Y. Zhou, High intensity focused ultrasound in clinical tumor ablation, World Journal of Clinical Oncology, vol.2, issue.1, pp.8-27, 2011.
DOI : 10.5306/wjco.v2.i1.8

T. Leslie and J. Kennedy, High intensity focused ultrasound in the treatment of abdominal and gynaecological diseases, International Journal of Hyperthermia, vol.20, issue.5, pp.173-182, 2007.
DOI : 10.1016/j.ultrasmedbio.2005.06.004

J. Huang, D. Gervais, and P. Mueller, Radiofrequency ablation: Review of mechanism, indications, technique, and results, Chin J Radiol, vol.26, issue.3, pp.119-134, 2001.

T. Sheu, C. Chou, S. Tsai, and P. Liang, Three-dimensional analysis for radio-frequency ablation of liver tumor with blood perfusion effect, Computer Methods in Biomechanics and Biomedical Engineering, vol.49, issue.4, pp.229-240, 2005.
DOI : 10.1002/1097-0142(19870915)60:6<1400::AID-CNCR2820600639>3.0.CO;2-W

L. Frich, P. Hol, S. Roy, T. Mala, B. Edwin et al., Experimental hepatic radiofrequency ablation using wet electrodes: electrode-to-vessel distance is a significant predictor for delayed portal vein thrombosis, European Radiology, vol.13, issue.9, pp.1990-1999, 2006.
DOI : 10.1007/s00330-006-0177-6

F. Wu, W. Chen, J. Bai, J. Zou, Z. Wang et al., Tumor vessel destruction resulting from high-intensity focused ultrasound in patients with solid malignancies, Ultrasound in Medicine & Biology, vol.28, issue.4, pp.535-542, 2002.
DOI : 10.1016/S0301-5629(01)00515-4

S. Vaezy and V. Zderic, Hemorrhage control using high intensity focused ultrasound, International Journal of Hyperthermia, vol.25, issue.1, pp.203-211, 2007.
DOI : 10.1016/j.ultras.2005.08.002

L. Zhang, H. Zhu, J. C. Zhou, K. Li, K. Su et al., High-intensity focused ultrasound (HIFU): effective and safe therapy for hepatocellular carcinoma adjacent to major hepatic veins, European Radiology, vol.14, issue.3, pp.437-445, 2009.
DOI : 10.1007/s00330-008-1137-0

H. Pennes, Analysis of tissue and arterial blood temperatures in the resting human forearm, J Appl Physiol, vol.1, issue.2, pp.93-122, 1948.

M. Kolios, M. Sherar, and J. Hunt, Large blood vessel cooling in heated tissues: a numerical study, Physics in Medicine and Biology, vol.40, issue.4, pp.477-494, 1995.
DOI : 10.1088/0031-9155/40/4/001

K. Curra, P. Mourad, V. Khokhlova, C. R. Crum, and L. , Numerical simulations of heating patterns and tissue temperature response due to high-intensity focused ultrasound, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.47, issue.4, pp.1077-1089, 2000.
DOI : 10.1109/58.852092

T. Sheu, M. Solovchuk, A. Chen, and M. Thiriet, On an acoustics???thermal???fluid coupling model for the prediction of temperature elevation in liver tumor, International Journal of Heat and Mass Transfer, vol.54, issue.17-18, pp.17-184117, 2011.
DOI : 10.1016/j.ijheatmasstransfer.2011.03.045

M. Solovchuk, T. Sheu, W. Lin, I. Kuo, and M. Thiriet, Simulation study on acoustic streaming and convective cooling in blood vessels during a high-intensity focused ultrasound thermal ablation, International Journal of Heat and Mass Transfer, vol.55, issue.4, pp.1261-1270
DOI : 10.1016/j.ijheatmasstransfer.2011.09.023

URL : https://hal.archives-ouvertes.fr/hal-00715205

I. Hallaj and C. R. , FDTD simulation of finite-amplitude pressure and temperature fields for biomedical ultrasound, The Journal of the Acoustical Society of America, vol.105, issue.5, pp.7-12, 1999.
DOI : 10.1121/1.426776

A. Pierce, Acoustics: An Introduction to its Physical Principles and Applications, 1991.

S. Sapareto and W. Dewey, Thermal dose determination in cancer therapy, International Journal of Radiation Oncology*Biology*Physics, vol.10, issue.6, pp.787-800, 1984.
DOI : 10.1016/0360-3016(84)90379-1

P. Meaney, M. Cahill, T. Haar, and G. , The intensity dependence of lesion position shift during focused ultrasound surgery, Ultrasound in Medicine & Biology, vol.26, issue.3, pp.441-450, 2000.
DOI : 10.1016/S0301-5629(99)00161-1

T. Kamakura, K. Matsuda, Y. Kumamoto, and M. Breazeale, Acoustic streaming induced in focused Gaussian beams, The Journal of the Acoustical Society of America, vol.97, issue.5, pp.2740-2746, 1995.
DOI : 10.1121/1.411904

J. Huang, R. Holt, C. R. Roy, and R. , Experimental validation of a tractable numerical model for focused ultrasound heating in flow-through tissue phantoms, The Journal of the Acoustical Society of America, vol.116, issue.4, pp.2451-2458, 2004.
DOI : 10.1121/1.1787124

T. Sheu, L. Hsieh, and C. Chen, DEVELOPMENT OF A THREE-POINT SIXTH-ORDER HELMHOLTZ SCHEME, Journal of Computational Acoustics, vol.16, issue.03, pp.343-359, 2008.
DOI : 10.1142/S0218396X08003610

M. Solovchuk, T. Sheu, and M. Thiriet, Simulation of nonlinear Westervelt equation for the investigation of acoustic streaming and nonlinear propagation effects, The Journal of the Acoustical Society of America, vol.134, issue.5, pp.3931-3942
DOI : 10.1121/1.4821201

URL : https://hal.archives-ouvertes.fr/hal-00931026

M. Solovchuk, T. Sheu, M. Thiriet, and W. Lin, On a computational study for investigating acoustic streaming and heating during focused ultrasound ablation of liver tumor, Applied Thermal Engineering, vol.56, issue.1-2, pp.62-76
DOI : 10.1016/j.applthermaleng.2013.02.041

URL : https://hal.archives-ouvertes.fr/hal-00931033

M. Solovchuk, T. Sheu, and M. Thiriet, The effects of acoustic streaming on the temperature distribution during focused ultrasound therapy, AIP Conf Proc, p.1433589, 2012.
DOI : 10.1063/1.3703255