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ABSTRACT

We introduce the RB algorithm for Gröbner basis compu-
tation, a simpler yet equivalent algorithm to F5GEN. RB
contains the original unmodified F5 algorithm as a special
case, so it is possible to study and understand F5 by con-
sidering the simpler RB. We present simple yet complete
proofs of this fact and of F5’s termination and correctness.

RB is parametrized by a rewrite order and it contains
many published algorithms as special cases, including SB.
We prove that SB is the best possible instantiation of RB
in the following sense. Let X be any instantiation of RB
(such as F5). Then the S-pairs reduced by SB are always a
subset of the S-pairs reduced by X and the basis computed
by SB is always a subset of the basis computed by X.

Categories and Subject Descriptors

G.4 [Mathematical Software]: Algorithm design and anal-
ysis

Keywords

Gröbner basis, Syzygy Gröbner basis, Signature Gröbner
basis, Signature rewriting, F5

1. INTRODUCTION
The F5 algorithm [5] is a significant development in Gröb-

ner basis computation and the difficulty of understanding it
is a widely cited concern. We address this problem in this
paper by introducing RB, an algorithm simpler than yet
equivalent to F5GEN [9]. RB contains the original un-
modified F5 as a special case [9], so we can understand and
prove statements about F5 by considering the simpler RB.
In this way we present simplified proofs of the termination
and correctness of F5. Much of the paper is concerned with
showing exactly how to derive F5 as a special case of RB.

There are many publications that present signature-based
algorithms for Gröbner basis computation. Seeing as these
algorithms are based on signatures, they are all somehow
related to F5, yet it is often not clear what the exact rela-
tionship is — is F5 a special case of the new algorithm? If
not, what are the exact differences? Pan, Hu and Wang [9]
(PHW) addressed this problem by introducing the F5GEN
algorithm. F5GEN contains many published algorithms as
special cases which makes it possible to compare algorithms
theoretically. PHW pose the open problem of which instan-
tiation of F5GEN is faster:

Moreover, with this proved F5GEN algorithm,
researchers can shift their focus on the different
variants of the F5GEN algorithm and find out
the fastest one. —– Pan, Hu, Wang [9]

We answer this open problem by proving that the SB al-
gorithm [10] is the best possible instantiation of RB (and
hence F5GEN) in the following sense. Let X be any in-
stantiation of RB (such as F5). Then the S-pairs reduced
by SB are always a subset of the S-pairs reduced by X up to
signature and the basis computed by SB is always a subset
of the basis computed by X up to sig-lead pairs.

Roune and Stillman’s algorithm SB [10] is an improve-
ment of Gao, Volny and Wang’s algorithm GVW [8]. SB is
equivalent to Arri and Perry’s algorithm AP [2] and also to
the modification GVWHS [12] of GVW, so all statements
made about SB also apply to AP and GVWHS.

Section 2 introduces terminology and SB. Section 3 intro-
duces RB and proves that SB is the best possible instan-
tiation of RB. Section 4 introduces RB5, a special case of
RB that is more similar to F5. Section 5 proves that F5

is a special case of RB5 (and hence RB). Section 6 proves
termination of RB (and hence F5).

Remark 1. The F5 paper [6] requires that the input poly-
nomials form a homogeneous regular sequence. Faugère must
have known of an algorithm without these restrictions since
the F5 paper contains benchmarks on ideals that do not meet
the restrictions. In this paper, the term F5 refers exclusively
to F5 exactly as described in the F5 paper [6] including the
restriction to homogeneous regular sequences.

2. THE SIGNATURE BASIS ALGORITHM
We briefly introduce SB in this section. We refer to [10]

for a full treatment of SB with proofs. If we consider a poly-
nomial ring R then the main differences between SB and the
classic Buchberger algorithm is that everything is lifted from
R to Rm, that polynomial reduction is constrained in that
some reduction steps are not allowed and that the S-pair
elimination criteria are more powerful. It is not actually
necessary to represent polynomials in Rm when implement-
ing SB on a computer (see Remark 2).

2.1 Notation and Terminology
Let R be a polynomial ring over a field κ. All poly-

nomials f ∈ R can be uniquely written as a finite sum
f =

∑

cxv∈M cxv where c ∈ κ, xv
.

.=
∏

i x
vi
i and M is min-

imal. The elements of M are the terms of f . A monomial



is a polynomial with exactly one term. A monomial with
a coefficient of 1 is monic. Neither monomials nor terms
of polynomials are necessarily monic. We write f ≃ g for
f, g ∈ R if there exists a non-zero s ∈ κ such that f = sg.

Let Rm be a free R-module and let e1, . . . , em be the stan-
dard basis of unit vectors in Rm. All module elements α ∈
Rm can be uniquely written as a finite sum α =

∑

aei∈M aei

where the a are monomials and M is minimal. The elements
of M are the terms of α. A module monomial is an element
of Rm with exactly one term. A module monomial with
a coefficient of 1 is monic. Neither module monomials nor
terms of module elements are necessarily monic. Let α ≃ β
for α, β ∈ Rm if α = sβ for some non-zero s ∈ κ.

Let ≤ denote two different orders – one for Rm and one
for R. The order for R is a monomial order, which means
that it is a well-order on the set of monomials in R such
that a ≤ b implies ca ≤ cb for all monomials a, b, c ∈ R.
The order for Rm is a module monomial order which means
that it is a well-order on the set of module monomials in Rm

such that L ≤ T implies cL ≤ cT for all module monomials
L, T ∈ Rm and monomials c ∈ R. We require the two
orders to be compatible in the sense that a ≤ b if and only
if aei ≤ bei for all monomials a, b ∈ R and i = 1, . . . ,m.

Consider a finite sequence of polynomials g1, . . . , gm ∈ R
that we call the input polynomials. Define the homomor-
phism α 7→ α from Rm to R by α .

.=
∑m

i=1 αigi. α ∈ Rm is
a syzygy if α = 0.

Let the lead term lt (f) be the ≤-maximal term of f ∈ R\
{0}. Let the signature s (α) be the ≤-maximal term of α ∈
Rm \{0}. In this way every non-syzygy module element α ∈
Rm has two main associated characteristics – the signature
s (α) ∈ Rm and the lead term lt (α) ∈ R of its image α
in R. Lead terms and signatures include a coefficient for
mathematical convenience, though an implementation of SB
need not store the signature coefficients. If aei = s (α) then
ind (α) .

.= i is the index of signature of α.
Let G ⊆ Rm be finite and assume that s (α) ≃ s (β) ⇒

α = β for α, β ∈ G. α, β ∈ Rm are equal up to sig-poly pairs
if s (α) = s (sβ) and α = sβ for some non-zero s ∈ κ.

Consider the unique extension of the module monomial
order < to module monomials that may have negative expo-
nents such that aei < bej ⇔ caei < cbej for all monomials

a, b, c ∈ R. The sig-lead ratio of α ∈ Rm is rα .

.= s(α)
lt(α)

.

This notation is the SB notation [11], which is improved
from the notation of the preceding paper [10]. In particular,
there is no module Rn and no function φ : Rn → Rm.

Remark 2. The SB notation using module elements dif-
fers from the standard notation which considers sig-poly pairs
(s (α) , α) in place of α ∈ Rm. SB can also use sig-poly pairs
(see Section 5.1). We believe that the SB notation makes
signature algorithms easier to understand and reason about.

2.2 Reduction With Signatures
Both SB and the classic Buchberger algorithm are based

on reducing S-pairs. We first describe classic polynomial
reduction and then describe SB’s reduction in similar terms.

Classic polynomial reduction

Let f ∈ R and let t be a term of f . Then we can reduce t
by g ∈ R if lt (g) |t or equivalently if

• there exists a monomial b such that lt (bg) = t.

The outcome of the reduction step is then f−bg and g is the
reducer. It holds that lt (bg) ≤ lt (f), but that is not listed
as a requirement since it is implied. If lt (bg) ≃ lt (f) then
the reduction step is a top reduction step and otherwise it is
a tail reduction step.

The result of classic polynomial reduction of f ∈ R is a
polynomial h ∈ R that has been calculated from f through
a sequence of reduction steps such that h cannot be further
reduced. The reduction is a tail reduction if only tail reduc-
tion steps are allowed and it is a top reduction if only top
reduction steps are allowed.

The implied condition that lt (bg) ≤ lt (f) is equivalent to
lt (f − bg) ≤ lt (f) so during classic polynomial reduction it
is not allowed to increase the leading term. For tail reduction
we perform only those reduction steps that do not change
the leading term at all.

Signature reduction

Let α ∈ Rm and let t be a term of α. Then we can s-reduce
t by β ∈ Rm if

• there exists a monomial b such that lt
(

bβ
)

= t and

• s (bβ) ≤ s (α).

The outcome of the s-reduction step is then α − bβ and β
is the s-reducer. The second condition is analogous to the
implied condition lt (bg) ≤ lt (f) from classic polynomial re-
duction, the condition is just lifted to Rm so that it involves
signatures. When β s-reduces t we also say for convenience
that bβ s-reduces α. That way b is introduced implicitly
instead of having to repeat the equation lt

(

bβ
)

= t.

Just as for classic polynomial reduction, if lt
(

bβ
)

≃ lt (α)
then the s-reduction step is a top s-reduction step and oth-
erwise it is a tail s-reduction step. We need words for the
analogous distinction for signatures, so if s (bβ) ≃ s (α) then
the reduction step is a singular s-reduction step and other-
wise it is a regular s-reduction step.
The result of s-reduction of α ∈ Rm is a γ ∈ Rm that has

been calculated from α through a sequence of s-reduction
steps such that γ cannot be further s-reduced. The reduc-
tion is a tail s-reduction if only tail s-reduction steps are
allowed and it is a top s-reduction if only top s-reduction
steps are allowed. The reduction is a regular s-reduction if
only regular s-reduction steps are allowed. A module ele-
ment α ∈ Rm is s-reducible if it can be s-reduced. If α s-
reduces to γ and γ is a syzygy then we say that α s-reduces
to zero even if γ 6= 0.

As for classic polynomial reduction, the implied condition
lt
(

bβ
)

≤ lt (α) is equivalent to lt
(

α− bβ
)

≤ lt (α), so dur-
ing s-reduction it is not allowed to increase the leading term.
For tail s-reduction we perform only those s-reduction steps
that do not change the leading term at all. Analogously, the
condition s (bβ) ≤ s (α) is equivalent to s (α− bβ) ≤ s (α), so
during s-reduction it is not allowed to increase the signature.
For regular s-reduction, we perform only those s-reduction
steps that do not change the signature at all.

Classic reduction is always with respect to a finite basis
B ⊆ R. The reducers in classic polynomial reduction are
chosen from the basis B. Analogously, s-reduction is always
with respect to a finite basis G ⊆ Rm. The s-reducers in
s-reduction are chosen from the basis G.
G is a signature Gröbner basis in signature T if all α ∈ Rm

with s (α) = T s-reduce to zero. G is a signature Gröbner



basis up to signature T if G is a signature Gröbner basis in
all signatures L such that L < T . G is a signature Gröbner
basis if it is a signature Gröbner basis in all signatures.

SB computes a signature Gröbner basis. If G is a signa-
ture Gröbner basis then {α |α ∈ G } is a Gröbner basis of
〈g1, . . . , gm〉, so we can use SB to compute Gröbner bases.

2.3 S-pairs and Syzygies
Let f, g ∈ R and let c .

.= gcd(lt (f) , lt (g)) be the monic
greatest common divisor of lt (f) and lt (g). In the classic
Buchberger algorithm the S-polynomial between f and g is

lt (g)

c
f −

lt (f)

c
g.

The classic Buchberger algorithm proceeds by reducing S-
polynomials. If an S-polynomial reduces to h 6= 0 then h is
added to the basis so that the S-polynomial now reduces to
zero by this larger basis. The classic Buchberger algorithm
terminates once all S-polynomials between elements of the
basis reduce to zero. The SB algorithm works the same way
except that these computations are lifted from R to Rm in
the following way.

Let α, β ∈ Rm and let c .

.= gcd(lt (α) , lt
(

β
)

) be the monic

greatest common divisor of lt (α) and lt
(

β
)

. The S-pair
between α and β is

S (α, β) .

.=
lt
(

β
)

c
α−

lt (α)

c
β.

If s

(

lt(β)
c

α

)

≃ s

(

lt(α)
c

β
)

then the S-pair is singular and

otherwise it is regular. By “S-pair” we always mean “regular
S-pair”. Observe that S (α, β) ∈ Rm and that S (α, β) is the
S-polynomial between α and β.

SB proceeds by s-reducing S-pairs. If an S-pair s-reduces
to γ and γ is not zero then γ is added to the basis. Theorem
3 implies that if all S-pairs and all ei s-reduce to zero then
the basis is a signature Gröbner basis.

Theorem 3. Let T be a module monomial of Rm and let
G ⊆ Rm be a finite basis. Assume that all S-pairs p .

.=
S (α, β) with α, β ∈ G and s (p) < T s-reduce to zero and
all ei with ei < T s-reduce to zero. Then G is a signature
Gröbner basis up to signature T .

The outcome of classic polynomial reduction depends on
the choice of reducer, so the choice of reducer can change
what the intermediate bases are in the classic Buchberger
algorithm. Lemma 4 implies that all S-pairs with the same
signature yield the same regular s-reduced result as long as
we process S-pairs in order of increasing signature.

Lemma 4. Let α, β ∈ Rm and let G be a signature Gröb-
ner basis up to signature s (α) = s (β). If α and β are both
regular top s-reduced then lt (α) = lt

(

β
)

or α = β = 0. If α

and β are both regular s-reduced then α = β.

A signature Gröbner basis is minimal if no basis element
top s-reduces any other basis element. Theorem 5 implies
that the minimal signature Gröbner basis is unique and is
contained in all signature Gröbner bases up to sig-lead pairs.
SB computes a minimal signature Gröbner basis.

Theorem 5. Let A be a minimal signature Gröbner basis
and let B be a signature Gröbner basis of g1, . . . , gm. Then

SimpleSignatureBasisAlgorithm({g1, . . . , gm} ⊆ R)

G ← ∅ (G will be the signature Gröbner basis)
P ← {e1, . . . , em} (P is the set of pending reductions)
H ← 〈0〉 ⊆ Rm (H will be the initial module of syzygies)
while P 6= ∅ do

p← an element of P with ≤-minimal signature
P ← P \ {p}
p′ ← result of regular s-reducing p
if p′ = 0 then

H ← H + 〈s (p′)〉
else if p′ is not singular top reducible then

P ← P ∪ {S (α, p′) |α ∈ G and S (α, p′) is regular}
G ← G ∪ {p′}

end if
end while
return (G, H)

Figure 1: Pseudo code for a simple version of SB.

it holds for all α ∈ A that there exists a non-zero scalar c ∈ κ
and a β ∈ B such that s (α) = c s (β) and lt (α) = c lt

(

β
)

.

We can extract a Gröbner basis from a signature Gröb-
ner basis, but that is not the only reason to be interested
in signature Gröbner bases. It is also possible to extract
a Gröbner basis of the syzygy module of the input basis
{g1, . . . , gm} from a signature Gröbner basis. Note that
this is the syzygy module of the input basis rather than the
syzygy module of a Gröbner basis of the same ideal. The
former is in general much harder to compute than the latter.

The key to computing the syzygy module is Theorem 6
which implies that we can determine the initial module of
the module of syzygies from looking at those S-pairs and
ei that regular s-reduce to zero. If we are computing with
full elements of Rm (as opposed to sig-poly pairs) and we
have stored the syzygies that were computed (as opposed to
storing just their signatures) then those syzygies will form
the minimal Gröbner basis of the syzygy module.

Theorem 6. Let α ∈ Rm be a syzygy and let G be a sig-
nature Gröbner basis up to signature s (α). Then there exists
a β ∈ Rm with s (β) | s (α) such that β is an S-pair or has
the form ei and such that β regular s-reduces to zero.

Figure 1 contains pseudo code for a simple version of SB
that returns a signature Gröbner basis G and and also the
initial submodule H of the syzygy module of g1, . . . , gm.
This pseudo code is intended to succinctly state the essence
of SB without getting bogged down in any of the complex-
ities of implementation on a computer. Among many other
things, a reasonable implementation would use criteria to
eliminate S-pairs (see Section 2.4) and use the sig-poly pair
optimization (see Remark 2).

We stated that SB proceeds by s-reducing S-pairs and
then adding the s-reduced result to the basis if it is not a
syzygy. In Figure 1 we regular s-reduce the S-pair p and
then add the regular s-reduced result p′ to the basis if it is
not a syzygy and not singular s-reducible. The reason for
this is that if p′ is singular s-reducible then s-reduction of p′

is going to s-reduce p′ to zero anyway so we might as well
not spend the time on doing that s-reduction.

2.4 S-Pair Elimination



Three things can happen when SB regular s-reduces an
S-pair in signature T and gets a result γ ∈ Rm.

Syzygy If γ is a syzygy then T is recorded in H.

Singular If γ is singular top s-reducible then γ s-reduces
to zero so γ is discarded.

Basis Otherwise γ is recorded in G as a new basis element.

For these three cases T is respectively a syzygy, singular or
basis signature. This is well defined due to Lemma 4.

If L is a syzygy signature and L|T then T is also a syzygy
signature. SB eliminates an S-pair p by the signature crite-
rion if s (p) ∈ H since then s (p) is syzygy.

The Koszul syzygy between α, β ∈ G is K (α, β) .

.= βα −
αβ. If s

(

βα
)

6≃ s (αβ) then the Koszul syzygy is regular. By
“Koszul syzygy” we always mean “regular Koszul syzygy”.
SB eliminates an S-pair p by the Koszul criterion if there
exists a Koszul syzygy σ such that s (p) = s (σ). In this case
s (p) is recorded in H since s (p) is syzygy.

A signature T is predictably syzygy if s (p) = s (σ) for a
Koszul syzygy σ or if there exists a syzygy σ ∈ Rm such that
s (σ) < T and s (σ) |T . The combined effect of the signature
criterion and the Koszul criterion is to eliminate all S-pairs
in predictably syzygy signatures.

If there are two or more S-pairs in the same signature T ,
then we only have to regular s-reduce one of them as they
all regular s-reduce to the same thing by Lemma 4. Since
s-reduction proceeds by decreasing the lead term, we can
speed up the process by choosing an S-pair p in signature T
whose lead term lt (p) is minimal. If s (S (α, β)) = s (aα),
then we get the same result from regular s-reducing S (α, β)
as for regular s-reducing aα. So we should choose the aα ∈
M with minimal lead term lt (aα), where M is the set

{aα |α ∈ G, a is a monomial and s (aα) = T } .

Note that α might not be involved in any S-pair in signature
T . If aα is not regular top s-reducible, then T is a singular
signature. In this case RB eliminates all the S-pairs in sig-
nature T by the singular criterion. The effect of the singular
criterion is to eliminate all S-pairs in singular signatures.

3. THE REWRITE BASIS ALGORITHM
In this section we introduce the RB algorithm, which is

simpler than yet equivalent to F5GEN [9]. Our motivation
for studying RB is that it contains many published algo-
rithms as special cases including SB and F5.

The difference between RB and SB is that RB uses the
concept of rewriting instead of the concept of singular s-
reduction. This has two main consequences. First, RB uses
a different criterion for eliminating S-pairs. Second, RB
adds a regular s-reduced α ∈ Rm to the basis even if α is
singular top s-reducible. SB does not add such α to the
basis because such α s-reduce to zero anyway. RB must
add such α to the basis because rewriting requires it.

RB is parametrized by a rewrite order. Despite the differ-
ences between RB and SB, PHW [9] show that GVWHS
(and hence SB) is an instantiation of F5GEN (and hence
RB). We simplify their proof in the setting of SB and RB
and extend the result to say that SB is the best possible
instantiation of RB in the sense of Theorem 13.

Figure 2 contains pseudo code for a simple version of RB.

SimpleRewriteBasisAlgorithm({g1, . . . , gm} ⊆ R)

G ← ∅ (G will be the rewrite basis)
P ← {e1, . . . , em} (P is the set of pending reductions)
H ← 〈0〉 ⊆ Rm (H will be the initial module of syzygies)
while P 6= ∅ do

p← an element of P with ≤-minimal signature
P ← P \ {p}
if not RBEliminated(p) then

p′ ← result of regular s-reducing p
if p′ = 0 then

H ← H + 〈s (p′)〉
else

P ← P ∪ {S (α, p′) |α ∈ G and S (α, p′) is regular}
G ← G ∪{p′} (insert p′ into the basis even when p′

is singular top s-reducible)
end if

end if
end while
return (G, H)

RBEliminated(S-pair aα− bβ ∈ Rm)

if aα is rewritable or aα is predictably syzygy then
return true (eliminate S-pair)

end if
if bβ is rewritable or bβ is predictably syzygy then

return true (eliminate S-pair)
end if
return false (do not eliminate S-pair)

Figure 2: Pseudo code for a simple version of RB.

3.1 Rewriting and S-pair Elimination
Let � be a rewrite order, which means that � is a total

order on G such that s (α) | s (β) ⇒ α � β. Such an order
always exists due to our assumption that s (α) ≃ s (β) ⇒
α = β. A basis element α ∈ G is a rewriter in signature
T if s (α) |T . If s (aα) = T for a monomial a we also say
for convenience that aα is a rewriter of T . The �-maximal
rewriter in signature T is the canonical rewriter. A basis
element multiple aα is rewritable if α is not the canonical
rewriter of s (aα). An S-pair aα− bβ is eliminated by RB if
aα is predictably syzygy or rewritable, or if bβ is predictably
syzygy or rewritable.

Note thatRB’s S-pair elimination criterion applies equally
to both components aα and bβ of an S-pair aα− bβ. No cri-
terion in SB can eliminate an S-pair based on s (bβ) where
s (aα) > s (bβ). Can RB eliminate some S-pairs that RB
cannot due to this difference? Since both SB and RB regu-
lar s-reduce at most one S-pair in any given signature, what
matters is the ability to eliminate all S-pairs in a signature.
We will prove that SB has a stronger S-pair elimination cri-
terion than RB does in the sense that if SB must regular
s-reduce an S-pair in a signature then so must RB.

3.2 Rewrite bases
G is a rewrite basis in signature T if the canonical rewriter

in signature T is not regular top s-reducible or if T is a
syzygy signature. G is a rewrite basis up to signature T if G
is a rewrite basis for all signatures L such that L < T . G is
a rewrite basis if it is a rewrite basis in all signatures. We
prove Theorem 7 later in this section.

Theorem 7. RB computes a rewrite basis.



Lemma 8. If G is a rewrite basis up to signature T then
G is also a signature Gröbner basis up to signature T .

Proof. Suppose to get a contradiction that G is a rewrite
basis up to signature T but that it is not a signature Gröb-
ner basis up to signature T . Since the monomial order is a
well-order there exists an α ∈ Rm with minimal signature
s (α) < T such that α does not s-reduce to zero. Then G
is a signature basis up to signature s (α) and it is a rewrite
basis in signature s (α).

Let β be the result of regular s-reducing α and let cγ
be the canonical rewriter in signature s (α). Then s (cγ) =
s (β) and both cγ and β are not regular top s-reducible,
so lt (cγ) = lt

(

β
)

by Lemma 4. Perform the singular s-
reduction step β − cγ. Since s (β − cγ) < s (α) and G is a
signature Gröbner basis up to signature s (α) we then get
that β − cγ s-reduces to zero. Hence α s-reduces to zero
which is a contradiction.

SB computes a minimal signature Gröbner basis so the
SB basis is a subset of the RB basis up to sig-poly pairs.
Both SB and RB have to perform a regular s-reduction
in all syzygy signatures that are not predictably syzygy, so
there are no differences between the two algorithms in terms
of how many S-pairs are reduced to zero. For non-syzygy
signatures T , both algorithms will add an element to the
basis with signature T if and only if they reduce an S-pair
in signature T .1 This implies that if SB regular s-reduces an
S-pair in signature T then so doesRB. In other words, the S-
pairs reduced by SB form a subset of the S-pairs reduced by
RB up to signature. If A is the basis computed by SB and
B is the basis computed by RB, then RB regular s-reduced
|B| − |A| ≥ 0 more S-pairs than SB did. If |A| = |B| then
SB and RB reduced the same S-pairs up to signature.

Our proof of Theorem 7 is based on the following series
of lemmas. Lemma 10 connects S-pairs to rewrite bases.
Lemma 11 is an important technical lemma that we use here
to construct S-pairs and which we use again in Section 4.1.
Lemma 12 gives a precise criterion for when RB regular
s-reduces an S-pair in a signature.

Lemma 9. Let G be a rewrite basis up to signature T . Let
aα be the canonical rewriter in signature T and let bβ be a
regular top s-reducer of aα. Then S (α, β) = aα − bβ and
s (S (α, β)) = T .

Proof. If g .

.= gcd(a, b) then aα − bβ = gS (α, β). Sup-
pose to get a contradiction that g 6= 1. Let cγ be the canon-
ical rewriter in signature T

g
. Then γ � α since a

g
α is a

rewriter in signature T
g
. Also γ � α since gcγ is a rewriter

in signature T . Hence α = γ. This is a contradiction since
then b

g
β is a regular top s-reducer of a

g
α = cγ but cγ is not

regular top s-reducible.

Lemma 10. G is a rewrite basis up to signature T if G
is a rewrite basis in all signatures s (p) < T where p is an
S-pair or p = ei.

Proof. Suppose to get a contradiction that G is not a
rewrite basis up to signature T . Since the module monomial
order < is a well-order there exists a minimal non-syzygy

1If an S-pair p regular s-reduces to p′ then it is true that SB
will not add p′ to the basis if p′ is singular top s-reducible.
However, the singular criterion always eliminates such S-
pairs p before the regular s-reduction happens.

signature L < T such that G is not a rewrite basis in signa-
ture L. Then G is a rewrite basis up to signature L. Then
there exists an S-pair with signature L by Lemma 9 so G is
a rewrite basis in signature L which is a contradiction.

Lemma 11. Let α ∈ Rm, let G be a rewrite basis up to
signature s (α) and let t be a regular s-reducible term of α.
Let M be the set of cγ that regular s-reduce t. Let bβ be the
canonical rewriter in signature L .

.= mincγ∈M s (cγ). Then

• bβ is a regular s-reducer of t,

• bβ is not regular top s-reducible,

• bβ is not rewritable and

• s (bβ) is not syzygy.

Proof. bβ is the canonical rewriter in signature L < s (α)
and G is a rewrite basis up to signature s (α), which estab-
lishes the two middle statements.

bβ ∈ M : Let cγ ∈ M such that s (cγ) = L. Suppose to
get a contradiction that dδ regular top s-reduces cγ. Then
lt
(

dδ
)

= lt (cγ) = t and s (dδ) < s (cγ) < s (α), so dδ ∈ M

and s (dδ) < L which is a contradiction. Then lt
(

bβ
)

=
lt (cγ) = t by Lemma 4 so bβ ∈M .
s (bβ) is not syzygy: Suppose to get a contradiction

that there exists a syzygy σ such that s (σ) = s (bβ). Since
s (bβ − σ) < s (α) there exists a top s-reducer cγ of bβ − σ.
Then s (cγ) ≤ s (bβ − σ) < s (bβ) so cγ is a regular top
s-reducer of bβ but bβ is not regular top s-reducible.

Lemma 12. Let G be a rewrite basis up to signature T .
Let aα be the canonical rewriter in signature T . Then RB
s -reduces an S-pair in signature T if and only if aα is regular
top s-reducible and T is not predictably syzygy.

Proof. if: Let bβ be the regular top s-reducer of aα
from Lemma 11 so that bβ is not rewritable and s (bβ) is
not predictably syzygy. Then S (α, β) = aα− bβ by Lemma
9 and this S-pair is not eliminated by RB.

only if: Let S (α, β) = aα − bβ such that T = s (aα) >
s (bβ) and such that RB does not eliminate S (α, β). The
latter implies that aα is the canonical rewriter in signature
T and that T is not predictably syzygy. Observe that aα is
regular top s-reducible since bβ regular top s-reduces it.

Proof of Theorem 7. Suppose that RB has termina-
ted with the basis G. Suppose to get a contradiction that p
is an S-pair such that G is not a rewrite basis in signature
s (p). Let aα be the canonical rewriter in signature s (p).
Then aα is regular top s-reducible and s (aα) = s (p) is not
syzygy, so RB has reduced an S-pair in signature s (p) by
Lemma 12. Then RB has also added a basis element β with
signature s (p) whereby β = aα is the canonical reducer in
signature s (p). This is a contradiction since β is not regular
top s-reducible. Then G is a rewrite basis by Lemma 10.

3.3 SB is the Best Possible Instantiation of RB

Let the sig-lead ratio order �r be the order on G such that
α �r β if rα ≤ rβ or if rα = rβ and s (α) ≤ s (β).

Theorem 13. RB is equivalent to SB when using the
sig-lead ratio rewrite order. If RB uses any other rewrite
order, then SB computes a basis that is a subset of the ba-
sis computed by RB up to sig-poly pairs and SB regular
s-reduces a subset of the S-pairs regular s-reduced by RB up
to signature.



Proof. Let RB use �r for rewriting and let G be the
minimal signature Gröbner basis. We will prove that �r is
a rewrite order and that G is a rewrite basis. Then RB com-
putes G as it only regular s-reduces an S-pair in a non-syzygy
signature T if the basis is not already a rewrite basis in sig-
nature T . Thus SB and RB compute the same basis and
then the result follows from the statements in Section 3.2.

�r is a rewrite order: If s (α) | s (β) then rα ≤ rβ by
Lemma 14 and s (α) ≤ s (β) so α �r β.

G is a rewrite basis: Let aα be a canonical rewriter.
We need to prove that aα is not regular top s-reducible.
Let γ be the result of regular s-reducing aα. G is a signa-
ture Gröbner basis, so there exists a bβ that singular top
s-reduces γ. Then rα ≤ rβ by Lemma 14 so α = β.

Lemma 14. Let G be a signature Gröbner basis up to sig-
nature s (aα) = s (bβ) where α, β ∈ G and a, b are monomi-
als. If bβ is not regular top s-reducible then rα ≤ rβ.

Proof. Let γ be the result of regular s-reducing aα. bβ
and γ are not regular top s-reducible so lt (aα) ≥ lt (γ) =
lt
(

bβ
)

by Lemma 4. Also s (γ) = s (aα) = s (bβ), so

rα =
s (aα)

lt (aα)
≤

s (γ)

lt (γ)
=

s (bβ)

lt
(

bβ
) = rβ .

4. RB5 — BRINGING RB CLOSER TO F5

In this section we define RB5, which is a special case
of RB. RB5 is more similar to F5 than RB is. We will
show why the differences between RB5 and RB are not
significant, except for the fact that RB is more general. In
Section 5 we resolve the differences between RB5 and F5,
which completes our proof that F5 is a special case of RB.

RB5 is specialized from RB in three main ways. First,
the module monomial order must be position-first, which
means that if i < j then aei < bej for all monomials a, b ∈
R. Second, the input basis elements g1, . . . , gm must form a
regular sequence. Third, the rewrite order must be the F5

rewrite order �5. Let aei
.

.= s (α) and s (bej) .

.= β. Then
α �5 β if i < j or if i = j and the total degree of a is strictly
smaller than the total degree of b. Break ties arbitrarily.

4.1 Reduction in RB5

Let α ∈ Rm and let t be a term of α. We can r-reduce t
by a basis element β ∈ G if

• there exists a monomial b such that lt
(

bβ
)

= t,

• s (bβ) < s (α),

• s (bβ) is not syzygy and

• bβ is not rewritable.

The outcome of the r-reduction step is then α − bβ and β
is the r-reducer. When β r-reduces a term of α we also say
for convenience that bβ r-reduces α. If t = lt (α) then the
r-reduction step is a top r-reduction step.

The first condition on r-reducers is the same as for s-
reduction. The second condition requires< where s-reduction
requires only ≤, so r-reduction is implicitly regular. The fi-
nal two conditions are not used by RB. In Section 5.3 we
motivate these extra conditions in terms of S-pair elimina-
tion. All r-reducers are regular s-reducers but not vice versa.

Lemma 15. Let α ∈ Rm, let t be a term of α and let G
be a rewrite basis up to signature s (α). Then t is regular
s-reducible if and only if t is r-reducible

Proof. If t is regular s-reducible then by Lemma 11 there
exists a regular s-reducer bβ of t such that s (bβ) is not
syzygy and bβ is not rewritable. So bβ is an r-reducer.

During regular s-reduction there can be a choice of which
regular s-reducer to use. Lemma 15 shows that the effect
of the extra conditions imposed on r-reducers is to exclude
some of the s-reducers from consideration, but it is never the
case that all of the s-reducers are excluded. The outcome
of regular s-reduction does not depend on the choice of s-
reducer up to sig-poly pairs, which proves Corollary 16.

Corollary 16. Let α ∈ Rm and let G be a rewrite ba-
sis up to signature s (α). Let αs be the result of regular
s-reducing α and let αr be the result of r-reducing α. Then
s (αs) = s (αr) and αs = αr.

4.2 S-pair elimination in RB5

Due to the extra assumptions on the input, RB5 can elim-
inate all S-pairs that reduce to zero by considering only the
Koszul syzygies. This is stated already in the F5 paper [6].
RB uses condition (2) of Theorem 17 while RB5 uses condi-
tion (4). Theorem 17 implies that these two are equivalent.

Theorem 17. Let G be a signature Gröbner basis up to
signature ei. Assume that the input basis element gi is not
a zero divisor of R/ 〈g1, . . . , gi−1〉. Assume that the module
monomial order < on Rm has the property that bej < aei <
cek for all j, k such that j < i < k and for all monomials
a, b, c ∈ R. Then the following statements are equivalent for
all monomials a ∈ R.

1. The signature aei is syzygy.

2. The signature aei is predictably syzygy.

3. ∃α ∈ G : ind (α) < i and s (K (ei, α)) |aei.

4. ∃α ∈ G : ind (α) < i and lt (α) |a.

Proof. Let G .

.= {α ∈ G |ind (α) < i}, G .

.= {α |α ∈ G}
and F .

.= 〈g1, . . . , gi−1〉. That (3)⇒ (2)⇒ (1) is immediate.
G is a Gröbner basis of F : If α ∈ G then αj = 0 for

j ≥ i so it is immediate that
〈

G
〉

⊆ 〈g1, . . . , gi−1〉. To prove
the other inclusion, let f ∈ F . We need to prove that f
reduces to zero on classic polynomial reduction by G.
There exists an α ∈ Rm such that f = α and αj = 0 for

j ≥ i. Then ind (α) < i so s (α) < ei whereby α s-reduces to
zero when s-reducing by G. All the s-reducers γ ∈ G in that
s-reduction must have s (γ) ≤ s (α) whereby ind (γ) < i.
Thus α also s-reduces to zero when s-reducing by G. Then
α = f reduces to zero on classic polynomial reduction by G.
(1) ⇒ (4): Let β ∈ Rm be a syzygy such that s (β) = aei.

Then βj = 0 for all j > i whereby βigi ∈ F since

0 = β =
m
∑

j=1

βjgj = βigi +

i−1
∑

j=1

βjgj .

Hence βi ∈ F as gi is not a zero divisor. As G is a Gröbner
basis of F there exists an α ∈ G such that lt (α) | lt (βi) = a.

(4) ⇒ (3): Let α ∈ G such that ind (α) < i and lt (α) |a.
By definitionK (ei, α) = αei−giα. As lt (α) ei > lt (gi) s (α)
we see that s (K (ei, α)) = lt (α) ei|aei.



φi ∈ G reduced from lt
(

φi

)

s (φi)

φ1 e1 y3 e1

φ2 e2 xyz e2

φ3 y2φ2 − xzφ1 = S (φ2, φ1) x3z2 y2e2

φ4 e3 yz2 e3

φ5 xφ3 − zφ2 = S (φ3, φ2) xz3 xe3

φ6 y2φ3 − z2φ1 = S (φ3, φ1) x2z3 y2e3

φ7 yφ5 − z2φ2 = S (φ5, φ2) x2y2t xye3

φ8 xφ5 − φ6 = S (φ5, φ6) z5 x2e3

φ9 xφ6 − zφ3 = S (φ6, φ3) x4zt xy2e3

φ10 yφ8 − z3φ4 = S (φ8, φ4) x3y2t x2ye3

φ11 x3φ4 − yφ3 = S (φ4, φ3) x4yt x3e3

φ12 zφ11 − x3φ2 = S (φ11, φ2) x3zt3 x3ze3

φ13 yφ10 − x3φ1 = S (φ10, φ1) x5zt x2y2e3

φ14 xφ12 − φ9 = S (φ12, φ9) x4t4 x4ze3

Figure 3: Computations for RB5 in Example 19.

4.3 Examples
Example 18 shows a homogeneous ideal where RB5 (and

hence F5) computes a larger basis than SB does. Example
19 shows details of how RB5 computes a basis.

Example 18. Consider the homogenized Eco-6 ideal us-
ing the graded reverse lexicographic monomial order. Here
RB5 computes a basis with 100 elements while SB com-
putes a basis with 87 elements. Both RB5 and SB compute
a basis element α with s (α) = x0x2e5. RB5 additionally
computes basis elements β and γ with s (β) = x0x2x

2
3e5 and

s (γ) = x0x2x3x4e5. As β and γ are not necessary to have a
signature Gröbner basis, we can replacing them with a sin-
gle element with signature x0x2x3e5 and thus get a rewrite
basis that contains fewer elements than the basis computed
by RB5. Furthermore, the basis computed by SB is not a
rewrite basis with respect to the F5 rewrite order.

Example 19. Let κ be the finite field with 13 elements
and let R .

.= κ[x, y, z, t]. Let < be the graded reverse lexico-
graphic monomial order. Consider the three input elements

g1 .

.= −2y3 − x2z − 2x2t− 3y2t, g2 .

.= 3xyz + 2xyt,

g3 .

.= 2xyz − 2yz2 + 2z3 + 4yzt.

Figure 3 shows the r-reductions performed by RB5 to com-
pute the rewrite basis {φ1, . . . , φ14}. SB regular s-reduce the
same S-pairs except for the ones that lead to φ10 and φ13, so
the basis computed by SB contains 12 elements. The S-pair
S (φ8, φ4) leads to φ10 and it is eliminated by the singular
criterion since s (xφ7) = s (S (φ8, φ4)) and xφ7 is not regu-
lar top s-reducible. The S-pair S (φ10, φ1) leads to φ13 and it
is not considered by SB since φ10 is not part of SB’s basis.

5. F5 IS EQUIVALENT TO RB5

The F5 paper [6] assumes that the input basis elements
g1, . . . , gm are homogeneous. In this section we show that F5

and RB5 become the same algorithm with this assumption.

5.1 The Sig-Poly Pair Optimization
The notation for RB5 concerns elements α ∈ Rm while

the F5 paper uses notation based on sig-poly pairs (s (α) , α).
We believe that the SB notation makes signature computa-
tions easier to understand and reason about. However, the

cost in time and space for computations on elements of Rm

is higher than for sig-poly pairs.
Consider that RB5 never performs singular s-reduction

steps, so we never need to know any of the terms in Rm

other than the leading one — the signature. The singular
s-reduction steps appear only in theorems and proofs. So
it is possible to apply the sig-poly pair optimization when
implementing RB5 (and RB and SB), which involves re-
placing α ∈ Rm with the sig-poly pair (s (α) , α). In F5 this
idea is used in the notation while in RB5 we present it as
an optimization. The outcome is the same.

5.2 F5 maintains a list of rewriting rules
The F5 paper [6] does not contain the phrases “canonical

rewriter”and“rewrite order”. Instead, there is a pseudo code
function named Rewritten that takes a signature as a pa-
rameter and returns the canonical rewriter in that signature.
The concept of the canonical rewriter is thus represented
implicitly in the F5 paper as that thing which Rewritten

returns. We do not specify how the F5 rewrite order breaks
ties since F5’s implicit rule for this seems more an arbitrary
outcome of how the pseudo code was written than an inten-
tional choice (it is not a function of signature).

In F5 there is a list of rewriting rules. A rewriting rule
is added to the front of the list when an S-polynomial is
calculated. When Rewritten is called, it goes through the
rewriting rules and returns the first rewriter it finds. The
first rewriter found is also the rewriter that was most re-
cently added to the basis. S-polynomials are only calculated
for S-pairs whose signature has the current index and the
current total degree, so the rewriting rules are added to the
front of the list first in order of index of the signature and
then in order of total degree of the signature. This proves
that F5 is indeed implicitly using what we have called the
F5 rewrite order.

The only exception to this description is that F5 does not
record α ∈ G into the list of rewriters if s (α) ≃ ei. However,
this does not change whether a basis element multiple is
rewritable, so this difference does not change the algorithm.

5.3 F5 is written to resemble F4 reduction
F4 is an algorithm that speeds up classic polynomial re-

duction by using a symbolic preprocessing step to turn the
reduction of many polynomials into row reduction of a single
matrix [4]. The more reductions in the same homogeneous
degree that can be done at the same time, the larger the ma-
trix becomes and the more of a speed up there is from using
F4 over using classic polynomial reduction. Albrecht and
Perry describe a variation of F5 that uses F4 reduction [1].

The pseudo code in the F5 paper is written without F4

reduction. However, it is still written in a way that heavily
suggests how to adapt the symbolic preprocessing step from
F4 to F5. For example, the F5 pseudo code is written to
process all S-pairs in a homogeneous degree at the same
time, which is important when using F4. This is done by
having a set P of all S-pairs in the current homogeneous
degree. In F4 r-reduction of all the S-pairs in P would then
be carried out simultaneously within one big matrix.

The above scheme for r-reducing all S-pairs in a homoge-
neous degree does not succeed in getting all of the S-pairs
in that homogeneous degree. When reducing an S-pair to a
new basis element α, it is possible that α can form an S-pair
in the same homogeneous degree with another basis element.



Since F5 requires the input ideal to be homogeneous, this
happens if and only if there is another basis element β such
that bβ would top r-reduce α except that s (bβ) > s (α).
Call such an S-pair S (β, α) a late S-pair. The late S-pairs
will not initially be included in P since they only appear
after some r-reductions have already been carried out. This
is unfortunate when using F4 r-reduction because for F4

r-reduction we want to identify all of the S-pairs in each
homogeneous degree up front — including the late ones.

In F5 there is a mechanism for discovering late S-pairs
while r-reducing another S-pair. The mechanism is that F5

allows reducers to increase the signature of the reduction. In
that case F5 will split the r-reduction into two r-reductions
— one r-reduction in the old signature that continues to be
carried out and another r-reduction in the new signature
that is recorded in P . These higher signature r-reductions
are precisely the late S-pairs and this mechanism would al-
low an F4 version of F5 to get all the S-pairs in a degree
before doing any r-reduction. Note that it is possible for
such a variant of F5 to detect more late S-pairs than actu-
ally exist because the symbolic preprocessing step does not
take account of cancellations.

We have seen that the only effect of F5’s higher signature
reducers is to indicate how to translate F5 into a variant
that uses F4 reduction. The pseudo code for reduction in
F5 looks different from r-reduction because that pseudo code
is not just doing r-reduction — it is also constructing late S-
pairs. This also explains the purpose of the extra conditions
on r-reducers — they are S-pair elimination criteria. So
what F5 is doing remains equivalent to r-reduction, which
proves that F5 is a special case of RB5 despite F5’s higher-
signature reducers and its multiple results of reduction.

6. TERMINATION OF RB AND HENCE F5

The proof of termination in the F5 paper [6] is incorrect.
Proving termination of F5 had been an open problem for a
decade before it was settled by Galkin [7]. PHW later proved
that F5GEN (and hence RB) terminates [9], which implies
that F5 terminates. Our proof of termination is similar to
but significantly simpler than Galkin’s and PHW’s.

Theorem 20. The RB algorithm terminates.

Proof. Let φ1, φ2, . . . be the sequence of basis elements
computed byRB and let G .

.= {φ1, φ2, . . .}. RB processes S-
pairs in increasing order of signature so s (φ1) < s (φ2) < · · · .
Partition G into sets Rr

.

.= {φi |rφi
= r }. We prove that

there are only finitely many non-empty sets Rr and that
each Rr is finite. Hence G is finite whereby RB terminates.

Only finitely many Rr are non-empty: If α ∈ G then
Gα .

.= {β ∈ G |s (β) < s (α)} is a signature Gröbner basis up
to signature s (α). Call α ∈ G minimal if there is no other
β ∈ G such that s (β) | s (α) and lt

(

β
)

| lt (α). It follows
from Lemma 21 that a non-minimal α ∈ G is top s-reducible
by Gα. No basis element in RB is regular top s-reducible,
so if α ∈ G is non-minimal, then α must be singular top
s-reducible by Gα. Thus there exists a β ∈ Gα and a mono-
mial m 6≃ 1 such that s (mβ) = s (α) and lt

(

mβ
)

= lt (α)
whereby α and β lie in the same set Rr. This shows that
there are exactly as many non-empty sets Rr as there are
minimal basis elements in G. Both R and Rm are Noethe-
rian, so there are only finitely many minimal basis elements.
Hence there are also only finitely many non-empty sets Rr.

Each Rr is finite: We prove by induction on the finitely
many non-empty sets Rr that each Rr is finite. Assume by
induction that all sets Rr′ with r′ < r are finite. We need
to prove that Rr is finite. The base case is immediate.
Let γ ∈ Rr and let S (α, β) = aα − bβ be the S-pair

that RB regular s-reduced to get γ where s (aα) > s (bβ).
Let c be the monic greatest common divisor of lt (α) and
lt
(

β
)

. Then 1
c
lt
(

β
)

s (α) = s (aα) > s (bβ) = 1
c
lt (α) s (β)

so rα > rβ . Also lt (γ) < lt (aα) and s (γ) = s (aα) so

r =
s (γ)

lt (γ)
>

s (aα)

lt (aα)
=

s (α)

lt (α)
>

s (β)

lt
(

β
) . (1)

Hence α ∈ Rr′ and β ∈ Rr′′ where r
′, r′′ < r, so Rr contains

at most as many elements as there are pairs of elements in
the set ∪r′<rRr′ which is finite by induction. There may also
be one more element with signature ei since those elements
do not come from S-pairs. So by induction Rr is finite.

Lemma 21 (Eder and Perry [3]). Let α ∈ Rm and
let G be a signature Gröbner basis up to signature s (α). If
there exists a β ∈ G such that lt

(

β
)

| lt (α) and s (β) | s (α)
then α is top s-reducible by G.
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