General sensitivity analysis in data assimilation

François-Xavier Le Dimet 1, * Victor P. Shutyaev 2 Ha Tran Thu 3
* Auteur correspondant
1 MOISE - Modelling, Observations, Identification for Environmental Sciences
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : The problem of variational data assimilation for a nonlinear evolution model is formulated as an optimal control problem to nd the initial condition function (analysis). The operator of the model, and hence the optimal solution, depend on the parameters which may contain uncertainties. A response function is considered as a functional of the solution after assimilation. Based on the second-order adjoint techniques, the sensitivity of the response function to the parameters of the model is studied. The gradient of the response function is related to the solution of a non-standard problem involving the coupled system of direct and adjoint equations. The solvability of the non-standard problem is studied. Numerical algorithms for solving the problem are developed. The results are applied for the 2D hydraulic and pollution models. Numerical examples on computation of the gradient of the response function are presented.
Type de document :
Article dans une revue
Russian Journal of Numerical Analysis and Mathematical Modelling, De Gruyter, 2014, 29 (2), pp.107-127. 〈10.1515/rnam-2014-0009〉
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00931293
Contributeur : Eugene Kazantsev <>
Soumis le : mercredi 15 janvier 2014 - 11:16:41
Dernière modification le : jeudi 11 janvier 2018 - 06:21:49
Document(s) archivé(s) le : mardi 15 avril 2014 - 22:16:13

Fichier

LeDimet-Shutyaev-Ha-2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

François-Xavier Le Dimet, Victor P. Shutyaev, Ha Tran Thu. General sensitivity analysis in data assimilation. Russian Journal of Numerical Analysis and Mathematical Modelling, De Gruyter, 2014, 29 (2), pp.107-127. 〈10.1515/rnam-2014-0009〉. 〈hal-00931293〉

Partager

Métriques

Consultations de la notice

554

Téléchargements de fichiers

178