Introduction to the mathematical analysis of the Helmholtz equation : Sommerfeld condition, limiting amplitude principle and limiting absorption principle

Hélène Barucq 1, 2 Julien Diaz 1, 2 Sébastien Tordeux 1, 2
1 Magique 3D - Advanced 3D Numerical Modeling in Geophysics
LMAP - Laboratoire de Mathématiques et de leurs Applications [Pau], Inria Bordeaux - Sud-Ouest
Abstract : The Helmholtz equation models time-harmonic wave motion phenomena and is consequently one of the most important equation in mathematical physics. For infinite domains, its mathematical analysis is rather difficult due to a default of coercivity of the associated operator: the solutions of the Helmholtz equation are not of finite energy and are not uniquely defined. Many authors have developed a theory to bypass these difficulties. The limiting amplitude technique, the absorbing principle and the unique continuation theorem are, to my opinion, the main ingredients of this theory. In this lecture, I will give an introduction to these three techniques.
Type de document :
Communication dans un congrès
Summer School Jaca 2012, Sep 2012, Jaca, Spain. 2012
Liste complète des métadonnées

https://hal.inria.fr/hal-00927403
Contributeur : Sébastien Tordeux <>
Soumis le : lundi 13 janvier 2014 - 09:37:31
Dernière modification le : jeudi 11 janvier 2018 - 06:22:32
Document(s) archivé(s) le : dimanche 13 avril 2014 - 22:25:31

Fichier

ondes.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00927403, version 1

Collections

Citation

Hélène Barucq, Julien Diaz, Sébastien Tordeux. Introduction to the mathematical analysis of the Helmholtz equation : Sommerfeld condition, limiting amplitude principle and limiting absorption principle. Summer School Jaca 2012, Sep 2012, Jaca, Spain. 2012. 〈hal-00927403〉

Partager

Métriques

Consultations de la notice

255

Téléchargements de fichiers

252