Feature Frequency Inverse User Frequency for Dependant Attribute to Enhance Recommendations

Abstract : Recommender system provides relevant items to users from huge catalogue. Collaborative filtering and content-based filtering are the most widely used techniques in personalized recommender systems. Collaborative filtering uses only the user-ratings data to make predictions, while content-based filtering relies on semantic information of items for recommendation. The aim of this work is to introduce the semantic aspect of items in a collaborative filtering process in order to enhance recommendations. Many works have addressed this problem by proposing hybrid solutions. In this paper, we present another hybridization technique that predicts users preferences for items based on their inferred preferences for semantic information of items. For this, we propose a new approach to build user semantic model by using TF-IDF measure and we provide solution to reduce the dimension of data. Applying our approach to real data, the MoviesLens 1M dataset, significant improvement can be noticed compared to usage only approach, Content only approach and hybrid algorithm
Type de document :
Communication dans un congrès
SOTICS 2013, The Third International Conference on Social Eco-Informatics, Nov 2013, Lisbonne, Portugal. pp.45-50, 2013, 〈http://www.thinkmind.org/index.php?view=article&articleid=sotics_2013_3_20_30055〉
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00930911
Contributeur : Azim Roussanaly <>
Soumis le : mardi 14 janvier 2014 - 16:27:22
Dernière modification le : mardi 24 avril 2018 - 13:37:06
Document(s) archivé(s) le : mardi 15 avril 2014 - 16:26:57

Fichier

ArticlePublier.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00930911, version 1

Collections

Citation

Sonia Ben Ticha, Azim Roussanaly, Anne Boyer, Khaled Bsaies. Feature Frequency Inverse User Frequency for Dependant Attribute to Enhance Recommendations. SOTICS 2013, The Third International Conference on Social Eco-Informatics, Nov 2013, Lisbonne, Portugal. pp.45-50, 2013, 〈http://www.thinkmind.org/index.php?view=article&articleid=sotics_2013_3_20_30055〉. 〈hal-00930911〉

Partager

Métriques

Consultations de la notice

315

Téléchargements de fichiers

451