P. K. Agarwal, T. Biedl, S. Lazard, S. Robbins, S. Suri et al., Curvature-constrained shortest paths in a convex polygon, SIAM Journal on Computing, vol.31, pp.1814-1851, 2002.
DOI : 10.1137/s0097539700374550

URL : https://hal.archives-ouvertes.fr/inria-00072573

P. K. Agarwal, P. Raghavan, and H. Tamaki, Motion planning for a steering-constrained robot through moderate obstacles, Proceedings of the twenty-seventh annual ACM symposium on Theory of computing, pp.343-352, 1995.
DOI : 10.1145/225058.225158

J. Backer and D. Kirkpatrick, A complete approximation algorithm for shortest bounded-curvature paths, Proceedings of the nineteenth International Symposium on Algorithms and Computation, pp.628-643, 2008.
DOI : 10.1007/978-3-540-92182-0_56

A. Ben-tal and A. Nemirovski, Lectures on Modern Convex Optimization, 2008.
DOI : 10.1137/1.9780898718829

URL : http://iew3.technion.ac.il/Labs/Opt/opt/LN/Final.pdf

S. Bereg and D. Kirkpatrick, Curvature-bounded traversals of narrow corridors, Proceedings of the twenty-first annual symposium on Computational Geometry, pp.278-287, 2005.
DOI : 10.1145/1064092.1064135

J. Boissonnat, A. Cérézo, and J. Leblond, Shortest paths of bounded curvature in the plane, Journal of Intelligent and Robotic Systems, vol.11, pp.5-20, 1994.

J. Boissonnat and S. Lazard, Convex hulls of bounded curvature, Proc. 8th Canad. Conf, pp.14-19, 1996.
DOI : 10.1016/s0925-7721(99)00022-x

URL : https://hal.archives-ouvertes.fr/inria-00442802

J. Boissonnat and S. Lazard, A polynomial-time algorithm for computing a shortest path of bounded curvature amidst moderate obstacles, International Journal of Computational Geometry and Applications, vol.13, pp.189-229, 2003.
URL : https://hal.archives-ouvertes.fr/inria-00073803

X. Bui, Planification de trajectoire pour un robot polygonal non-holonome dans un environnement polygonal, 1994.

X. Bui, P. Soù-eres, J. Boissonnat, and J. Laumond, The shortest paths synthesis for non-holonomic robots moving forwards, Proceedings of the IEEE International conference on Robotics and Automation, pp.2-7, 1994.

G. Desaulniers, On shortest paths for a car-like robot maneuvering around obstacles, Les Cahiers du GERAD G-94-35, Ecole des Hautes Etudes Commerciales, 1994.
DOI : 10.1016/0921-8890(96)80512-4

L. E. Dubins, On curves of minimal length with a constraint on average curvature, and prescribed initial and terminal positions and tangents, American Journal of Mathematics, vol.79, pp.497-516, 1957.

J. Enright and E. Frazzoli, UAV routing in a stochastic time-varying environment, IFAC World Congress, 2005.
DOI : 10.3182/20050703-6-cz-1902.02010

URL : http://rigoletto.seas.ucla.edu/papers/enright.frazzoli.ifac05.pdf

S. Fortune and G. Wilfong, Planning constrained motion, Annals of Mathematics and Artificial Intelligence, vol.3, pp.21-82, 1991.
DOI : 10.1145/62212.62256

X. Goaoc, H. Kim, and S. Lazard, Bounded-curvature shortest paths through a sequence of points, 2010.
DOI : 10.1137/100816079

URL : https://hal.archives-ouvertes.fr/inria-00539957

D. Halperin, L. E. Kavraki, J. Latombe, and R. , CRC Handbook of Discrete and Computational Geometry, pp.1065-1093, 2004.

S. Itani and M. A. Dahleh, On the stochastic TSP for the Dubins vehicle, Proceedings of the 2007 American Control Conference, 2007.
DOI : 10.1109/acc.2007.4282819

P. Jacobs and J. Canny, Planning smooth paths for mobile robots, Kluwer Academic, pp.271-342, 1992.
DOI : 10.1007/978-1-4615-3176-0_8

J. Latombe, Robot Motion Planning, 1991.

S. M. Lavalle, Planning Algorithms, 2006.

J. Lee, O. Cheong, W. Kwon, S. Shin, and K. Chwa, Approximation of curvature-constrained shortest paths through a sequence of points, Algorithms-ESA, pp.314-325, 2000.

X. Ma and D. A. Castañón, Receding horizon planning for Dubins traveling salesman problems, 45th IEEE Conference on Decision and Control, 2006.

J. L. Ny, E. Feron, and E. Frazzoli, On the curvature-constrained traveling salesman problem. Manuscript. Conditionally accepted for publication in IEEE, 2009.

, The curvature-constrained traveling salesman problem for high point densities, Proceedings of the 46th IEEE Conference on Decision and Control, pp.5985-5990, 2007.

S. Rathinam, R. Sengupta, and S. Darbha, A resource allocation algorithm for multivehicle systems with nonholonomic constraints, IEEE Transactions on Automation Science and Engineering, p.4, 2007.

J. A. Reeds and L. A. Shepp, Optimal paths for a car that goes both forwards and backwards, Pacific J. Math, pp.367-393, 1990.

J. Reif, H. K. Wang-;-a, and L. Peters, The complexity of the two dimensional curvature-constrained shortest-path problem, Proceedings of the third Workshop on the Algorithmic Foundations of Robotics on Robotics: the Algorithmic Perspective, pp.49-57, 1998.

K. Savla, E. Frazzoli, and F. Bullo, Traveling salesperson problems for the Dubins vehicle, IEEE Transactions on Automatic Control, p.53, 2008.

J. T. Schwartz and M. Sharir, A of Handbook of Theoretical Computer Science, Algorithms and Complexity, J. van Leeuwen, pp.391-430, 1990.

J. Sellen, Approximation and decision algorithms for curvature-constrained path planning: a state-space approach, Proceedings of the third workshop on the algorithmic foundations of robotics on Robotics : the algorithmic perspective, pp.59-67, 1998.

H. J. Sussmann, Shortest 3-dimentional paths with a prescribed curvature bound, Proceedings of the 34th IEEE Conference on Decision and Control, pp.3306-3311, 1995.

H. J. Sussmann and G. Tang, Shortest paths for the reeds-shepp car: A worked out example of the use of geometric techniques in nonlinear optimal control, 1991.

H. Wang and P. K. Agarwal, Approximation algorithms for curvature-constrained shortest paths, SIAM Journal on Computing, vol.30, pp.1739-1772, 2001.