contribute to the dissipation of the energy. SinceE(t) =
R



�
2 ju(x; t)j2

is bounded over(0; T), then u 2 L 1 (0; T; L 2(
)) . Moreover, as the dissipated energy is bounded over
(0; T) (�

RT
0 jjr ujj2

L 2 (
) bounded), then we haveu 2 L 2(0; T; H 1
0;@
 (
)) . Thus, u 2 L 1 (0; T; L 2(
)) \

L 2(0; T; H 1
0;@
 (
)) .

The problem described by the Navier�Stokes systemP2.1, in a bounded two or three dimensional
domain, with prescribed velocity on the boundary @
 = � D has weak solutions, not necessarily
unique, for any Reynolds number, see e.g. [47, 70, 51]. This is based on the conservation property
(u � r u; u) = 0 of the nonlinear term, which permits to have a good energy balance, as seen before.

In 2-dimensional evolutional case, the uniqueness of a weak solution on any time interval[0; T]
yields for the Navier�Stokes system with Dirichlet's boundary data, thanks to the control of the
inertial term ([ 52, 51] and [70], in particular for the non-homogeneous essential boundary conditions).
If the data of the problem are smooth enough, it is also a strong solution.

In 3-dimensional evolutional case, the existence of a unique strong solution is known only for suf-
�ciently small data, e.g., kr u0kL 2 (
) small enough (global-in-time unique solution), or on su�ciently
short intervals of time, 0 � t � T . However, there are weak solutions on(0; T), for all T , but the
uniqueness of these solutions is still an open problem ([70]).

We will not deal with essential boundary conditions in this paper, except on� ` . Indeed, we are
interested in biological �ows in large blood arteries or in the pulmonary airways. In these geometries,
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velocity measurements are not often available, while to impose an essential boundary condition implies
that a velocity pro�le is known. Moreover, the mechanism which governs these systems induces
variations of pressure at the boundaries of the domain, in particular for the pulmonary airways since it
is the diaphragm which makes us breathe. In the hemodynamic community, zero-dimensional models
involving pressure are often coupled to the three-dimensional part. For more details on Dirichlet
boundary conditions, we refer the reader to: [47, 44, 45, 70, 51].

Then, in the next paragraph, we deal with the prescription of pressure drops or more generally,
natural boundary conditions. We are going to begin with the cases when we do not have energy
conservation, and then we will review di�erent cases when we have it.

2.2 Natural boundary conditions involving pressure drop, without energy con-
servation

Many practical problems in �uid dynamics are studied and conceptualized in unbounded domains.
Then, these domains have to be truncated to allow the computation of the �ow �eld in a �nite compu-
tational domain. As a consequence, boundary conditions associated with these arti�cial boundaries
are to be de�ned.

In this case, one can simply decide to keep the essential boundary condition at the inlet and leave
the solution and the test space free at the outlet. This method is common: actually, omitting the termR

� (pn � � r u � n) � v in the variational formulation, we are imposing a zero-normal-stress condition at
the out�ow of the domain where the velocity is not known [35, 65]. This kind of boundary condition
is considered in [40] and amounts to imposepn � � r u � n = 0 on � . Then we have a homogeneous
Neumann condition that occurs naturally in the variational formulation on all boundaries where no
condition is imposed on the velocity. These boundary conditions are called free out�ow boundary
condition (see [40]) since they are commonly used as passive conditions at the arti�cial boundaries.
The variational problems are the same that ProblemP2.1 and Problem P2.2 without the boundary
integral on � ,  ([u; p]; v), sincepn � � r u � n = 0 on � .

Instead of essential boundary conditions (which suppose that the velocity pro�le is known), one
can also decide to impose a pressure force (Neumann boundary condition) on the arti�cial borders
which close the domain. Then we consider:

� r u � n � pn = � p� n on � � ; � = f in; outg: (2.5)

In all the paper, we use a constant pressurep� on all � � . This problem is called the pressure drop
problem in [40].

2.2.1 Variational form

Considering (2.5),
R

� (pn � � r u � n) � v can be replaced by the following forms on the right-hand side:

` � : H 1(
) �! R

v 7�! ` � (v) = �
Z

� �

p� v � n

with � = f in; outg and p� 2 L 2(0; T). If we chooseM = L 2(
) , then we can consider the variational
problems:

Problem P2.3. Variational formulation of the pressure drop problem, with the basic
formulation

8



Let u0 in H , �nd u in L 2(0; T; V ) and p in L 2(0; T; M ) such that for all v in V , for all q in M and
for all t � 0

(
� (@t u; v) + a(u; v) + b(u; u; v) + d(v; p) = `out (v) + ` in (v);

d(u; q) = 0

with ujt=0 = u0.

Considering free-divergence test functionsv, we obtain a second variational formulation of the
problem:

Problem P2.4. Variational formulation of the pressure drop problem, with the basic
formulation, with free-divergence test functions
Let u0 in H , �nd u in L 2(0; T; V div ) and p in L 2(0; T; M ) such that for all v in V div , for all q in M
and for all t � 0

� (@t u; v) + a(u; v) + b(u; u; v) = `out (v) + ` in (v)

with ujt=0 = u0.

Despite the success of this kind of boundary conditions in modeling, there is a theoretical problem
with existence and uniqueness, as explained in the next paragraph.

Remark 2.1. The choice of the viscous term formulation. In other modeling cases, in particular
if one is not considering arti�cial boundary conditions, it could be more relevant to use the symmetric
stress tensor� , since their associated boundary conditions allow to be more accurate in term of
modeling. Sincer � u = 0 , one hasr � (r u + t r u) = � u. Then we obtain the �rst equation of ( 2.4).
ChoosingM = L 2(
) and rede�ning (only here) the bilinear form:

a : H 1(
) � H 1(
) �! R
(u; v) 7�! a(u; v) = �

��
r u + t (r u)

�
;
�
r v + t (r v)

��

 ;

then we can consider the variational ProblemP2.4. The bilinear form a involves the symmetrized
velocity gradient. Ellipticity of this bilinear form is a consequence of Korn's inequality, which ensures
existence of a constantC � 0 such that

Z



jr u + t r uj2 � C

Z



jr uj2; 8u 2 V ;

since j� D j 6= ; . Smooth solutions of this variational pressure drop problem satisfy the boundary
conditions

u = 0 on � ` ;

�
�
r u + t r u

�
� n � pn = � p� n; on � � ; � = f in; outg:

To use this tensor leads to physically meaningful natural boundary conditions, which properly take
into account the viscous forces. They correspond to a situation in which the boundary where we
impose the boundary condition is the interface between a viscous �uid (inside the domain) and a
perfect �uid or an empty space. For this reason we shall call them free surface conditions.
In the situations we are interested in, the tube generally continues further, or connects onto a network
of other tubes, since� in =� out are not interfaces, but arti�cial boundaries. Then we choose not to use
the Cauchy tensor. Then, the variational formulation leads to conditions based on the velocity gradient
and natural boundary conditions become:� r u � pn = � p� n. This kind of boundary condition is
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more relevant from a modeling point of view for our applications. Indeed, in the situations we are
interested in, the tube generally continues further, or connects onto a network of other tubes, since
they are arti�cial boundary conditions. We will see in Section 3.2 that these boundary conditions
allow to recover the exact Poiseuille's pro�le, unlike the Cauchy tensor and their associated boundary
conditions.
We refer to Section3.2 for more details and to [32] for a further discussion on that matter.

2.2.2 Energy balance

Here we have:

d
dt

E(t)
| {z }

Variation of kinetic energy

= � �
Z

� in [ � out

juj2

2
u � n

| {z }
In=outcome of kinetic energy

�
Z

� in

pin u � n �
Z

� out

pout u � n
| {z }

Power of p in and pout

� � kr uk2
L 2 (
)| {z }

Dissipation within 


(2.6)

which expresses the rate of variation of kinetic energy through the power dissipated by the �uid
viscosity (� kr uk2

L 2 (
) ) and the �ux of kinetic energy entering (or exiting if u � n > 0) the domain

( �
2

R
� in [ � out

juj2u �n). Let us �rst reproduce a lemma from [1], which will be useful to handle boundary
integrals involving forcing pressure:

Lemma 2.1. It holds �
�
�
�

Z

� in

v � n

�
�
�
� � CkvkL 2 (
) ; 8v 2 H :

Using the trace inequality detailed in Lemma2.1, Young inequality and Poincaré inequality, we can
estimate the power ofpin and pout :

j
Z

� �

p� u � nj � j p� j jj ujjL 2 (
) ;

� Cpjp� j jjr ujjL 2 (
) ;

� eCjp� j2 +
�
4

jjr ujj2
L 2 (
) : (2.7)

Then the dissipation of the viscous �uid can absorb the second term of (2.7), and it remains a positive
term which does not disturb the energy balance.

In order to bound the energy to be able to obtain a priori estimates thanks to a Gronwall
inequality, one has to estimate the energy that enters into the domain across the boundary where
we impose natural boundary conditions, i.e. to bound the �ux of kinetic energy �

2

R
� in [ � out

juj2u � n.
However, for the typical situation we consider in this paper, which corresponds to the case where
some �uid �ows through the domain from � in to � out , this �ux is positive at � in , and negative
at � out but the sign of the sum is not known. This uncertainty makes it di�cult to obtain a priori
estimates, whereas they are fundamental to use the approach detailed in [48]. So, from the theoretical
standpoint, the presence of free in/outlet boundary conditions drastically complicates the analysis:
the existence theory is less complete than for Dirichlet boundary conditions.

2.2.3 Theory: existence and uniqueness

Finding a priori estimates. This problem was considered by Heywood et al. [40], where a
variational approach with given mean values of the pressure across the in�ow and out�ow boundaries
was used. The authors show that for smooth solutions, ProblemsP2.3 and P2.4 are equivalent, and
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that these variational problems are equivalent to the basic problem (2.1)-(2.2) with the boundary
conditions (2.3)-(2.5).

To obtain energy estimate and existence theorems, one has to be able to control the kinetic energy
�ux at the interface where energy is introduced.

In dimension 2. In dimension 2, using Sobolev injection and interpolation inequalities, we get:
�
�
�
�

Z



(u � r u) � u

�
�
�
� � CkukL 2 (
) kr uk2

L 2 (
) :

Then one is able to boundu, obtaining u 2 L 1 (0; T; H ) \ L 2(0; T; V div ) for small data and small
time. Furthermore, one can obtain existence globally in time (T = 1 ) with additional smallness
assumptions of the data.

In dimension 3. In dimension 3, the same arguments give:
�
�
�
�

Z



(u � r u) � u

�
�
�
� � Ckuk

1
2
L 2 (
) kr uk

5
2
L 2 (
) ;

which is not su�cient to obtain energy estimates. It is therefore necessary either to seek other
estimates or to modify the problem to obtain other estimates of the nonlinear term and prove existence
results of weak or strong solutions.

In [40], the proof of a smooth solution is derived thanks to a Galerkin method based on the choice
of a special basis, linked to a Stokes operator. Let us de�ne this Stokes operatorA associated with
mixed Neumann-Dirichlet homogeneous boundary conditions:

De�nition 2.1. For every f 2 H , there exists exactly oneu 2 V div such that:

(r u; r v) = ( f; v); 8v 2 V div : (2.8)

Moreover, for eachu 2 V div , there is at most one f 2 H satisfying (2.8). Then, (2.8) de�nes a
bijective relation between f 2 H and u in a subspace ofV div , denoted D(A). We de�ne this set as
follows:

D(A) = f u 2 V div =9C > 0; 8v 2 V div ; j(r u; r v)L 2 (
) j � CkvkL 2 (
) g;

and we de�ne the Stokes operatorA : D(A) � V div �! H by:

8u 2 D (A); (r u; r v) 
 = ( Au; v) 
 ; 8v 2 V div :

The operator A has the following properties:

(i) A 2 L (D(A); H ) is invertible and its inverse is compact onH .

(ii) A is self-adjoint.

Therefore, it admits a sequence of eigenfunctionsf akgk� 0, which is complete and orthogonal in
both V div and H . The f akgk� 0 will be chosen as a special basis for the Galerkin approximation of
the problem.

Then the main result used to prove the existence of strong solution is the following lemma from
[1]:

Lemma 2.2. There existsci > 0, i = 1 ; 2, such that, for u 2 D (A), there exits � 2 (0; 1) such that

kukL 1 (
) � c1kr uk�
L 2 (
) kAuk1� �

L 2 (
) and kr ukL 2 (
) � c2kAukL 2 (
) :
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The authors of [40] used a slightly di�erent result of Lemma 2.2. However, their estimates rely
on the assumption that u, solution of P2.3, belongs toH 2 and this regularity is not guaranteed, see
[57]. Nonetheless, except this part, their method can be used together with Lemma2.2, which allows
to prove the existence of strong solutions. Note that Lemma2.2 relies on the fact that there exists
� > 0 such that D(A) � H 3=2+ � (
) . For this, the boundary � out has to meet lateral boundaries� ` at
angle �= 2. By taking v = Au as a function test, they obtain u 2 L 1 (0; T; V ) \ L 2(0; T; D(A)) .

To sum up. In dimensions 2 and 3, the authors of [40] proved the existence of a uniquesmooth
steady solution with bounded Dirichlet norms in the case of very small data (if the prescribed mean
pressure on the in�ow and out�ow boundaries (pin and pout ) was properly small). We note here the
additive hypothesis of regularity of the solutions.

For the unsteady problem, the authors of [40] get the existence of a smooth solution on a time
interval 0 < t < T , with T = 1 if the data are su�ciently small. However, for large data, the global
existence is not proven, even of a weak solution, even in two-dimension.

To conclude, it exists a unique local-in-time solution for any data, and a unique global-in-time
solution for small data. Then, if the data are not small enough, we do not know what could happen
in long time (see Section3.3.1).

Remark 2.2. One can also choose to impose on� � ; � = f in; outg the following conditions:
(

� � n � n = � p� ;

u � n = 0 ;

and then obtain more regularity, sinceu 2 L 2(0; T; H 2(
)) , D(A) � H 2(
) , see [17] Section 2.4. This
is better than for the pressure drop problem seen before since we only hadu 2 L 2(0; T; H 3=2+ � (
)) .
These boundary conditions force the velocity to be normal to the outlet since a zero Dirichlet velocity
is imposed for the tangential directions. See [35] for more details about this normal velocity boundary
condition formulation. It has the disadvantage of directly modify the local �ow �elds, in particular
when there are eddies which cross the boundary.

Remark 2.3. The variational Problem P2.3 and Problem P2.4 are equivalent (see [40]) to the mean
pressure drop problem described in [40], which involve the following boundary conditions:

�
�

@un
@n

� p
�

j � � = � p� ;
@u �

@n
j � � = 0 ; � = f in; outg:

By using Green formula, the authors see that the solution satis�es

1
j� � j

Z

� �

p = p� +
�

j� � j

Z

� �

@un
@n

:

Here, as we suppose that� � is a plane section perpendicular to a cylinder pipe, the last integral
vanishes and we have 1

j� � j

R
� �

p = p� . Thus, in this case, the imposed pressurespin and pout are the
mean pressures on� in and � out . Then, to apply free out�ow boundary condition ( p� = 0 ) implies
that the mean pressure on each free section is zero. Then, as indicated in [40], for a �ow region
with multiple outlets for instance, the �ux through each outlet is highly dependent upon the relative
lengths of the downstream sections, which generate a non-physical �ow.

Remark 2.4. One can also prescribe the �ux on this kind of boundaries: the authors of [40] intro-
duced the prescribed �ux problem, which does not have a fully equivalent formulation in terms of
standard boundary conditions.
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In [24], the authors consider the incompressible Navier�Stokes problem with �ow rate conditions.
In this paper, the authors detail an augmented formulation involving Lagrange multipliers to impose
conditions on the velocity �ux (in a weak sense). This kind of boundary conditions are calleddefective
boundary conditions.
We refer also to [74]. In this paper, the author presents another formulation for the prescription of
this kind of conditions by means of the Nitsche's method.

2.2.4 Velocity proportional to a given pro�le.

A way to solve the lack of energy conservation is to constrain the velocity to be proportional to a
given pro�le. In [ 30], the authors can control the kinetic energy �ux on the arti�cial boundaries.

The boundary conditions become:

(� � )

8
<

:

u = � � u � ;Z

� �

� � n u � = �
Z

� �

p� u � � n:
(2.9)

Then we have:

j
X

�

Z

� �

juj2(u � n)j =
X

�


 � � 3
�

where 
 � depends on the pro�le. Then the convective term can be written with a �nite number
of degree of freedom. The� � coe�cients can be controlled by jjujjL 2 (
) . Indeed, supposing that
u � � n 6= 0 , we have:

j� � j � C� jjujjL 2 (
) :

Then the convective term (or kinetic energy �ux on � in [ � out ) can be bounded byjjujj3
L 2 (
) , one gets

a priori estimates (at least in small time) and one obtains energy estimates and weak solutions with
a Galerkin method. Moreover, one can show that there exist solutions for all time if the data are
small enough.

Numerically, such a constraint makes the system more stable i.e. there is no break-down of the
iteration processes for solving the algebraic problems. Lagrange multipliers can be used to impose
the velocity pro�le at the boundary. In [ 42], the authors mention that the method has little e�ects
on the local �ow, while according to [20], it can alter the �ow not only near the concerned output
but also in the whole domain. The computation cost is comparable to unconstrained methods ([42]).
However, one has to make a modeling choice concerning the velocity pro�leu � .

2.3 Natural boundary conditions involving pressure drop, with energy conserva-
tion

We have detailed in Section2.2.4 one way to solve the lack of energy conservation, with a constraint
over the velocity pro�le, see (2.9). One can imagine that the di�culty in the existence and uniqueness
studies can be overcome also by changing the variational formulation of the problem in order to obtain
energy conservation, even with natural boundary conditions. The formulation we review in this section
are based on an equivalent (in the continuous �eld) form of the advective term. Of course, changing
the variational form also changes the problem that is being solved (since the associated boundary
conditions change) and may makes it unsatisfactory from a modeling point of view.
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2.3.1 Total pressure

The nonlinearity in the Navier�Stokes equations can be written in several ways, which are equivalent
in the continuum formulation for regular �elds (since r � u = 0 ). One leads to an energy-preserving
formulations using the identity r ( 1

2 juj2) = u � (t r u). Then we can write the momentum equation of
Navier�Stokes system as (see [40]):

�@t u + � (u � r )u � � u � t (r u) � � � u = �r (p +
�
2

juj2) := �r ptot : (2.10)

To consider the total pressure absorbs the additional termr ( 1
2 juj2). Then with this formulation, the

natural boundary condition involves a total pressure. See [40] for more details. ChoosingM = L 2(
)
and introducing the form:

` tot
� : H 1(
) �! R

v 7�! ` tot
� (v) = �

Z

� �

ptot
� v � n;

we can consider the variational total drop problems:

Problem P2.5. Variational formulation of the pressure drop problem, with a form which
conserves the energy
Let u0 in H , �nd u in L 2(0; T; V ) and p in L 2(0; T; M ) such that for all v in V , for all q in M and
for all t � 0

8
<

:
� (@t u; v) + a(u; v) + b(u; u; v) � �

Z



u � (r u)t v + d(v; ptot ) = ` tot

in (v) + ` tot
out (v);

d(u; q) = 0

with ujt=0 = u0.

Considering free-divergence test functionsv, we obtain a second variational formulation of the
problem:

Problem P2.6. Variational formulation of the pressure drop problem, with a form which
conserves the energy, with free-divergence test functions
Let u0 in H , �nd u in L 2(0; T; V div ) and p in L 2(0; T; M ) such that for all v in V div , for all q in M
and for all t � 0

� (@t u; v) + a(u; v) + b(u; u; v) � �
Z



u � (r u)t v = ` tot

in (v) + ` tot
out (v)

with ujt=0 = u0.

Smooth solutions of the variational total pressure drop problem satisfy the boundary conditions

u = 0 on � ` ;

� r u � n � pn �
�
2

juj2n = � p� n; on � � ; � = f in; outg:

The use of the so-called Bernoulli pressure and the additional term on the left side of (2.10) facilitate
the existence theory. Indeed, in this case, the nonlinear term vanishes when one considers energy
estimates, and then the �ux of kinetic energy on the boundary does not appear in the energy balance
(see (2.6)). In [ 40], the authors get smooth steady solutions for any prescriptions of steady pressures
pin and pout . We have to pay attention to the fact that there is no guarantee of their stability if the
data are large. For suitably smooth initial values and time dependent pressurespin (t) and pout (t),
regardless of their size, one gets a weak solution existing for allt � 0 (i.e. a global solution). Then,
we can obtain the existence of weak solutions withu 2 L 1 (0; T; H ) \ L 2(0; T; V div ). In the case of
dimension 2,T = 1 . In the case of dimension 3,T = 1 if the data are small enough [40].
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Remark 2.5. We can also consider other boundary conditions to overcome the di�culties detailed in
Section2.2. For instance, the authors of [60, 10, 11, 15, 16] directly impose the value of the dynamic
pressure:

u � n = 0 ; p +
�
2

juj2 = p� on � � ; � = f in; outg (2.11)

on the arti�cial boundaries. Here, as we suppose that� � is a plane section perpendicular to a cylinder
pipe, we have(r u � n) � n = 0 and then (� tot � n) � n := (( � r u) � n � p � �

2 juj2) � n = � p � �
2 juj2 and

then the conditions (2.11) are equivalent to u � n = 0 ; (� tot � n) � n = � p� on � � ; � = f in; outg.
In some way, these boundary conditions account for inertial e�ects outside the domain, see Sec-
tion 4.2.2 of [55]. From a theoretical point of view, relevant a priori estimates can be obtained, which
can be used to establish well-posedness of the problem [15, 4].
In these papers, the authors use the rotational formulation for the Navier�Stokes equations, which is
another form which conserves the energy. See also [40]. We will not focus on this form in this paper.

Remark 2.6. Another way to get around the di�culties underlined in Section 2.2 is to add �
2u(u � n)

to the constraints. In [9], the authors deal with boundary conditions on arti�cial boundaries of
the domain, where no physical boundary data is available. They describe a new family of arti�cial
boundary conditions, in particular (in their numerical tests)

� (u; p) � n = �
�
2

(u � n) � (u � u ref ) + � (u ref ; pref ) � n:

These boundary conditions lead to a well-posed problem of incompressible Navier�Stokes equations,
with the global existence of a weak solution both in 2D and 3D [6]. [9] obtain that these kinds of
conditions are truly robust as they can compute chaotic solutions at high Reynolds numbers, even
when strong vortices cross the arti�cial boundary, while the standard condition produces bad e�ects
at the outlet. We will see in Section 3.4.3 that this method has been developed in a discretized
framework, see e.g. [20, 31].

2.3.2 Conclusion

Then if one uses the form which conserves the energy, existence theorems hold for less restrictive
data than for the basic one. However, changing the variational form also changes the associated
boundary conditions. Then the solution of the problem may be unsatisfactory from a modeling
point of view. Indeed, sometimes it is more interesting to prescribe the pressure itself instead of the
Bernoulli pressure (see Section 3 of [40]) and see Section3.3.3).

3 Numerical treatment, numerical behaviour VS suitable modeling

We have seen that the nonlinearity in the Navier�Stokes equations can be written in several ways,
which are equivalent in the continuum formulation (since r � u = 0 ), but which lead to di�erent
discrete forms. Indeed, in a discrete framework, the free-divergence equation is only weakly enforced,
then we do not have an exact discrete free-divergence velocity. Moreover, the divergence of the discrete
velocity may grow large enough and cause signi�cant di�erences between di�erent schemes.

We will describe three forms in a discretized framework: the basic one (�@t u + � (u � r )u), the
total derivatives ( Du

Dt ) and one which conserves the energy (�@t u + � (u � r )u � � u � t (r u)).

We will use a common test case: we solve the Navier�Stokes equations in a bifurcation, with a
natural Neumann boundary condition at the inlet, and with free outlet boundary conditions at the
outlet. We use P2=P1 approximation, pin (t) = 10 sin( t), and we run each test case during 5 seconds.
Computation have been performed with the software Felisce [23], following the approach that we are
going to present now.
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3.1 Precisions on all the test cases shown in this section

3.1.1 Used meshes: bifurcations

In all the simulations, we use several bifurca-
tion meshes, see Figure3. The mother branch
has a diameter equal to0:8 cm. We note
hmax the mesh size. In the Table1, we give
the main characteristics of the meshes used in
the simulations, with the numbers of degrees
of freedom if one uses aP2=P1 approximation.

The geometry can be seen as the beginning of
the respiratory tract. Indeed, the airways can
be considered as the dyadic tube network, see
[77]. The blood arteries were also considered
as a network, see [25].

Figure 3: Bifurcation mesh

Name Number of Number of triangles Number of degree of freedom hmax Name
tetrahedra (boundary elements) (velocity // pressure)

5M 5 354 1 286 25 494// 1 251 0.31 coarse mesh
50M 52 034 6 946 3 1347// 10 449 0.15
102M 102 093 12 898 447 369// 20 291 0.13 re�ned mesh
309M 308 689 29 994 1 324 017// 58 827 0.09

Table 1: Main characteristics of the meshes used in the simulations.

3.1.2 Used parameters and units

When one does applied mathematics and works with di�erent communities, like doctors or physicians
for instance, the considered units can change from one speaker to another. For example, the doctors
used to look at centimetres of water (cmH2O) for the pressures or litres by second (L/s) for the �uxes.
Here, in all the simulations, we use the units of the international system: meters (m), kilograms (kg)
and seconds (s). With these units, we express a �ux in m:s� 1, and the pressure in kg:m� 1:s� 2 or
Pascal (Pa). Moreover, we always consider air. Then we choose the density� = 1 ; 2 kg:m� 3 and the
dynamical viscosity � = 2 � 10� 5 Pa:s.

3.1.3 Stability of the schemes and convergence of the iterative method

We will investigate two main points:
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Stability of the method. A scheme is said stable when it does not amplify too much the error
made at each time-step. In this paper, we show computations which lead to unstable solution, see for
instance Figure11-right.

Convergence of the iterative method. We solve the linear system with a generalized minimal
residual method (GMRES). Indeed, we will see that the discretization of the Formulation A leads to
a nonsymmetric matrix. In some cases, the method will be so unstable that oscillations will grow
and generate a slow-down and then a break-down of the iteration processes for solving the algebraic
problem. In this case, the iterative method does not converge anymore.

Table of stability. To characterize the convergence of each computation, we use the symbols:

1. 
 : the scheme used in the computation is stable and the GMRES algorithm has converged.
However the computation has not necessary reached the reference solution, due to a lack of
precision. To characterize it, we use the symbols:

(a)
p

: the �ux at the inlet/outlets has a good agreement with the �ux of the reference
solution.

(b) � : the �ux at the inlet/outlets has a poor agreement with the �ux of the reference solution.

2. � : the GMRES algorithm converges at each time-step but the scheme used in the computation
is not stable: some errors grow and lead to a nonphysical solution.

3. � : convergence failed in linear solver because the maximum number of iterations is reached.
Then the linear system cannot be solved and the computation stops before the �nal time.

For each method, we de�ne the reference solution as the solution computed with a mesh �ne enough
and a time-step small enough in order to obtain converged �uxes at the inlet/outlets.

Precisions on the GMRES algorithm. A restarted GMRES algorithm is used to solve the linear
systems. The method is restarted after 200 iterations. We use a relative tolerance of10� 6 and an
absolute one of10� 8. The maximum number of iterations is 10 000and the solver is initialized with
the previous solution.

3.1.4 Finite element discretization

In this paper, we focus on a mixed formulation of the Navier�Stokes equations. We refer to [12, 36, 69]
for an overview of projection methods.

Let T h be a family of quasi-uniform triangulations T h = f K g of 
 with mesh sizeh. For a given
positive integer r , we introduce the �nite element space

V h = f v 2 V : vjK 2 Pr (K ) 8K 2 T hg � V = H 1
0;� D

(
)

which is the space of continuous piecewise polynomial functions of degreer , and then an approximation
of V . Let uh 2 V h be the discretized-in-space function.
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3.2 Di�usion term: comparison between symmetric and nonsymmetric stress
tensor

We have seen in Remark2.1 that the two forms are equivalent in a continuous framework ifr � u = 0
sincer � (t r u) = r (r � u) and r � (r u) = � u. Then with this in hand, we have:

� 2� r �
�

r u + t r u
2

�
= � � � u:

The discussion on these forms started in the late 90s (see Heywood and coworkers [40]) and it is still
active (see [50]).

3.2.1 Numerical point of view

Whereas the matrix corresponding to the use of nonsymmetric tensor is block-diagonal (scalar Laplace
operator for each component of the velocity), it is no longer block-diagonal using the symmetrized
tensor. Then the nonsymmetrized stress tensor is usually simplest for computations.

Moreover, the two formulations with the two tensors are equivalent in a continuous framework since
r � u = 0 but not at the discrete level. Let uh represents the numerical �nite element solution. In a
numerical simulation, r � uh is not exactly equal to 0, then the di�erence may be signi�cant. In par-
ticular, the di�erences were stronger when one uses a coarse mesh, since the derivative computations
are less accurate. In most of the applications we cannot use the necessary mesh resolution and then
we are doing a mistake considering the nonsymmetric one.

In [39], the authors show that di�erences are very small but still there (they compared numerically
the two forms with benchmarks). They also mention that the di�erence is stronger for the �ows
that contain more rotational structures, then the di�erence in computational results should be more
pronounced in turbulent �ows where Reynolds number is very high.

3.2.2 Physical point of view

In two dimensions and with a planar boundary, the surface traction vector can be expressed as:

� � n = � (r u + t r u) � n � pn;

= � (
@u
@n

+ r (n � u)) � pn;

= � (
@u
@n

+ r un ) � pn;

=
�

2�
@un
@n

� p
�

n + �
�

@un
@�

+
@u �

@n

�
� :

If we note F = � � n, we haveF = Fn n + F� � , with Fn = 2 � @un
@n � p and F� = �

� @un
@� + @u �

@n

�
the

normal and tangential (shear) components ofF. Then Fn n and F� � are supplied by the physics of
the problem we are modeling.

Remark 3.1. Note that it is not necessary to imposeFn and F� simultaneously on the boundary.
One can enforceF� and u � n or Fn and u � � k ; k = 1 ; :::; d � 1. For instance, we can consider perfect
boundary conditions, solving the Navier�Stokes equations with a condition of no tangential friction
(i.e. perfect slip) and with a nonpenetration condition on the velocity: � �

�
�

�
r u + t r u

�
� n � pn

�
=

0 ; u � n = 0 . However, this case does not correspond to our modeling framework. See [61] for
more details.
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With the unsymmetrized tensor, we have:

� r u � n � pn = �
@u
@n

� pn;

=
�

�
@un
@n

� p
�

n + �
@u �

@n
� :

Here we haveFn = � @un
@n � p and F� = � @u �

@n. The natural boundary conditions with the weak
formulation based on the unsymmetrized tensor often perform better than the same results using
the symmetric form since they allow to recover the exact Poiseuille's pro�le. This is related to the
fact that @u �

@n is often a better out�ow boundary condition than @un
@� + @u �

@n = 0 , which is actually an
interface condition as seen in Remark2.1.

Indeed, [46] demonstrated how the condition @un
@� + @u �

@n = 0 can �destroy� a simulation of a Stokes
�ow (with a Poiseuille pro�le) in a channel near the out�ow. Indeed, the boundary condition u = 0
at the top and bottom walls and u 6= 0 (in particular un 6= 0 ) at the outlet imply that @un

@� 6= 0 and
then that @u �

@n 6= 0 . Thus, a two-dimensional �ow is generated when a unidirectional �ow is desired.
Moreover, for high Reynolds numbers, the term2� @un

@n tends to be small compared withp. Then the
factor of 1 or 2 is not important in many cases.

Then if we simulate a �ow in a channel using successively standard and symmetric tensors at the
outlet as made in [46] and in [40], we observe that if one uses the symmetric one, the behaviour of the
�uid at the outlet of the domain does not match with an arti�cial truncation (see Figure 4). Indeed,
the velocity vectors go outward, like at the end of a pipe. For this modeling case, we need the natural
boundary conditions induced by the use of the nonsymmetric tensor, which is then better in this case.
We refer the reader to [33] for a further discussion on that matter.

Figure 4: Out�ow with nonsymmetric (left) and symmetric (right) tensor.

To conclude, even if one has to keep in mind that the physical meaningful viscous form is the symmetric
one, the nonsymmetric form is the more suitable when modeling �ows through a truncated domain.

Remark 3.2. In a �uid-structure interaction framework, it is necessary to choose the symmetric
tensor. Indeed, it directly give the right natural boundary condition for the structure problem.
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3.2.3 Conclusion

Here, we only presented two forms for the viscous term. For an exhaustive overview of the di�erent
possibilities, the reader is referred to the review papers by [32] and [65]. To sum up, we can use a
lots of forms for this terms, which lead to di�erent natural boundary conditions. We have to pay
attention to the fact that these conditions are satisfactory from a modeling point of view. In our case,
the behaviour of the out�ow boundary condition using the nonsymmetric form, with the simplicity
and lower cost, makes the use of the conventional weak form advantageous in our modeling cases.

The choice of the formulation for the di�usive term does not change the problem linked to the lack
of energy conservation seen in Section2.2. In the next section, we come back to this topic.

3.3 Finite element discretization of the convective term

The nonlinearity in the Navier�Stokes equations can be written in several ways, which are equivalent
in the continuum formulation of the Navier�Stokes equations (sincer � u = 0 ), but which lead to dif-
ferent discrete formulations with di�erent algorithmic costs, conserved quantities, and approximation
accuracy ([32, 37]).

3.3.1 Basic formulation of the convective form. (Formulation A, see Section 2.2.1 )

We saw there were two di�erent ways to write the variational problem (considering or not free-
divergence test functions, see problemsP2.3 and P2.4). Then there are two di�erent numerical
approaches:

� At �rst, we choose a �nite dimensional subspace of the divergence free subspaceV div , denoting
it V div ;h = f vh 2 V h : (r � vh ; qh) = 0 8qh 2 M hg. Then we have the discrete problem: for
eacht 2 [0; T], seekuh(t; �) 2 V div ;h such that:

8
>>><

>>>:

�
�

d
dt

(uh(t); vh) + b(uh(t); uh(t); vh)
�

+ a(uh(t); vh) = ` in (vh) + `out (vh) 8vh 2 V div ;h ; t 2 (0; T);

uh(0) = u0;h ;

where u0;h 2 V div ;h is an approximation to the initial data u0. This is therefore a Galerkin
approximation to Problem P2.4.

� Now, to approximate the Problem P2.3, one has to consider the subspaceM h which is an
approximation of M . Then the approximated problem becomes: for eacht 2 [0; T], seek
uh(�; t) 2 V h and ph(�; t) 2 M h such that:

8
>>>>><

>>>>>:

�
�

d
dt

(uh(t); vh) + b(uh(t); uh(t); vh)
�

+ a(uh(t); vh) + d(vh ; ph(t)) = ` in (vh) + `out (vh); 8vh 2 V h ; t 2 (0; T);

d(uh(t); qh) = 0 ; 8qh 2 M h ; t 2 (0; T);

uh(0) = u0;h ; u0;h 2 V h :

Let � t > 0 be the time-step and tn = n� t; n 2 N the discrete time. We denote by un the
approximation solution at time tn . In what follows, let us take the simplest scheme in time: the
backward Euler scheme.

The solver uses aP2 space for the velocity and aP1 space for the pressure, so that the inf-sup
condition is satis�ed ([7]). The linear systems obtained are then solved using a GMRES iterative
method, preconditioned by a ILU method.
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Implicit treatment. We can treat the convective term with an Euler implicit scheme [61]:

�
� t

�
un+1

h ; vh

�

 + �

�
r un+1

h ; r vh

�

 + �

�
un+1

h � r un+1
h ; vh

�

 = ` in (vh) + `out (vh) +

�
� t

(un
h ; vh) 
 :

With this scheme, we must solve a nonlinear system at each time-step.

Semi-implicit treatment. A semi-implicit discretization leads:

�
� t

�
un+1

h ; vh

�

 + �

�
r un+1

h ; r vh

�

 + �

�
un

h � r un+1
h ; vh

�

 = ` in (vh) + `out (vh) +

�
� t

(un
h ; vh) 
 :

This scheme is simple and almost fully implicit. However, at each iteration, one needs to assemble a
matrix and to solve a nonsymmetric linear system. We are going to use it in the next simulations.

If one considers only the semi-discretized-in-time system:

�
un+1 (x) � un (x)

� t
+ � un � r un+1 � � � un+1 + r p = f; (3.1)

r � un+1 = 0 ;

with homogeneous Dirichlet boundary conditions, we note that the scheme satis�es a energy estimate
which ensures its stability. Indeed, for a family of �elds (un )n 2 H 1

div (
) , if we de�ne c(w; z; v) =R

 [(w � r )z] � v , we have c(un ; un+1 ; un+1 ) = 0 . Then if we multiply the equation ( 3.1) by un+1 ,

integrating over 
 , we get for all n :

�
1
2

1
� t

kun+1 k2
L 2 (
) +

1
2

� kr un+1 k2
L 2 (
) � �

1
2

1
� t

kunk2
L 2 (
) +

Cp

2�
kf nk2

L 2 (
)

whereCp is the constant from the Poincaré inequality. If we sum fromn = 0 to n = N � 1, we obtain:

� kuN k2
L 2 (
) + � � t

NX

k=1

kr ukk2
L 2 (
) � � ku0k2

L 2 (
) +
T Cp

�

N � 1X

n=0

kf k2
L 2 (
) :

Then the scheme allows to bound theL 2 norm. However, when we discretize it in space, we do not
have r � uh = 0 anymore. Then c(un ; un+1 ; un+1 ) = 0 does no longer hold, and we lose theL 2-norm
bound. Then it is not unconditionally stable. As a consequence, this scheme is usually used for
moderate Reynolds number, see [61]. We will develop later some stabilizing solutions, see Section3.4.

In Section 2.2, we have seen that for large applied pressures, the global existence of a weak solu-
tion is not proven. Indeed, it seems that the existence theorem may be valid only for very small
data. However, the authors of [40] explain that one may have di�culties to compute the solution of
systems involving high applied pressures but that these di�culties have not actually arisen in their
computations. In Section3.3.4, we will highlight them, showing di�erent test-cases which lead to the
non-convergence of the scheme.

Test case: � t = 0 :01, nonsymmetric tensor,pin (t) = 10 sin( t)

On Figure 5, we observe the beginning of an instability, which lead to the blow up of the solution at
the inlet, in particular the velocity vector �eld. The instability is developing at the inlet, where we
are imposing a Neumann boundary condition.
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