P. K. Agarwal, T. Biedl, S. Lazard, S. Robbins, S. Suri et al., Curvature-constrained shortest paths in a convex polygon, SIAM Journal on Computing, vol.31, pp.1814-1851, 2002.
DOI : 10.1137/s0097539700374550

URL : https://hal.archives-ouvertes.fr/inria-00072573

P. K. Agarwal, P. Raghavan, and H. Tamaki, Motion planning for a steering-constrained robot through moderate obstacles, Proceedings of the twenty-seventh annual ACM symposium on Theory of computing, pp.343-352, 1995.
DOI : 10.1145/225058.225158

J. Backer and D. Kirkpatrick, A complete approximation algorithm for shortest bounded-curvature paths, Proceedings of the nineteenth International Symposium on Algorithms and Computation, pp.628-643, 2008.
DOI : 10.1007/978-3-540-92182-0_56

A. Ben-tal and A. Nemirovski, Lectures on Modern Convex Optimization, 2008.
DOI : 10.1137/1.9780898718829

URL : http://iew3.technion.ac.il/Labs/Opt/opt/LN/Final.pdf

S. Bereg and D. Kirkpatrick, Curvature-bounded traversals of narrow corridors, Proceedings of the twenty-first annual symposium on Computational Geometry, pp.278-287, 2005.
DOI : 10.1145/1064092.1064135

J. Boissonnat, A. Cérézo, and J. Leblond, Shortest paths of bounded curvature in the plane, Journal of Intelligent and Robotic Systems, vol.11, pp.5-20, 1994.

J. Boissonnat and S. Lazard, Convex hulls of bounded curvature, Proc. 8th Canad. Conf, pp.14-19, 1996.
DOI : 10.1016/s0925-7721(99)00022-x

URL : https://hal.archives-ouvertes.fr/inria-00442802

J. Boissonnat and S. Lazard, A polynomial-time algorithm for computing a shortest path of bounded curvature amidst moderate obstacles, International Journal of Computational Geometry and Applications, vol.13, pp.189-229, 2003.
URL : https://hal.archives-ouvertes.fr/inria-00073803

X. Bui, Planification de trajectoire pour un robot polygonal non-holonome dans un environnement polygonal, 1994.

X. Bui, P. Soù-eres, J. Boissonnat, and J. Laumond, The shortest paths synthesis for non-holonomic robots moving forwards, Proceedings of the IEEE International conference on Robotics and Automation, pp.2-7, 1994.

G. Desaulniers, On shortest paths for a car-like robot maneuvering around obstacles, Les Cahiers du GERAD G-94-35, Ecole des Hautes Etudes Commerciales, 1994.
DOI : 10.1016/0921-8890(96)80512-4

L. E. Dubins, On curves of minimal length with a constraint on average curvature, and prescribed initial and terminal positions and tangents, American Journal of Mathematics, vol.79, pp.497-516, 1957.

J. Enright and E. Frazzoli, UAV routing in a stochastic time-varying environment, IFAC World Congress, 2005.
DOI : 10.3182/20050703-6-cz-1902.02010

URL : http://rigoletto.seas.ucla.edu/papers/enright.frazzoli.ifac05.pdf

S. Fortune and G. Wilfong, Planning constrained motion, Annals of Mathematics and Artificial Intelligence, vol.3, pp.21-82, 1991.
DOI : 10.1145/62212.62256

X. Goaoc, H. Kim, and S. Lazard, Bounded-curvature shortest paths through a sequence of points, 2010.
DOI : 10.1137/100816079

URL : https://hal.archives-ouvertes.fr/inria-00539957

D. Halperin, L. E. Kavraki, J. Latombe, and R. , CRC Handbook of Discrete and Computational Geometry, pp.1065-1093, 2004.

S. Itani and M. A. Dahleh, On the stochastic TSP for the Dubins vehicle, Proceedings of the 2007 American Control Conference, 2007.
DOI : 10.1109/acc.2007.4282819

P. Jacobs and J. Canny, Planning smooth paths for mobile robots, Kluwer Academic, pp.271-342, 1992.
DOI : 10.1007/978-1-4615-3176-0_8

J. Latombe, Robot Motion Planning, 1991.

S. M. Lavalle, Planning Algorithms, 2006.