Gibbs Sampling Based Distributed OFDMA Resource Allocation

Abstract : In this article, we present a distributed resource and power allocation scheme for multiple-resource wireless cellular networks. The global optimization of multi-cell multi-link resource allocation problem is known to be NP-hard in the general case. We use Gibbs sampling based algorithms to perform a distributed optimization that would lead to the global optimum of the problem. The objective of this article is to show how to use the Gibbs sampling (GS) algorithm and its variant the Metropolis-Hastings (MH) algorithm. We also propose an enhanced method of the MH algorithm, based on a priori known target state distribution, which improves the convergence speed without increasing the complexity. Also, we study different temperature cooling strategies and investigate their impact on the network optimization and convergence speed. Simulation results have also shown the effectiveness of the proposed methods.
Type de document :
Article dans une revue
Science China Information Sciences, Springer, 2014
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00927286
Contributeur : Chung Shue Chen <>
Soumis le : dimanche 12 janvier 2014 - 17:00:35
Dernière modification le : mardi 24 avril 2018 - 13:33:57
Document(s) archivé(s) le : samedi 12 avril 2014 - 23:10:08

Fichier

SciencesChina-Gibbs-OFDMA.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00927286, version 1

Collections

Citation

Virgile Garcia, Chung Shue Chen, Yiqing Zhou, Jinglin Shi. Gibbs Sampling Based Distributed OFDMA Resource Allocation. Science China Information Sciences, Springer, 2014. 〈hal-00927286〉

Partager

Métriques

Consultations de la notice

293

Téléchargements de fichiers

251