D. G. Cacuci, Sensitivity theory for nonlinear systems. II. Extensions to additional classes of responses, Journal of Mathematical Physics, vol.22, issue.12, pp.2803-2812, 1981.
DOI : 10.1063/1.524870

G. Chavent, Local stability of the output least square parameter estimation technique, Math. Appl. Comp, issue.2, pp.3-22, 1983.
URL : https://hal.archives-ouvertes.fr/inria-00076424

A. L. Dontchev and . Perturbations, Approximations and Sensitivity Analysis of Optimal Control Systems, Lecture Notes in Control and Information Sciences, vol.52, 1983.
DOI : 10.1007/BFb0043612

I. Gejadze, L. Dimet, F. Shutyaev, and V. , On Analysis Error Covariances in Variational Data Assimilation, SIAM Journal on Scientific Computing, vol.30, issue.4, pp.1847-1874, 2008.
DOI : 10.1137/07068744X

URL : https://hal.archives-ouvertes.fr/inria-00391893

I. Gejadze, L. Dimet, F. Shutyaev, and V. , On optimal solution error covariances in variational data assimilation problems, Journal of Computational Physics, vol.229, issue.6, pp.2292159-2178, 2010.
DOI : 10.1016/j.jcp.2009.11.028

URL : https://hal.archives-ouvertes.fr/hal-00787292

I. Gejadze, . Yu, G. J. Copeland, L. Dimet, F. Shutyaev et al., Computation of the analysis error covariance in variational data assimilation problems with nonlinear dynamics, Journal of Computational Physics, vol.230, issue.22, pp.2307923-7943, 2011.
DOI : 10.1016/j.jcp.2011.03.039

R. Glowinski and J. L. Lions, Exact and approximate controllability for distributed parameter systems, Acta Numerica, issue.1, p.269, 1994.

L. Dimet, F. Navon, I. M. Daescu, and D. N. , Second-Order Information in Data Assimilation*, Monthly Weather Review, vol.130, issue.3, pp.629-648, 2002.
DOI : 10.1175/1520-0493(2002)130<0629:SOIIDA>2.0.CO;2

URL : https://hal.archives-ouvertes.fr/hal-00787272

F. Ledimet, P. Ngnepieba, and V. Shutyaev, On error analysis in data assimilation problems, Russ. J. Numer. Anal. Math. Modelling, pp.1771-97, 2002.

F. Ledimet, . Ngodock, B. Luong, and J. Verron, Sensitivity analysis in variational data assimilation, J. Meteorol. Soc. Japan, issue.1B, pp.75245-255, 1997.

L. Dimet, F. X. Talagrand, and O. , Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects, Tellus A, vol.109, issue.2, pp.97-110, 1986.
DOI : 10.1111/j.1600-0870.1986.tb00459.x

L. Dimet, F. Shutyaev, and V. , On deterministic error analysis in variational data assimilation, Nonlinear Processes in Geophysics, vol.12, issue.4, pp.1-10, 2005.
DOI : 10.5194/npg-12-481-2005

URL : https://hal.archives-ouvertes.fr/hal-00331085

J. L. Lions, Contrôle optimal des systèmes gouvernés par deséquationsdeséquations aux dérivées partielles. ? Paris: Dunod, 1968.

J. L. Lions, Contrôlabilité Exacte Perturbations et Stabilisation de Systèmes Distribués, 1988.

G. I. Marchuk and V. V. Penenko, Application of optimization methods to the problem of mathematical simulation of atmospheric processes and environment. Modelling and Optimization of Complex Systems, Proc. of the IFIP-TC7 Working conf. ?, pp.240-252, 1978.

G. I. Marchuk, V. I. Agoshkov, and V. P. Shutyaev, Adjoint Equations and Perturbation Algorithms in Nonlinear Problems, 1996.

I. M. Navon, Variational data assimilation, optimal parameter estimation and sensitivity analysis for environmental problems. Computational Mechanics'95, pp.740-746, 1995.

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mischenko, The Mathematical Theory of Optimal Processes, 1962.

F. Rabier and P. Courtier, Four-Dimensional Assimilation In the Presence of Baroclinic Instability, Quarterly Journal of the Royal Meteorological Society, vol.119, issue.506, pp.649-672, 1992.
DOI : 10.1002/qj.49711850604

Y. K. Sasaki, SOME BASIC FORMALISMS IN NUMERICAL VARIATIONAL ANALYSIS, Monthly Weather Review, vol.98, issue.12, pp.857-883, 1970.
DOI : 10.1175/1520-0493(1970)098<0875:SBFINV>2.3.CO;2

V. P. Shutyaev, Some properties of the control operator in the problem of data assimilation and iterative algorithms, Russian Journal of Numerical Analysis and Mathematical Modelling, vol.10, issue.4, pp.357-371, 1995.
DOI : 10.1515/rnam.1995.10.4.357

W. C. Thacker, The role of the Hessian matrix in fitting models to measurements, Journal of Geophysical Research, vol.93, issue.C5, pp.6177-6196, 1989.
DOI : 10.1029/JC094iC05p06177

P. A. Sleigh, P. H. Gaskell, M. Berzins, and N. G. Wright, An unstructured finite-volume algorithm for predicting flow in rivers and estuaries, Computers & Fluids, vol.27, issue.4, pp.479-508, 1998.
DOI : 10.1016/S0045-7930(97)00071-6

W. Rauch, M. Henze, L. Koncsos, P. Shanahan, L. Somlyody et al., River water quality modelling: I. State of the art, Water Science and Technology, vol.38, issue.11, pp.237-244, 1998.
DOI : 10.1016/S0273-1223(98)00660-X

T. Ha, H. Pham-dinh-tuan, and . Van-lai, Nguyen Hong Phong (2013) Pollution Estimation based on the 2D Water Transport Model and the Singular Evolutive Interpolated Filter