Fitting Polynomial Volumes to Surface Meshes with Voronoï Squared Distance Minimization

Gilles-Philippe Paillé 1 Pierre Poulain 1 Bruno Lévy 2
2 ALICE - Geometry and Lighting
Inria Nancy - Grand Est, LORIA - ALGO - Department of Algorithms, Computation, Image and Geometry
Abstract : We propose a method for mapping polynomial volumes. Given a closed surface and an initial template volume grid, our method deforms the template grid by fitting its boundary to the input surface while minimizing a vol- ume distortion criterion. The result is a point-to-point map distorting linear cells into curved ones. Our method is based on several extensions of Voronoi Squared Distance Minimization (VSDM) combined with a higher-order finite element formulation of the deformation energy. This allows us to globally optimize the mapping without prior parameterization. The anisotropic VSDM formulation allows for sharp and semi-sharp features to be im- plicitly preserved without tagging. We use a hierarchical finite element function basis that selectively adapts to the geometric details. This makes both the method more efficient and the representation more compact. We ap- ply our method to geometric modeling applications in computer-aided design and computer graphics, including mixed-element meshing, mesh optimization, subdivision volume fitting, and shell meshing.
Type de document :
Article dans une revue
Computer Graphics Forum, Wiley, 2013, 32 (5), pp.103-112. 〈10.1111/cgf.12177〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00930030
Contributeur : Samuel Hornus <>
Soumis le : mardi 14 janvier 2014 - 11:19:06
Dernière modification le : jeudi 11 janvier 2018 - 06:25:23

Lien texte intégral

Identifiants

Collections

Citation

Gilles-Philippe Paillé, Pierre Poulain, Bruno Lévy. Fitting Polynomial Volumes to Surface Meshes with Voronoï Squared Distance Minimization. Computer Graphics Forum, Wiley, 2013, 32 (5), pp.103-112. 〈10.1111/cgf.12177〉. 〈hal-00930030〉

Partager

Métriques

Consultations de la notice

171