Maximum entropy mixing time of circulant Markov processes

Abstract : We consider both discrete-time irreducible Markov chains with circulant transition probability matrix P and continuous-time irreducible Markov processes with circulant transition rate matrix Q. In both cases we provide an expression of all the moments of the mixing time. In the discrete case, we prove that all the moments of the mixing time associated with the transition probability matrix αP + [1 − α]P^* are maximum in the interval 0 ≤ α ≤ 1 when α = 1/2, where P^* is the transition probability matrix of the time-reversed chain. Similarly, in the continuous case, we show that all the moments of the mixing time associated with the transition rate matrix αQ + [1 − α]Q^* are also maximum in the interval 0 ≤ α ≤ 1 when α = 1/2, where Q^* is the time-reversed transition rate matrix.
Type de document :
Article dans une revue
Statistics and Probability Letters, Elsevier, 2013, 83 (3), pp.768-773. 〈http://www.sciencedirect.com/science/article/pii/S0167715212004385〉. 〈10.1016/j.spl.2012.11.022〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00926517
Contributeur : Konstantin Avrachenkov <>
Soumis le : jeudi 9 janvier 2014 - 16:43:27
Dernière modification le : jeudi 11 janvier 2018 - 16:57:56

Identifiants

Collections

Citation

Konstantin Avrachenkov, Laura Cottatellucci, Lorenzo Maggi, Yong-Hua Mao. Maximum entropy mixing time of circulant Markov processes. Statistics and Probability Letters, Elsevier, 2013, 83 (3), pp.768-773. 〈http://www.sciencedirect.com/science/article/pii/S0167715212004385〉. 〈10.1016/j.spl.2012.11.022〉. 〈hal-00926517〉

Partager

Métriques

Consultations de la notice

136