
HAL Id: hal-00927085
https://inria.hal.science/hal-00927085

Submitted on 10 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ubiREST: A RESTful Service-oriented Middleware for
Ubiquitous Networking

Mauro Caporuscio, Marco Funaro, Carlo Ghezzi, Valérie Issarny

To cite this version:
Mauro Caporuscio, Marco Funaro, Carlo Ghezzi, Valérie Issarny. ubiREST: A RESTful Service-
oriented Middleware for Ubiquitous Networking. Athman Bouguettaya and Quan Sheng and Florian
Daniel. Advanced Web Services, III, Springer, pp.475-500, 2014, 978-1-4614-7534-7. �10.1007/978-1-
4614-7535-4_20�. �hal-00927085�

https://inria.hal.science/hal-00927085
https://hal.archives-ouvertes.fr

ubiREST: A RESTful Service-oriented

Middleware for Ubiquitous Networking

Mauro Caporuscio, Marco Funaro, Carlo Ghezzi, and Valérie Issarny

Abstract The computing and networking capabilities of today’s wireless mobile

devices allow for seamlessly-networked, ubiquitous services, which may be dynam-

ically composed at run-time to accomplish complex tasks. This vision, however, re-

mains challenged by the inherent mobility of such devices, which makes services

highly volatile. These issues call for a service-oriented middleware that should (i)

deal with the run-time growth of the application in terms of involved services (flex-

ibility), (ii) accommodate heterogeneous and unforeseen services into the running

application (genericity), and (iii) discover new services at run time and rearrange

the application accordingly (dynamism). This chapter discusses the design and im-

plementation of ubiREST, a service-oriented middleware that leverages REST prin-

ciples to effectively enable the ubiquitous networking of Services. ubiREST specif-

ically defines a layered communication middleware supporting RESTful Services

while exploiting nowadays ubiquitous connectivity.

1 Introduction

With network connectivity being embedded in most computing devices, any de-

vice may seamlessly consume, but also provide, software applications over the net-

work. Service-Oriented Computing (SOC) is a natural design abstraction to deal

Mauro Caporuscio · Marco Funaro · Carlo Ghezzi

Dipartimento di Elettronica e Informazione – Politecnico di Milano

Piazza L. da Vinci 32, 20133 Milano, Italy

e-mail: mauro.caporuscio@polimi.it

e-mail: funaro@elet.polimi.it

e-mail: carlo.ghezzi@polimi.it

Valérie Issarny

INRIA Paris-Rocquencourt

Domaine de Voluceau, 78153 Le Chesnay, France

e-mail: valerie.issarny@inria.fr

1

mauro.caporuscio@polimi.it
funaro@elet.polimi.it
carlo.ghezzi@polimi.it
valerie.issarny@inria.fr

2 Caporuscio et al.

with ubiquitous networking environments [5]. Applications may conveniently be

abstracted as autonomous loosely-coupled services, which may be composed to ac-

complish complex tasks. A service composition forms into a network-based appli-

cation, which relies on the explicit distribution of services interacting by means of

message passing. Network-based applications differ from distributed applications

because the involved networked resources are independent and autonomous, rather

than viewed as integral part of a conceptually monolithic system [52].

Issues related to the design/development of network-based systems have been

largely discussed in literature, and several middleware solutions, providing different

types of resource’s abstraction (e.g., remote procedure, object, component, service),

have been proposed to deal with them. However, such middleware solutions rely on

the assumption that the underlying network is stable. Whereas, concerning ubiqui-

tous networking, such assumption is no longer valid due to the intrinsic dynamism

and resource mobility (both physical and logical) [47]. Indeed, ubiquitous applica-

tions emerge from the spontaneous aggregation of the resources available (within the

environment) at a given time, and thus are characterized by a highly dynamic soft-

ware architecture where both the resources that are part of the architecture and their

interconnections may change dynamically, while applications are running. In these

settings, two main problems must be faced: (i) achieving the ubiquitous networking

environment on top of heterogeneous communication media, and (ii) providing a

flexible architectural style, which allows for designing and developing applications

resilient to such an extreme variability.

In ubiquitous networking environments applications run on devices (e.g., tablets

and smartphones), which are usually interconnected through one or more heteroge-

neous wireless links, which are characterized by lower bandwidth, higher error rates,

and frequent disconnections. Hence, key feature of ubiquitous networking environ-

ments is the diversity of radio links available on portable devices, which may be

exploited towards ubiquitous connectivity. While computationally suitable for ubiq-

uitous applications, such devices usually have serious issues with battery life when

the computational burden grows. Thus, the middleware should be able to energeti-

cally optimize the communication through scheduling and handover across different

radio links [46, 49]. This requires services to be network-agnostic [50], while the

underlying middleware is in charge of exchanging messages over the network links

that best matches Quality of Service (QoS) requirements [13], and further ensur-

ing service continuity through vertical handover (handover between different pro-

tocols) [25]. In this setting, a primary requirement for supporting service-oriented

middleware is to provide a comprehensive networking abstraction that allows ap-

plications to be unaware of the actual underlying networks while exploiting their

diversities in terms of both functional and extra-functional properties.

As for the architectural layer, applications should support adaptive and evolu-

tionary situation-aware behaviors. Adaptation refers to the ability to react to en-

vironmental changes to keep satisfying the requirements, whereas evolution refers

to the ability of satisfying new or different requirements [9]. In order to be self-

adaptable and easily evolvable, applications should exploit design models able to:

(i) deal with the run-time growth of the application in terms of involved resources

ubiREST: A RESTful Service-oriented Middleware for Ubiquitous Networking 3

(flexibility), (ii) accommodate heterogeneous and unforeseen functionalities into the

running application (genericity), and (iii) discover new functionalities at run time

and rearrange the application accordingly (dynamism).

This chapter presents the ubiREST middleware, which enhances the ubiSOAP

approach [12] by providing RESTful access to services. Specifically, ubiREST

adopts the P-REST architectural style [10], a refinement of the REST style [18] that

we have introduced to fulfill the aforementioned requirements, namely flexibility,

genericity, and dynamism.

The chapter is organized as follows: Section 2 summarizes related work. Sec-

tion 3 discusses the design rationale for ubiREST, whereas Sections 4, 5, and 6

detail the core functionalities of ubiREST, namely network-agnostic connectiv-

ity, ubiREST communication, and ubiREST programming model, respectively. Ses-

sion 7 presents an example showing how to develop a simple RESTfull ubiquitous

application. Finally, Section 8 concludes the chapter, and sketches our perspectives

for future work.

2 Related Work

Work related to ubiREST ranges different research areas from multi-radio networks

integration to ubiquitous computing and service technologies.

ubiREST aims at providing a communication layer enabling RESTful services

within ubiquitous networking environments. To effectively enable mobile REST-

ful services, ubiREST comprehensively exploits the ubiquitous networking environ-

ment by dealing with multi-radio networking on the mobile device. Concerning this

issue, the Third Generation Partnership Project (3GPP) defines a standard layered

architectures (decomposing into the network, control and service layers) enabling

service-oriented applications in the B3G network [4]. In that direction, recent pro-

posal that aims at interconnecting various networks at once, has been published by

the ITU under the name of IMT-Advanced (also known as 4G) [26]. Main goal

of IMT-Advanced is to achieve “Always Best Connected” property by embedding

broadband in all types of consumer devices. Interactions among networks include

horizontal (intra network) and vertical (inter network) handover for service con-

tinuity, and encompass complex functions such as billing and QoS. This de-facto

eliminates the need for the user to know anything about the network (e.g., topology,

radio). However, both systems require the network operator to deploy new entities

within the network that allow the native infrastructures to work together. Contrary

to this closed, network-controlled approach, ubiREST provides a set of abstractions

enabling clients to autonomously adapt to the available networks, and to benefit

from networks characteristics. This requires neither to modify the network infras-

tructure nor to establish contracts with a predetermined network operator.

Concerning ubiquitous computing at large, the literature proposes different mid-

dleware classes, each addressing a specific issue: (i) Context-aware middleware [16]

deal with leveraging context information to provide user-centric computation, (ii)

4 Caporuscio et al.

Mobile computing middleware [38] aim at providing communication and coordina-

tion of distributed mobile-components, (iii) Adaptive middleware [39] enable soft-

ware to adapt its structure and behavior dynamically in response to changes in its

execution environment. However, each middleware provides an ad hoc approach,

whereas standards-compliant solutions are still missing.

Moreover, many middleware proposals aim at supporting the development of

ubiquitous applications through the provision of different abstractions – e.g., ob-

jects, components, and services. The Obje framework [15] is an object-oriented

framework where networked devices appear to applications as objects that imple-

ment specific “meta-interfaces”. Such “meta-interfaces” are further used by appli-

cations to exchange the behaviors needed to achieve compatibility at run time. The

methods of such interfaces make use and return objects that themselves implement

well-known interfaces. Hence, the loading of objects is made transparent to user

applications, which simply see them as new implementations of already-known in-

terfaces. The framework described in [24], addresses the distribution and deploy-

ment of components throughout the ubiquitous networking environment. It provides

developers with an architecture description language to specify constrains on com-

ponents, which can be considered at deploy time to find a distribution scheme sat-

isfying all constraints. Service-Oriented Computing (SOC) provides natural design

abstractions to deal with ubiquitous environments. Networked applications are ab-

stracted as autonomous loosely-coupled services, which may be dynamically com-

bined to accomplish complex tasks [6]. ReMMoC [19] and ubiSOAP [12] provide

middleware functionalities supporting service provision over ubiquitous networks.

In particular, focusing on Service-Oriented Computing, the widespread adop-

tion of WS technologies combined with mobile networking has led to investigating

the definition of architectures dedicated to mobile Web services [27, 23]. Overall,

existing efforts towards enabling mobile Web services platforms address the devel-

opment of service-oriented applications on mobile, wireless devices that act mostly

as Web service clients. However, todays device technologies enable mobile devices

to act as Web services providers. To this extent, many optimizations for SOAP have

been proposed to improve memory and CPU usage [17], as well as to improve the

bandwidth requirement of SOAP communication [48, 55, 54].

The idea of exploiting RESTful principles beyond the Wed is not new, and some

research projects have been investigating how to apply the REST architectural style

to different fields – e.g., ubiquitous computing and web of things. For example,

[37, 30] leverage RESTfulness in the context of Ambient Computing, whereas

[20, 22] exploit REST principles to achieve the Internet of Things. However, these

approaches rely on Web standards to achieve interoperation, and therefore they suf-

fer from the Web’s limitations, e.g., lack of mobility management, point-to-point

communication, and client-server interaction style. To this end, the XWeb [42]

project presents a web-oriented architecture relying on a new transport protocol,

called XTP, which provides mechanisms for finding, browsing, and modifying in-

formation.

Furthermore, in [7] RESTfulness has been exploited to achieve scalability, by

means of replication of resources, in the context of Web Services. In particular, the

ubiREST: A RESTful Service-oriented Middleware for Ubiquitous Networking 5

REactor (RESTful Actor) framework provides a RESTful Web service interface and

a composable architecture which is capable of delivering scalability and high per-

formance independently from the underlying deployment infrastructure. Moreover,

due to its scalability and the flexibility, REST architectural style has been employed

also for monitoring and controlling data- and computationally-intensive tasks, such

as in the context of Grid [34].

However, even thought REST has been gaining wide popularity as well suited

solution for a large class of problems, to the best of our knowledge, ubiREST is the

first attempt to design and develop a resource-oriented middleware, which specif-

ically supports the development of ubiquitous RESTful services by addressing all

the above aspects together.

3 ubiREST design rationale

ubiREST has been conceived and designed to provide RESTful access to services

over ubiquitous-networking environments. To this extent, ubiREST aims at effec-

tively exploiting all the diverse network technologies at once to create an integrated

multi-radio networking environment, hence offering network-agnostic connectivity

to services. On the other hand, ubiREST aims to provide proper programming ab-

stractions enabling service-oriented applications to adapt and evolve at run time.

Achieving the network-agnostic connectivity requires addressing a number of

critical issues such as network availability, user and application QoS requirements

and vertical handover. Vertical handover [53] is particularly important with respect

to the service continuity requirement. Indeed, when a host changes its point of at-

tachment (vertical handover between two networks), the IP address is modified ac-

cordingly in order to route packets to the new network. Hence, since the IP address is

the base of any Internet transmission [41], all the ongoing connections break. More-

over, as devices can bind various networks at the same time, two interacting parties

might communicate through multiple paths. Hence, choosing the best connection to

serve a given interaction is a key issue to deal with in ubiquitous networks, as this

significantly affects the QoS at large (e.g., availability, performance with respect to

both resource consumption and response time, security) [8].

Pervasive applications are composed as composition of (heterogeneous) indepen-

dent services, forming into a network-based application. Since mobility makes ser-

vices available/unavailable suddenly, ubiquitous applications emerge de-facto from

the spontaneous aggregation of the services available (within the environment) at a

given time. As result, ubiquitous applications are characterized by a highly dynamic

software architecture where both the services that are part of the architecture and

their interconnections may change dynamically, while applications are running.

Issues related to the design/development of ubiquitous systems have been largely

discussed in literature, and many middleware, providing different types of abstrac-

tion – e.g., objects [15], components [24], and services [12] – have been proposed to

deal with them. Departing from these approaches, ubiREST tackles the problem by

6 Caporuscio et al.

Lookup

DNS

Lookup

DNS

Lookup

DNS

point-to-point

ρ3

Resource2

ρ2

Resource3

ρ3

observe

Resource1

ρ1

point-to-multipoint a

obse
rv

e

a

notify

b

c

Fig. 1 P-REST architectural style

adhering to REST principles [18]: addressability, statelessness, connectedness, and

uniformity. However, due to the inherent complexity of ubiquitous environments, the

REST architectural style cannot be directly applied to them. Hence, we enhanced it

by creating the P-REST (Pervasive REST) architectural style, which refines REST

to specifically address ubiquitous networking environments, while keeping REST

principles unaltered.

P-REST (see Figure 1) promotes the use of Resource as first-class object that

plays the role of “prosumer” [45], i.e., fulfilling both roles of producer and con-

sumer. To support coordination among resources, P-REST extends REST with a set

of new facilities: (i) a Lookup service enabling the run-time discovery of new re-

sources, (ii) a distributed Domain Name System (DNS) service mapping resource

URIs to actual location in case of mobility, and (iii) a coordination model based

on the Observer pattern [29] allowing a resource to express its interest in a given

resource and to be notified whenever changes occur in it.

Following the P-REST style, resources interact with each other by exchanging

their representations. Referring to Figure 1, both Resource1 and Resource2 observe

Resource3 (messages 1). When a change occurs in Resource3, it notifies (message

2) the observer resources. Upon receipt of such notification, Resource1 issues a

request for the Resource3 and obtains as a result the representation ρ3 (message

3). Note that, while observe/notify interactions take place through the point-to-

multipoint connector (represented as a cube), REST operations exploit point-to-

point connector (represented as a cylinder). All the resources exploit both the lookup

operation to discover the needed resources, and the DNS service to translate URIs

into physical addresses.

P-RESTful applications are built following the P-REST conceptual model [10],

which defines: (1) a environment as a resource container providing infrastructural

facilities (i.e., lookup and observe/notify); (2) a resource as a first-class object that,

according to the REST uniformity [18], implements a fixed set of well-defined op-

erations (i.e., PUT, DELETE, POST, GET, and INSPECT); (3) a semantics-aware

description specifying both functional and non-functional properties of resources

with respect to given ontologies.

Resources interact with each other by exchanging their representations, which

capture the current state of a resource. Furthermore, every Resource is bound to at

ubiREST: A RESTful Service-oriented Middleware for Ubiquitous Networking 7

Communication

Layer

Programming

Model

… Bluetooth UMTS WLAN LAN

 Container

Move/Create Observe/Notify Lookup

Resource

Application

Access

Multi-radio networking

ubiREST Point-to-Point transport

Multi-network overlay

ubiREST Group transport

Network-agnostic

connectivity

Fig. 2 ubiREST software architecture

least one concrete URI (CURI). P-REST enhances the concept of URI by introduc-

ing abstract URIs (AURI). An AURI is a URI identifying a group of resources.

Indeed, a CURI allows for point-to-point communication, whereas an AURI allows

for group communication. Resources can be used as building-blocks for composing

complex functionalities. A composition is a resource that can, in turn, be used as

a building-block by another composition. Resources involved in a composition are

handled by means of a composition logic.

3.1 Run-time support

The ubiREST middleware provides the run-time support for the development of

P-RESTful service-oriented applications by realizing P-REST at the infrastructure

level, and providing developers with effective P-RESTful abstractions. Note that

ubiREST cannot enforce REST principles at the application level, which is totally

entrusted to the designer.

Referring to Figure 2, the ubiREST architecture exploits a three-layer design

where each layer deals with a specific issue:

Network-agnostic connectivity – Providing network-agnostic connectivity within

ubiquitous networks relates to abstracting the rich and heterogeneous networking

environment for reasoning about the networks characteristics and seamlessly man-

age them. To this extent, ubiREST goal is to support: (i) network abstractions to

provide connectivity regardless of the actual underlying network technology, (ii)

the selection of the best possible network matching the QoS needs expressed by

the end user, and (iii) the unique identification and addressing of users applications

within the networking environment irrespectively of their physical location.

Communication layer – To deal with the inherent instability of ubiquitous network-

ing environments, ubiREST arranges devices in an Multi-network overlay built on

top of Network-agnostic connectivity layer. Such an overlay is then exploited to pro-

vide two basic communication facilities, namely point-to-point and group transport.

Point-to-point transport grants a given node direct access to a remote node, whereas

group transport allows a given node to interact with many different nodes at the

8 Caporuscio et al.

Bluetooth UMTS GPRS WLAN LAN

Network-agnostic

connectivity

ubiLET

MRN-Api

MRN-Daemon

Multi-radio networking

Fig. 3 Network-agnostic connectivity layer software architecture

same time. Furthermore, the ubiREST communication layer provides facilities for

managing code mobility [47].

Programming model – ubiREST provides the programming abstractions to imple-

ment P-RESTful applications by leveraging the functional programming features

of the Scala language [1] and the Actor Model [2]. In particular, ubiREST defines

two main abstractions and a set of operations to be performed on them. Resource

represents the computation unit, whereas Container handles both the life-cycle and

the provision of resources. The set of operations allowed on resources defines the

message-based ubiREST interaction protocol and includes: (i) Access, which gath-

ers the set of messages to access and manipulate resources, (ii) Observe/Notify,

which allows resources to declare interest in a given resource and to be notified

whenever changes occur, (iii) Create, which provides the mechanism for creating

a new resource at a given location, and Move, which provides the mechanism to

relocate an existing resource to a new location, and (iv) Lookup, which allows for

discovering new resources on the basis of a given semantics-aware description.

ubiREST fulfills the set of requirements introduced above. Flexibility is achieved

by exploiting the Actor Model, which in turn relies on the ubiREST communica-

tion to provide message-passing interaction among actors. Genericity arises from

the uniformity principle exploited in conjunction with both code mobility and func-

tional programming capabilities (e.g., high-order functions). Dynamism is provided

by means of semantic lookup, uniformity and resource composition. The follow-

ing sections clarify these aspects, and detail network-agnostic connectivity (Sec-

tion 4), ubiREST communication (Section 5), and ubiREST programming model

(Section 6), respectively.

4 Network-agnostic connectivity

In this section, for the sake of self-containment, we report an excerpt of the network-

agnostic connectivity layer implementation [12].

The network-agnostic connectivity layer offers the core functionalities to ef-

fectively manage the underlying multi-radio environment through: (i) a network-

agnostic addressing scheme together with (ii) QoS-aware network link selection

and (iii) base unicast and multicast communication schemes.

ubiREST: A RESTful Service-oriented Middleware for Ubiquitous Networking 9

Such Multi-Radio Networking (MRN) functionality are provided by means of

two modules (see Figure 3): (i) a Multi-Radio Networking Daemon (MRN-Daemon)

that implements the provided features, and (ii) a Multi-Radio Networking API

(MRN-Api) that allows for an easy and transparent access to the functionalities

offered by MRN-Daemon. Furthermore, a ubiLET is any entity (e.g., application)

that exploits the network-agnostic connectivity layer by accessing the functionalities

provided by MRN-Daemon through MRN-Api.

In particular, MRN-Daemon is in charge of managing the entire communication

between two devices through the underlying radio networks. It runs on each device

and is accessible by many applications at the same time. It is also in charge of man-

aging the ubiREST addressing scheme as well as its mapping to the actual set of IP

addresses. On the other hand, MRN-Api is a component, embedded in the applica-

tion, used to interact with the MRN-Daemon. It offers a set of high-level API allow-

ing for an easy and transparent access to the services offered by he MRN-Daemon.

Indeed, in order to communicate with each other, services deployed on ubiREST-

enabled devices must use the functionalities provided by the MRN-Daemon through

the MRN-Api.

Since ubiREST aims at running on resources-scarce platforms (e.g., PDA and

mobile phones), which have limited CPU power, memory, and battery life, to best

fit the resources available on the hosting device, ubiREST provides two different

(but equivalent and fully compatible) implementations of the network-agnostic con-

nectivity layer, namely shared and embedded.

A shared network-agnostic connectivity layer is implemented as a “shared” in-

stance of MRN-Daemon, which is simultaneously accessed by multiple ubiLETs

(through the API provided by MRN-Api). Since all the ubiLETs access the same

instance, possible conflicts can be solved in an automated way (i.e., two ubiLETs

expressing conflictual QoS requirements over the interface activation).

On the other hand, an embedded network-agnostic connectivity layer is imple-

mented by “embedding” the MRN-Daemon into the MRN-Api. In this case, each

ubiLET accesses a different, and standalone, instance of MRN-Daemon. This solu-

tion is lighter than the shared one, and is obviously appropriate when there exists

only one ubiLET per device. In fact, the shared MRN-Daemon interacts with MRN-

Api by means of a TCP socket bound to the loopback interface. This requires for

having a synchronized thread-pool managing the incoming concurrent requests. It

thus implies both larger memory footprint and computational needs. However, em-

bedded MRN-Daemons cannot communicate with each other and then, they cannot

synchronize to solve possible conflicts.

Network-agnostic addressing – Devices embedding multiple network interfaces

(e.g., WLAN and Bluetooth) may have multiple IP addresses, at least one for each

active interface. Thus, in order to identify uniquely a given ubiLET in the network

we associate it with a Multi-Radio Networking Address (MRN@). The MRN@ of

a ubiLET instance is specifically the application’s Unique ID, which maps into the

actual set of IP addresses (precisely, network ID⊕IP addresses) bound to the device

(at a given time) that runs the given instance. Referring to Figure 4, the MRN@

associated to the ubiLET j running on Alice’s device is:

10 Caporuscio et al.

Fig. 4 Network-agnostic addressing over Multi-network overlay

MRN@ubiLETj
7→ {neta ⊕ IPa1

,neti ⊕ IPi1 ,netn ⊕ IPn1
}

where ∀ j ∈ {1,2}, MRN@ubiLETj
is the ID of ubiLET j and, {neta ⊕ IPa1

,neti ⊕
IPi1 ,netn ⊕ IPn1

} is the set of network ID⊕ IP addresses denoting the actual loca-

tion of the device1. Then, upper layers shall use MRN@ as part of their ad- dressing

scheme (e.g., through WS-addressing in the case of Web services), which replaces

the traditional IP-based addressing scheme. MRN@s are automatically generated

and managed by multi-radio networking. Furthermore, multi-radio net- working al-

lows for performing a lookup operation that, starting from an MRN@, returns the

set of IP addresses actually bound to it. The basic operations provided by network-

agnostic connectivity are as follows. First, Registration allows the ubiLET to reg-

ister within the network-agnostic connectivity layer and generates the MRN@ that

uniquely identifies it. In particular, the ubiLET (i.e., user application) provides as

input an identifier (locally unique), which is used to generate the MRN@ to be

returned. Then, Lookup allows user applications to retrieve the actual set of IP ad-

dresses related to a given MRN@. If the resolution of MRN@ is not cached or needs

to be updated, a request is multicasted to all the networks currently accessible and,

if the device related to such MRN@ is reached, it will directly reply to the requester

by supplying the actual set of IP addresses.

QoS-aware network link selection – Next to MRN@ addressing, it is crucial to ac-

tivate and select the best possible networks (among those available) with respect to

required QoS, which is defined as a set of pairs < QoSattr,QoSvalue >. Attributes are

grouped in two subsets: (i) quantitative attributes that describe the performance pro-

vided by the networks – e.g., bitrate, packet loss transfer delay and signal strength

– and allows for networks ranking, and (ii) qualitative attributes that describe those

characteristics of the network that do not affect the network performance but should

be considered – e.g., power consumption, price, coverage area. Departing from WS-

oriented approaches (e.g., WS-Policy) that are “asymmetric” and they do not allow

1 For the sake of simplicity we refer to IP address, but it is actually implemented as IP address and

port number, e.g., 128.131.10.1:90.

ubiREST: A RESTful Service-oriented Middleware for Ubiquitous Networking 11

service consumers to specify their requirements, ubiREST strives to enable net-

work QoS negotiation by trying to meet both provider and consumer requirements

(expressed in terms of network QoS). To this extent, ubiREST provides two func-

tionality, namely interface activation and network selection. Interface activation al-

lows the user application to activate the best possible interfaces (among those avail-

able) with respect to the required QoS. In particular, the application submits its QoS

requirement (a set of pairs < QoSattribute,QoSvalue >) to multi-radio networking,

which in turn compares it with the QoS of each available interface (Network-side

QoS and Context). In this case, since the interface is switched off, QoS refers to the

theoretic values of a network interface declared by the manufacturer (e.g., GPRS

maximum bitrate = 171.2Kb/s). If the interface satisfies the requirement posed by

the application, within a given approximation expressed in percentage, it is acti-

vated. It is also possible to define priorities upon the various quantitative parameters,

in order to specify if a given parameter is more important than the others. On the

other hand, network selection is performed during the establishment of the commu-

nication and takes into account the QoS attributes required by the client application

that is initiating the connection, as well as the networks active on the server lis-

tening for incoming connections, as given by the servers MRN@. If the client and

the server share only one network that satisfies the requirements, it is used to carry

on the interaction. On the other hand, when the two parties share more than one

network, the selection algorithm selects the one that best meets the required QoS.

Multi-radio unicast and multicast – Once defined the MRN@ addressing scheme

and the operations enabling the network link selection, the network-agnostic con-

nectivity layer provides two base communication facilities: synchronous unicast and

asynchronous multicast2. ubiREST synchronous unicast allows for messaging com-

munication between two ubiLETs sharing at least one network. Specifically, it is

provided by means of a logical stream channel that is used by the ubiLETs to read-

/write the packets belonging to the ongoing communication. Whereas, ubiREST

asynchronous multicast allows for multicast messaging communication within a

group of ubiLETs sharing at least one network. Specifically, it is provided by means

of multicast packets that are sent to all members of a given group.

5 ubiREST communication layer

Providing communication within ubiquitous networks relates to comprehensively

exploiting the rich, heterogeneous networking environment for message handling.

In particular, ubiREST goal is to support: (1) Mobility so that active connections

are maintained transparently to the application layer despite the mobility of nodes,

as long as a network path exists, (2) efficient messages routing in multi-paths con-

figurations (i.e., when multiple network paths exist between the consumer and the

provider), (3) both point-to-point and group communications using the same ab-

2 The interested reader is referred to [12] for further details.

12 Caporuscio et al.

stractions (i.e., MRN@), and (4) multi-network routing so that access to resources

in distant networks is enabled as long as there exists a path bridging the heteroge-

neous networks between the consumer and target resource provider.

To meet the above, ubiREST arranges devices in a multi-network overlay, a vir-

tual network of nodes and logical links built on top of existing actual networks [14]

and meant to augment the native network with new services. The ubiREST overlay

network manages the logical links between nodes (i.e., resources) and enables mes-

sage exchange. In particular, ubiREST embeds (i) the protocols that keep the over-

lay network connected when the topology of the underlying native network changes

(e.g., as a consequence of mobility), and (ii) the routing algorithms that regulate

the message flow between nodes according to the specific coordination model used,

namely point-to-point communication and group communication. In pervasive en-

vironments, a key requirement for the overlay is the ability to self-organize itself

into a flexible topology, as well as to maintain it. To this extent, ubiREST defines

a custom transport layer that leverages network-agnostic connectivity and provides:

(i) the multi-network overlay in charge of forwarding messages across independent

networks, and (ii) two transports for point-to-point and group communication in

ubiquitous networking.

Multi-network overlay Thanks to the ubiREST network-agnostic connectivity

layer, communication among nodes exploits the various network links that the nodes

have in common by selecting the links that provide the required QoS. However, in

some cases, it might also be desirable for nodes to be able to access resources that

are hosted in distant networks to which the requesting node is not directly connected

to (e.g., to provide continuity of service despite node mobility). For example, in Fig-

ure 4, the device of Alice is connected to networks a, i, and n, through its various

network interfaces. Clearly, the device can trivially access resources hosted in these

networks. However, it cannot access resources hosted by Bob’s device that is located

in the distant networks x, y, and z. In fact, the network-agnostic connectivity layer

does not provide neither an overlay IP network nor multi-network routing.

However, relying on the MRN@, together with both unicast and multicast

communication schemes, ubiREST introduces an overlay network that is able to

bridge heterogeneous networks, thus enhancing overall connectivity. In particular:

(i) MRN@ addressing provides a two-layer identification scheme (i.e., network ID⊕
IP) allowing for uniquely identifying a device irrespectively of the network it be-

longs to, and (ii) unicast and multicast communication support allows for MRN@

management across the networks. Specifically, nodes that are connected to two (or

more) different networks through their network interfaces can assume the role of

bridge nodes. Bridge nodes quite literally “bridge” between two separate networks,

relaying ubiREST point-to-point and group messages across those networks. Still,

we assume that nodes will not access resources that would require the consecutive

traversal of more than five wireless networks (see [21, 35] for a detailed analysis on

wireless communication) in order to access them. Hence, still referring to Figure 4,

Alice has to route its request through an appropriate bridge node (i.e., bridges A, B

and C, noting that each bridge node is displayed in each network it is part of).

ubiREST: A RESTful Service-oriented Middleware for Ubiquitous Networking 13

Specifically, bridges are in charge of routing messages within the multi-network

overlay by determining the best route to reach a distant network. To achieve these

tasks, bridges nodes run an instance of OLSR [28] among each other, and exchange

routing messages using the specific asynchronous multicast transport provided by

the network-agnostic connectivity layer. Instead of concrete node addresses, how-

ever, bridges store as destinations the identifiers of the various present networks

(i.e., network ID) and as next hop the bridge that needs to be contacted next to

eventually reach the target network. The, whenever a non-bridge node wants to ac-

cess a resource outside one of the networks it is itself connected to, it simply routes

the request to any bridge of choice that will then forward the request accordingly.

Point-to-point transport – The ubiREST point-to-point transport is a connection-

oriented transport for supporting resource access. The ubiREST point-to-point

transport: (i) leverages the network-agnostic connectivity layer to send and receive

messages relying on the MRN@ addressing scheme, and (ii) delivers the message

to the appropriate resource. When the CURI of the destination resource is speci-

fied (e.g., mrna://dd3ef7e3-5f50-3800-982d-62095c6e8075/cart), ubiREST selects

point-to-point as transport layer and extracts the MRN@ from the CURI. Note that,

when both the consumer and the provider simultaneously change the complete set

of IP addresses associated to their MRN@ (and no direct link exists) the session

will break and the consumer needs to perform a resource discovery to find the same

resource again and reestablish the communication.

Group transport – In ubiquitous networking environments, it is crucial to support

point-to-multipoint interactions since it is central to advanced middleware services

like dynamic discovery [56]. We thus introduce the ubiREST group transport over

multi-network overlay, building upon the asynchronous multicast facilities provided

by network-agnostic connectivity layer. Specifically, the ubiREST group transport

is a connectionless transport for one-way communication between multiple peers

in multi-network configurations. The ubiREST group transport interacts with the

network-agnostic connectivity layer to send multicast messages based on an MRN@

identifying the group (i.e., AURI), and to deliver messages to the registered re-

sources.

5.1 Code mobility

Concerning the genericity requirement, ubiREST is able to accommodate heteroge-

neous and unforeseen functionalities into the running application. Unknown Java

classes can be dynamically deployed in the overlay by leveraging code mobil-

ity [47]. ubiREST code mobility mechanism directly relies on the ubiREST com-

munication facilities, then different coordination mechanisms impose different code

mobility approaches. For point-to-point communication, ubiREST implements an

end-to-end strategy that enables two ubiREST nodes to exchange executable code,

whereas for group communication, ubiREST adopts a hop-by-hop strategy that,

14 Caporuscio et al.

Fig. 5 Sequence diagram for point-to-point code mobility

starting from the origin node, spreads the executable code towards multiple des-

tinations.

Independently of the specific strategy, ubiREST implements an ad-hoc class-

loader hierarchy to cope with the “missing class” problem. In fact, when sending

a message containing a Java object, such an object is serialized into a byte array

and delivered towards the destination, which in turn deserializes the object before

using it. However, if the object is unknown to the destination (i.e., the destination

node does not hold the class bytecode for the received object), the object cannot

be deserialized. To this extent, ubiREST implements a custom classloader, which

is in charge of retrieving the bytecode for the missing classes, and loading them at

run time in the local JVM to allow for a correct deserialization. The JVM specifi-

cation [36] allows for creating a tree-like hierarchy of classloaders to load classes

from different sources. When a classloader in the hierarchy is asked to load a class,

it asks its parent classloader to load it. If the parent classloader cannot find the

class, the child classloader then tries to load it itself. If also the child classloader

fails, an exception is thrown. ubiREST exploits such a feature by defining a cus-

tom ubiREST classloader as child of the standard Java Bootstrap classloader. When

loading classes, the ubiREST classloader delegates its parent classloader (i.e., Boot-

strap). If the Bootstrap classloader fails, then the bytecode is not available within the

node and should be retrieved remotely. Thus, the ubiREST classloader contacts the

origin ubiREST node asking for the missing bytecode. The origin side retrieves the

bytecode from its classpath and sends it back to the requesting node. At this point,

the ubiREST classloader holds the needed bytecode and can load the class and de-

serialize the incoming object. If other classes are missing, then such a procedure is

iterated until the entire class closure is retrieved.

ubiREST implements an end-to-end strategy to achieve point-to-point code mo-

bility among nodes. Referring to Figure 5, let A be an ubiLET sending a message to

an ubiLET B, and let CLa, CLb be the classloader of A and B, respectively. Whenever

B receives a message containing an object of an unknown type from A, an Exception

is thrown, and the control is passed to CLb, which in turn asks for the missing class

to CLa. CLa processes the request, encapsulates the needed bytecode into a message,

and sends it back to B. Once the bytecode is available at CLb, it can be loaded into

the JVM. The whole procedure is recursively applied until the whole closure of the

original class is available on B. The retrieved bytecode is now stored on B and made

available for further instantiations.

ubiREST: A RESTful Service-oriented Middleware for Ubiquitous Networking 15

As for the group communication, this solution is not applicable. In fact, ubiREST

group communication relies on the underlying Multi-radio multicast where message

sender and receiver are completely decoupled, and do not have any knowledge about

each other. Moreover, applying the end-to-end strategy to group communication

would flood the overlay network with requests for bytecode retrieval towards the

origin node, which become overloaded. To prevent this problems, ubiREST com-

munication adopts a hop-by-hop strategy, which spreads the bytecode across the

Multi-network overlay towards all the destinations: ubiREST applies the end-to-end

strategy at each bridge along the path between the origin node and each recipient.

6 The ubiREST programming model

As already introduced, P-REST defines systems that comply with the “network-

based” paradigm, which rely on the explicit distribution of resources interacting

by means of (asynchronous) message passing. Network-based applications can be

easily modeled and developed as a set of interacting actors [33], a computational

resource reacting to external stimuli (e.g., messages) by either (i) sending messages

to other actors, or (ii) creating new actors, or (iii) designating the behavior for the

next stimulus.

The ubiREST programming model exploits the Scala [1] programming language,

which (i) natively provides the Actor system, (ii) provides functional features (e.g.,

high-order functions), and (iii) is a JVM language, then allowing for Java libraries

reuse (e.g., Multi-radio Networking), and for benefiting from JVM facilities (e.g.,

security manager for sandboxing). According to both the P-REST model and the

ubiREST software architecture (§3), the ubiREST programming model revolves

around the resource and container abstractions. A resource represents the compu-

tational unit, whereas container handles both the life-cycle and the provision of re-

sources. The ubiREST programming model exploits the Scala Actor System [2] by

benefiting from its intrinsic qualities: i.e., functional programming paradigm, event-

based computation and shared-nothing concurrency, as well as Java interoperability.

Hence, the set of ubiREST’s abstractions is fully implemented in Scala and exploits

the actor model.

Resource – The resource abstraction is directly mapped to a Scala actor. A Resource

actor is defined as a Scala abstract class, which is further extended by any resource to

be deployed within ubiREST. When extended and instantiated, a Resource object

is initialized by specifying: (i) the CURI address, (ii) the set of operations available

for the specific resource, and (iii) the resource’s Description specifying the actual

semantic concept implemented by a resource, defined as AURI.

According to the Scala Actor Model, Resource implements the act()method,

which defines the resource’s passive behavior, i.e., how the resource responds to ex-

ternal stimuli encoded as received messages. act() removes messages from its

mailbox and, processes them accordingly. To prevent overriding, and then enforc-

ing resources to conform to the REST uniformity principle, act() is defined as

16 Caporuscio et al.

final, and accepts only messages defined by the P-REST uniform interface. More-

over, PUT, DELETE, and GET methods are declared as final and implement the

well known semantics defined by HTTP. Further, ubiREST defines a new method

INSPECT, which allows for retrieving meta-information about the resource (e.g.,

Description). Rather, the POST method is declared as abstract to allow devel-

opers to implement their own semantics. Furthermore, according to the Observer

pattern defined by P-REST, a resource notifies the observers whenever its internal

state changes. That is, when executing either a PUT, a DELETE or a POST opera-

tion, the resource actor exploits the underlying ubiREST communication to send a

group message notifying the occurred changes.

According to P-REST, a resource plays a prosumer role, i.e., it is able to ful-

fill both roles of producer and consumer. In order to access external resources

and consume their artifacts, a given resource sends request messages to the re-

sources of interest and receives response messages. To this extent, ubiREST defines

a workflowEngine function to be instantiated with the desired behavior by any

Resource that wants to consume external resources. Indeed, the active behavior

is specified by a workflow implementing the composition logic defined by P-

REST. Specifically, ubiREST defines workflowEngine as a Scala higher-order

function, which takes a workflow as input and executes it:

workflowEngine : (workflow : Unit ⇒Unit)⇒Unit

The definition of workflowEngine as a higher-order function provides ubiREST

with the ability of accomplishing hot deployment of new active behaviors at run

time. This feature, in turn, supports dynamic situation-aware evolution.

Furthermore, also ubiREST provides developers with a high-level domain spe-

cific data-flow language for coordinating resources, namely the PaCE (ubiREST

Coordination languagE) [11]. Specifically, PaCE (i) allows developers to specify

the active behavior (composition logic) of a composite resource in terms of the set

of operations defined by the ubiREST programming model, and (ii) achieves both

adaptation and evolution of compositions in terms of resource addition, resource

removal, resource substitution, and resource rewiring [43].

Representation – Resources interact with each other by exchanging their repre-

sentations. ubiREST provides a resource representation by serializing the resource

instance into a byte array. All the fields specifying the internal state of a resource are

serialized into the array. However, since a ubiREST resource is implemented as a

actor, it is not directly serializable. In fact, actors inherit from threads, which are not

serializable as well. To cope with this issue ubiREST exploits the trait mechanism

provided by the Scala language. In Scala, traits are used to define object types by

specifying the signature of the supported methods, similarly to interfaces in Java.

However, unlike Java interfaces, traits can be partially implemented, i.e., it is pos-

sible to define default implementations for some methods. Thus, ubiREST defines

a special Scala trait, which implements custom serialization/deserialization mech-

anisms through two methods, namely writeExternal and readExternal.

ubiREST: A RESTful Service-oriented Middleware for Ubiquitous Networking 17

Both methods are automatically invoked by the JVM when the object is serialized

and deserialized, respectively.

The writeExternal method makes use of the Java reflection mechanism

to (i) discover the names and the values of the attributes of a class extending

Resource, (ii) filter out the attributes inherited by Actor3, and (iii) serialize

the remaining attributes using standard serialization. On the other hand, when the

JVM deserializes a Resource, it instantiates an empty object and invokes the

readExternal method, which in turn reads serialized attributes from the in-

put stream, and makes use of the reflection mechanism to properly assign values

to resource’s attributes. This mechanism allows for the automatic generation of re-

source representations. Representation stores the byte array generated by the

writeExternal method.

It is important to note that, designers are entrusted with preserving information

hiding in Representation, i.e., avoiding the serialization of internal state infor-

mation. For example, given a resource abstracting an algorithm, it should not return

the representation of the algorithm. Rather, it should return the representation of the

resource abstracting the results computed by the algorithm.

Description – As introduced in Section 3, resource descriptions are semantics-

aware and play a key role in ubiREST. In fact, since all resources implement

the same interface, descriptions result to be the only discriminant. To this extent,

ubiREST provides developers with a Resource Description Language (RDL) de-

fined by means of a XML Schema (see Figure 6 and Figure 7). In particular, a De-

scription is composed of two entities: (i) the functional description, which describes

the functionalities provided by the given resource, and (ii) the SURI and CURI at-

tributes, which define the semantic concept implemented by the given resource and

its concrete identifier (i.e., the actual resource URI), respectively. The functional

description aims at specifying “what” capabilities are actually provided through the

uniform interface. To this end, it describes, for each implemented operation, the se-

mantic concept it refers to (i.e., semanticRef), the data expected as output, and the

input parameters if required (e.g., POST and PUT operations require for an input

parameter, whereas the others do not).

Container – ubiREST handles resources’ life-cycle and provisioning through the

Container actor, which is implemented as an ubiLET. Indeed, the Container

stores references to the hosted resources into a resource repository built as a map-

ping from resources CURI to the respective Resource instance. Since a container

is an active party in ubiREST, it also holds a CURI address, which is used to access

a container’s services. Hence, the container is in charge of handling three classes

of incoming messages: (i) messages addressed to a specific resource hosted by the

container, (ii) messages directly addressed to the container itself, and (iii) broadcast

messages. In the first case, the container simply forwards the message payload to

the right Resource actor. Messages addressed to the container are directly han-

dled and processed. Finally, broadcast messages are received by the ubiREST node

3 Scala Actors are not serializable and do not contain information regarding the resource internal

state.

18 Caporuscio et al.

Fig. 6 Resource Description Language

either as result of an active subscription within the Group-based communication

submitted by a local resource (see Section 5), or as a lookup request. Notifications

are delivered to subscribed resources, whereas lookup messages are processed by

the container itself.

Concerning the outgoing messages issued by hosted resources, the container is

in charge of forwarding such messages towards their destination by means of the

proper communication protocol. Lookup messages are broadcast throughout the

overlay; Notify messages are multicasted by means of the Group-based commu-

nication; Observe messages are encoded as subscriptions to a specific Group; the

other messages are simply forwarded towards the final destination by exploiting the

point-to-point communication facility.

As already pointed out, the container is in charge of managing resources’ life-

cycles and provision. In particular, a container creates and moves resources, pro-

vides support for resource lookup, as well as grants for resource access. While

resource access is managed by the resource itself through its interface, creation,

relocation and lookup operations are managed by containers.

To create a resource, the container must be provided with information concerning

(i) the Representation of the resource to be created, and (ii) an optional CURI

to be assigned to the resource. When creating a new resource, the container checks

ubiREST: A RESTful Service-oriented Middleware for Ubiquitous Networking 19

<?xml version="1.0" encoding="UTF-8"?>

<rdl:description aURI="presenter"

cURI="dd3ef7e3-5f50-3800-982d-62095c6e8075/Projector">

<functional>

<put semanticRef="display">

<output xsi:type="rdl:simpleData"

name="ack" type="bool" semanticRef="response"/>

<input xsi:type="rdl:simpleData"

name="PNG" type="bin" semanticRef="slide"/>

</put>

</functional>

</rdl:description>

Fig. 7 A resource description example using RDL

whether the CURI has been specified or not (if not a CURI is automatically gener-

ated), and extracts the Resource instance from the provided Representation.

The newly created Resource is then deployed within the container and a new en-

try is added to the resource repository. Finally, the new Resource is initialized

and started.

When moving a resource r from a container CA to a container CB, ubiREST needs

to coordinate the two containers in order to guarantee both the correct deployment

of r within the container CB, and the delivery of messages to the r’s new location (to

avoid packet loss). Specifically, CA buffers all the incoming messages addressed to r.

ubiREST performs the move operation in three steps: (i) CA waits until r consumes

all the messages already in its mailbox and reaches a quiescent state [32]; (ii) CA

generates a representation ρ for r; (iii) CA invokes a Create operation on CB by

passing both ρ and the CURI of r; r is then created in CB and kept quiescent. Once

these steps are successfully accomplished, ubiREST updates the naming system

with the new location of r, and activates it. Finally, CA removes r from its resource

repository, and forwards all the buffered messages towards CB, where r is now able

to consume old messages, as well as the new ones that are directly delivered to the

new location.

Finally, a lookup operation is used to query the ubiREST overlay for resources

of interest on the basis of their descriptions. In particular, lookup takes advantage

of Scala functional features by allowing developers to specify their own lookup

strategy as a filter function, which is used to filter out results to be returned to

requesters:

lookup:(filter:RDL ⇒ Boolean,d : RDL)⇒ cURI[]

Lookup is a high-order function that evaluates the function filter with all the

RDL descriptions stored by the resource repository, and returns the list of CURI

identifying those resources evaluated true. ubiREST provides a default implementa-

tion for filter, which exploits well known signature matching algorithm [51, 44].

Indeed, the lookup function matches a requested AURI, against the set of AURI

implemented by the resources stored within the resource repository. Then, filter

checks if provided and required AURIs, specified by means of ontology concepts,

20 Caporuscio et al.

satisfy one of the following subsumption relationships: (i) the concepts are equiva-

lent (exact matching), (ii) the provided concept subsumes the required one (plugin

matching), (iii) the required concept subsumes the provided one (subsume match-

ing), and (iv) there does not exist any subsumption relation between the two concepts

(fail). If the result is not fail, then CURI of the matching resource(s) is returned to

the requesting node.

7 ubiREST in action: an example

This section shows how ubiREST abstractions can be easily and intuitively exploited

to develop a ubiquitous application, namely Ubiquitous Slide Show (USS).

To this extent, we introduce a simple scenario describing a USS use case: Carl,

a university professor, is going to give a talk at the conference room, and carries his

laptop storing both the slides and related handouts. The conference room provides

speakers with a smart-screen available on the local wireless network, whereas the

audience is supposed to be equipped with devices (e.g., laptop, smartphone, tablet),

which can be used for displaying either the slide currently projected on the screen

or the related handouts. The audience and the speaker always refer to the same

slide, and to the same page of the handouts. All the devices are supposed to have a

ubiREST instance running on them.

USS conforms to the P-REST conceptual-model and specifies the following re-

sources: CurrentSlide and CurrentPage represent the slide currently pro-

jected, and the corresponding handout page, respectively; Remote models the re-

mote controller used by Carl to browse the slide show represented as an ordered

list of slides; PresReader and HoReader visualize the slide show and the

handout on the audience’s devices, respectively; Projector handles the smart-

screen of the conference room. The Projector resource is deployed within

the smart-screen ubiREST container. CurrentSlide, CurrentPage, Remote,

PresReader and HoReader are initially deployed on Carl’s container, and made

available to the devices in the audience which join the slide show.

Figure 8 shows a sequence diagram defining how such resources interact with

each other to implement USS. Remote broadcasts a Lookup messages searching

for a resource that implements the presenter concept, as defined by the Projector

RDL description (see Figure 7). As a result, it obtains the projector CURI that, in our

example, matches the lookup request. Once the projector CURI’s has been retrieved,

Carl starts the slide show: Remote sends a PUT message, containing the repre-

sentation of the first slide, to the projector, and then creates the CurrentSlide

resource also initialized with the representation of the first slide.

On the other side, when a participant (say, Bob) enters the conference room, he

uses the ubiREST resource finder built-in tool, which lists all the resources available

within the overlay, to explore the environment and find the PresReader resource.

Hence, selecting PresReader from the list, the ubiREST node issues a GET oper-

ation to retrieve a representation of PresReader, which, in turn, is used to create

ubiREST: A RESTful Service-oriented Middleware for Ubiquitous Networking 21

PresReaderBobPresReaderSpRemote CurrSlide Projector Audience

Lookup

ProjectorUri

GET

OBSERVE

GET

currentSl

Speaker

Next

PUT(newSl)
Notify

GET

PUT(firstSl)

readerRep

PUT(newSl)

currentSl

Show

Notify

GET

Show

Carl Projector Bob

CREATE(firstSl)

CurrentSl

CREATE(CurrSl)

Fig. 8 Behavioral specification of the USS application

the PresReaderBob resource. Once this resource is created, it performs two ac-

tions: (1) it gets the state of CurrentSlide to initialize itself, and (2) it declares

interest on observing the CurrentSlide resource (i.e., OBSERVE message).

When Carl needs to show the next slide of his presentation, he generates a next

event that is handled by the Remote’s workflowEngine by performing a PUT

operation on both Projector and CurrSlide. Modifying the Projector re-

source causes the projected slide to change, whereas modifying CurrSlide gen-

erates notifications towards all the resources that are observing CurrSlide. Then,

PresReaderBob receives such a notification and retrieves the new CurrentSlide

representation, which is then visualized on his devices.

This case study demonstrates that Resource is a natural abstraction for designing

and implementing ubiquitous applications. Besides, they are simple and intuitive,

as proven by the fact that USS consist of only 13 classes, among which the largest

one required about 150 lines of code. However, evaluating the ubiREST against

competitors is a hard task because of the lack of common test-beds. Hence, we are

currently involving students in a Beta-Test phase, where a set of case studies will be

developed by means of different middlewares.

22 Caporuscio et al.

8 Conclusion

Service-oriented computing appears as a promising paradigm for ubiquitous com-

puting systems that shall seamlessly integrate the functionalities offered by net-

worked resources, both mobile and stationary, both resource-rich and resource-

constrained. In particular, the loose coupling of services makes the paradigm much

appropriate for wireless, mobile environments that are highly dynamic. However,

enabling service-oriented computing in ubiquitous networking environments raises

two key challenges: (i) achieving the ubiquitous networking environment on top of

multi-radio connectivity, and (ii) providing a flexible architectural style, which al-

lows for designing and developing applications resilient to the extreme instability

inherent to ubiquitous networking environments.

Exploiting multi-radio connectivity has led to the definition of various algorithms

for optimizing the scheduling of communications over multiple radio interfaces,

e.g., [46, 31, 13]. Building on this effort, this paper has introduced a network-

agnostic connectivity layer, which leverages multi-radio networking by means of

a special addressing scheme for networked services, namely MRN@, a QoS-aware

network selection mechanism and both unicast and multicast communication fa-

cilities. In particular, this layer is in charge of managing the low-level heterogene-

ity inherent to multi-radio networking environments, by allowing for the exploita-

tion of different application-level communication protocols. Building upon these

functionalities, the ubiREST communication layer implements two different trans-

ports, namely ubiREST point-to-point and ubiREST group, which leverage network-

agnostic connectivity to enable the ubiquitous networking of RESTful services de-

ployed on various devices – e.g., Tablets and smartphones – embedding multiple

radio interfaces.

On the other hand, ubiREST strives to satisfies the flexibility, genericity and dy-

namism requirements by adhering to the P-REST principles and exploiting both

functional programming and code mobility. Specifically, (i) ubiREST achieves flex-

ibility by exploiting the Actor Model and relying on the ubiREST overlay network

to provide message-passing interaction, (ii) ubiREST provides genericity through

the exploitation of a uniform interface in conjunction with both code mobility and

functional programming capabilities (i.e., high-order functions), and (iii) ubiREST

provides dynamism by allowing resource composition.

Ongoing and future work is manyfold and proceed towards different lines of re-

search. First of all, we are currently defining an high-level composition language al-

lowing developers to specify their own resource compositions in an agile and asyn-

chronous way. Further evolution of ubiREST is towards the satisfaction of extra-

functional requirements. In particular, we want extend the Resource Description

Language, and the lookup service as well, to consider extra-functional concerns

(e.g., quality of service, security), and contextual information (e.g., physical loca-

tion) while specifying and search for resources of interest, as well as when compos-

ing them. Concurrently, we aim at improving ubiREST performances in terms of

network load by investigating different types of overlay networks (e.g., peer-to-peer

and hybrid).

ubiREST: A RESTful Service-oriented Middleware for Ubiquitous Networking 23

Acknowledgements

This research has been partially funded by the European Commission, Programme

IDEAS-ERC, Project 227077-SMScom (http://www.erc-smscom.org), and

by European Community’s Seventh Framework Programme FP7/2007-2013 under

grant agreement number 257178 project CHOReOS - Large Scale Choreographies

for the Future Internet - http://www.choreos.eu).

References

1. The Scala language. http://www.scala-lang.org/

2. Agha, G.: Actors: a model of concurrent computation in distributed systems. MIT Press,

Cambridge, MA, USA (1986)

3. Aijaz, F., Hameed, B., Walke, B.: Towards peer-to-peer long lived mobile web services. In:

Proc. of the 4th international conference on innovations in information technology (2007)

4. Asprino, P., Fresa, A., Gaito, N., Longo, M.: A layered architecture to manage complex mul-

timedia services. In: Proc. of 15th International Conference on Software Engineering and

Knowledge Engineering (2003)

5. Bellur, U., Narendra, N.C.: Towards service orientation in pervasive computing systems. In:

Proc. of the international conference on information technology: coding and computing (2005)

6. Bellur, U., Narendra, N.C.: Towards service orientation in pervasive computing systems. In:

International Conference on Information Technology: Coding and Computing (2005)

7. Bonetta, D., Pautasso, C.: An architectural style for liquid web services. In: Proceedings of

the Ninth Working IEEE/IFIP Conference on Software Architecture. Washington, DC, USA

(2011)

8. Caporuscio, M., Charlet, D., Issarny, V., Navarra, A.: Energetic performance of service-

oriented multi-radio networks: issues and perspectives. In: Proc. of the 6th international work-

shop on software and performance (2007)

9. Caporuscio, M., Funaro, M., Ghezzi, C.: Architectural issues of adaptive pervasive systems.

In: G. Engels, C. Lewerentz, W. SchŁfer, A. Schrr, B. Westfechtel (eds.) Graph Transfor-

mations and Model-Driven Engineering, Lecture Notes in Computer Science, vol. 5765, pp.

492–511. Springer Berlin / Heidelberg (2010)

10. Caporuscio, M., Funaro, M., Ghezzi, C.: RESTful service architectures for pervasive net-

working environments. In: E. Wilde, C. Pautasso (eds.) REST: From Research to Practice, pp.

401–422. Springer New York (2011)

11. Caporuscio, M., Funaro, M., Ghezzi, C.: PaCE: A Data-Flow Coordination Language for

Asynchronous Network-Based Applications. In: T. Gschwind, F. Paoli, V. Gruhn, M. Book

(eds.) Software Composition, Lecture Notes in Computer Science, vol. 7306, pp. 51–67.

Springer Berlin Heidelberg (2012)

12. Caporuscio, M., Raverdy, P.G., Issarny, V.: ubiSOAP: A service-oriented middleware for ubiq-

uitous networking. IEEE Transactions on Services Computing 5(1), 86–98 (2012)

13. Charlet, D., Issarny, V., Chibout, R.: Energy-efficient middleware-layer multi-radio network-

ing: an assessment in the area of service discovery. Comput. Netw. 52(1) (2008)

14. Doval, D., O’Mahony, D.: Overlay networks: A scalable alternative for P2P. IEEE Internet

Computing 7(4), 79–82 (2003)

15. Edwards, W.K., Newman, M.W., Sedivy, J.Z., Smith, T.F.: Experiences with recombinant com-

puting: Exploring ad hoc interoperability in evolving digital networks. ACM Trans. Comput.-

Hum. Interact. 16, 3:1–3:44 (2009)

16. Ellebaek, K.K.: A survey of context-aware middleware. In: Proc. of the 25th conference on

IASTED International Multi-Conference (2007)

http://www.erc-smscom.org
http://www.choreos.eu

24 Caporuscio et al.

17. van Engelen, R.A., Gallivan, K.: The gSOAP toolkit for web services and peer-to-peer com-

puting networks. In: Proc. of the 2nd International Symposium on Cluster Computing and the

Grid (2002)

18. Fielding, R.T.: REST: Architectural styles and the design of network-based software architec-

tures. Ph.D. thesis, University of California, Irvine (2000)

19. Grace, P., Blair, G.S., Samuel, S.: A reflective framework for discovery and interaction in

heterogeneous mobile environments. SIGMOBILE Mob. Comput. Commun. Rev. 9, 2–14

(2005)

20. Guinard, D., Trifa, V., Wilde, E.: A resource oriented architecture for the Web of Things. In:

Proceedings of Internet of Things (IOT). Japan (2010)

21. Gupta, P., Kumar, P.: The capacity of wireless networks. IEEE Transactions on information

theory 46(2) (2000)

22. Gupta, V., Goldman, R., Udupi, P.: A network architecture for the web of things. In: Proceed-

ings of the Second International Workshop on Web of Things. New York, NY, USA (2011)

23. Hirsch, F., kemp, J., Ilkka, J.: Mobile Web Services: Architecture and Implementation. John

Wiley & Sons (2006)

24. Hoareau, D., Mahéo, Y.: Middleware support for the deployment of ubiquitous software com-

ponents. Personal Ubiquitous Comput. 12, 167–178 (2008)

25. Huang, H., Cai, J.: Improving TCP performance during soft vertical handoff. In: Proc. of the

19th international conference on advanced information networking and applications (2005)

26. International Telecommunication Union (ITU): Global standard for International Mobile

Telecommunications – IMT-Advanced. http://www.itu.int/

27. Issarny, V., Sacchetti, D., Tartanoglu, F., Sailhan, F., Chibout, R., Levy, N., Talamona, A.:

Developing ambient intelligence systems: A solution based on web services. Automated Soft-

ware Engg. 12(1), 101–137 (2005)

28. Jacquet, P., Muhlethaler, P., Clausen, T., Laouiti, A., Qayyum, A., Viennot, L.: Optimized link

state routing protocol for ad hoc networks. In: Proc. of the IEEE international multi topic

conference: technology for the 21st century (2001)

29. Khare, R., Taylor, R.N.: Extending the representational state transfer (rest) architectural style

for decentralized systems. In: Proceedings of the 26th International Conference on Software

Engineering, pp. 428–437. Edinburg, UK (2004)

30. Kindberg, T., Barton, J.: A web-based nomadic computing system. Computer Networks 35(4),

443 – 456 (2001)

31. Klasing, R., Kosowski, A., Navarra, A.: Cost minimisation in wireless networks with bounded

and unbounded number of interfaces. Networks 53(3), 266–275 (2009)

32. Kramer, J., Magee, J.: The evolving philosophers problem: Dynamic change management.

IEEE Tran. Soft. Eng. 16(11), 1293–1306 (1990)

33. Kuuskeri, J., Turto, T.: On actors and the rest. In: Web Engineering, Lecture Notes in Computer

Science, vol. 6189, pp. 144–157. Springer Berlin / Heidelberg (2010)

34. Lelli, F., Pautasso, C.: Controlling and monitoring devices with REST. In: Proceedings of

the 4th International Workshop on Distributed Cooperative Laboratories: “Instrumenting” the

Grid (INGRID 2009). Italy (2009)

35. Li, J., Blake, C., De Couto, D.S.J., Lee, H.I., Morris, R.: Capacity of ad hoc wireless net-

works. In: Proc. of the 7th ACM international conference on mobile computing and network-

ing (2001)

36. Lindholm, T., Yellin, F.: Java virtual machine specification. Addison-Wesley Longman Pub-

lishing Co., Inc. (1999)

37. Mancinelli, F.: Leveraging the web platform for ambient computing: An experience. IJACI

2(4), 33–43 (2010)

38. Mascolo, C., Capra, L., Emmerich, W.: Middleware for mobile computing (a survey). In:

Neworking 2002 Tutorial Papers (2002)

39. McKinley, P., Sadjadi, S., Kasten, E., Cheng, B.: Composing adaptive software. Computer

37(7), 56–64 (2004)

ubiREST: A RESTful Service-oriented Middleware for Ubiquitous Networking 25

40. Mokhtar, S.B., Preuveneers, D., Georgantas, N., Issarny, V., Berbers, Y.: EASY: efficient se-

mantic service discovery in pervasive computing environments with QoS and context support.

J. Syst. Softw. 81(5) (2008)

41. Network Working Group: RFC675 - Specification of Internet Transmission Control Program.

http://www.ietf.org/rfc/rfc0675.txt (1974)

42. Olsen Jr., D.R., Jefferies, S., Nielsen, T., Moyes, W., Fredrickson, P.: Cross-modal interaction

using xweb. In: 13th annual ACM symposium on User interface software and technology,

UIST ’00, pp. 191–200 (2000)

43. Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-based runtime software evolution. In:

Proceedings of the 20th international conference on Software engineering, pp. 177–186. IEEE

Computer Society, Washington, DC, USA (1998)

44. Paolucci, M., Kawamura, T., Payne, T., Sycara, K.: Semantic matching of web services capa-

bilities. In: First International Semantic Web Conference (2002)

45. Papadimitriou, D.: Future Internet - the Cross-ETP Vision Document. http://www.future-

internet.eu/news/view/article/the-cross-etp-vision-document.html (2009). Ver. 1.0

46. Qureshi, A., Guttag, J.: Horde: separating network striping policy from mechanism. In: Proc.

of the 3rd international conference on mobile systems, applications, and services (2005)

47. Roman, G.C., Picco, G.P., Murphy, A.L.: Software engineering for mobility: a roadmap. In:

FOSE ’00, pp. 241–258. ACM, New York, NY, USA (2000)

48. Sakr, S.: Xml compression techniques: A survey and comparison. J. Comput. Syst. Sci. 75(5),

303–322 (2009)

49. Sorber, J., Banerjee, N., Corner, M.D., Rollins, S.: Turducken: hierarchical power manage-

ment for mobile devices. In: Proc. of the 3rd international conference on mobile systems,

applications, and services (2005)

50. Su, J., Scott, J., Hui, P., Crowcroft, J., de Lara, E., Diot, C., Goel, A., Lim, M., Upton, E.: Hag-

gle: seamless networking for mobile applications. In: Proc. of the 9th international conference

on ubiquitous computing (2007)

51. Sycara, K., Paolucci, M., Ankolekar, A., Srinivasan, N.: Automated discovery, interaction and

composition of semantic web services. Journal of Web Semantics 1(1), 27–46 (2003)

52. Tanenbaum, A.S., Van Renesse, R.: Distributed operating systems. ACM Comput. Surv. 17,

419–470 (1985)

53. Wang, H.J., Katz, R.H., Giese, J.: Policy-enabled handoffs across heterogeneous wireless net-

works. In: Proc. of the 2nd IEEE workshop on mobile computer systems and applications

(1999)

54. Wolff, A., Michaelis, S., Schmutzler, J., Wietfeld, C.: Network-centric middleware for service

oriented architectures across heterogeneous embedded systems. In: Proc. of the 11th Interna-

tional EDOC Conference Workshop (2007)

55. XML Protocol Working Group: SOAP message transmission optimization mechanism.

http://www.w3.org/TR/soap12-mtom/

56. Zhu, F., Mutka, M.W., Ni, L.M.: Service discovery in pervasive computing environments.

IEEE pervasive computing 4(4) (2005)

