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Abstract

A proper coloring of a graph is a partition of its vertex set into stable sets, where each part

corresponds to a color. For a vertex-weighted graph, the weight of a color is the maximum

weight of its vertices. The weight of a coloring is the sum of the weights of its colors. Guan and

Zhu defined the weighted chromatic number of a vertex-weighted graph G as the smallest weight of

a proper coloring of G (1997). If vertices of a graph have weight 1, its weighted chromatic number

coincides with its chromatic number. Thus, the problem of computing the weighted chromatic

number, a.k.a. Max Coloring Problem, is NP-hard in general graphs. It remains NP-hard in

some graph classes as bipartite graphs. Approximation algorithms have been designed in several

graph classes, in particular, there exists a PTAS for trees. Surprisingly, the time-complexity of

computing this parameter in trees is still open.

The Exponential Time Hypothesis (ETH) states that 3-SAT cannot be solved in sub-exponen-

tial time. We show that, assuming ETH, the best algorithm to compute the weighted chromatic

number of n-node trees has time-complexity nΘ(log n). Our result mainly relies on proving that,

when computing an optimal proper weighted coloring of a graph G, it is hard to combine colorings

of its connected components.

1998 ACM Subject Classification G.1.6 Optimization

Keywords and phrases Weighted Coloring; Max Coloring; Exponential Time Hypothesis; 3-SAT

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Given a loop-less graph G = (V, E), a (proper) k-coloring of G is a surjective function

c : V → {1, . . . , k} that assigns to each vertex v ∈ V a color c(v) ∈ {1, . . . , k}, such that, for

any {u, v} ∈ E, c(u) 6= c(v). Equivalently, a k-coloring of G is a partition c = (S1, . . . , Sk)

of V such that, for any 1 ≤ i ≤ k, Si is a non-empty independent set of vertices that have

the same color i. One of the most studied problems in Graph Theory consists in minimizing

the number of colors of a proper coloring of a graph. Namely, Graph Coloring aims at

computing the chromatic number of a graph G, denoted by χ(G), which is the minimum k

for which G has a k-coloring. This is one of the Karp’s NP-hard problems [8].

In [6], Guan and Zhu generalized Graph Coloring to vertex-weighted graphs. A

(vertex) weighted graph (G, w) consists of a loop-less graph G = (V, E) and a weight function

w : V → R+ over the vertices of G. Given a k-coloring c = (S1, . . . , Sk) of a weighted graph

(G, w), the weight of color i (1 ≤ i ≤ k) is defined by w(i) = maxv∈Si
w(v). The weight

of coloring c is w(c) =
∑k

i=1 w(i). The weighted chromatic number of (G, w), denoted by
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χw(G), is the minimum weight of a proper coloring of (G, w). The Weighted Coloring

Problem (also known as Max-coloring [15, 12, 13, 14, 11]) takes a weighted graph (G, w) as

input and asks whether χw(G) is bounded [6].

Observe that if the weight of each of the vertices of a graph (G, w) is equal to one, then

the weight of a coloring is the number of its colors and thus, χw(G) = χ(G). Therefore,

Weighted Coloring generalizes Graph Coloring to weighted graphs, and, as a con-

sequence, this problem is NP-hard in general graphs. Moreover, Weighted Coloring has

been shown NP-hard in bipartite graphs [3], where Graph Coloring is trivial. In the last

years, the Weighted Coloring Problem has been addressed several times, however the

complexity of this problem is surprisingly still unknown in the class of trees.

Here, we show that, if 3-SAT cannot be solved in sub-exponential time (Exponential

Time Hypothesis), then Weighted Coloring in trees is not in P.

Related work. Weighted Coloring has been shown to be NP-hard in the classes of

split graphs, interval graphs, triangle-free planar graphs with bounded degree, and bipartite

graphs [3, 14, 2, 5, 15]. On the other hand, the weighted chromatic number of cographs and

of some subclasses of bipartite graphs can be found in polynomial-time [3, 2]. Constant-factor

approximation algorithms have been designed for various graph classes such as interval graphs,

perfect graphs, etc. [14, 11, 12, 13, 4]. In particular, it is known that Weighted Coloring

can be approximated by a factor 8
7 in bipartite graphs and cannot be approximated by a

factor 8
7 − ǫ for any ǫ > 0 in this graph class unless P = NP [13].

Guan and Zhu showed that, given a fixed parameter r ∈ N, the minimum weight of

a coloring using at most r colors can be computed in polynomial-time1 in the class of

bounded treewidth graphs (a.k.a. partial k-trees) [6]. They left open the question of

the time-complexity of the Weighted Coloring Problem in this class (partial k-trees)

and, in particular, in trees. In [13], a sub-exponential algorithm and a polynomial-time

approximation scheme to compute the weighted chromatic number of trees are presented.

Later on, Escoffier et al. proposed a polynomial-time approximation scheme to compute the

weighted chromatic number of bounded treewidth graphs [5]. Kavitha and Mestre recently

presented polynomial-time algorithms for subclasses of trees [9]. They show that computing

the weighted chromatic number can be done in linear time in the class of trees where nodes

with degree at least three induce a stable set [9].

In the last years, many studies have been done on the Weighted Coloring Problem,

however the complexity of this problem was still unknown on trees. Indeed, Weighted

Coloring in trees has some intriguing properties: on the one hand, a reduction to another

NP-hard problem was unlikely to exist due to the existence of a sub-exponential algorithm [13]

(see also Section 2); on the other hand, all the classical methods to derive polynomial-time

algorithms on trees failed [5, 9]. We provide here some explanation for these facts.

Our results. We show that, under the Exponential Time Hypothesis (ETH) (see Section 2),

the best algorithm to compute the weighted chromatic number of trees has time-complexity

nΘ(log n), where n is the number of vertices of the input tree. The existence of an algorithm

that solves the Weighted Coloring Problem in time nΘ(log n) in bounded treewidth graphs

follows easily from previous results. The difficulty is to prove that it is optimal under ETH.

For this, we show that computing the weighted chromatic number of an n-node tree is as

hard as deciding whether a 3-SAT formula with size log2n can be satisfied, where the size of

a formula is η if it has η variables and its number of clauses is a polynomial in η. So, our

1 We emphasize that this algorithm is exponential in r
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Figure 1 The unique optimal weighted coloring of P4 uses strictly more than χ(P4) colors.

reduction is rather technical, but we hope that it contains ideas that may be used in other

contexts. Along the line of our reduction, one will discover another surprising aspect: the

difficulty of the problem not only comes from the graph structure, but rather relies on the

way weights are structured. This implies that choosing the right color for a node is hard. We

indeed use non-binary constraint satisfaction formulae (i.e., constraint satisfaction formulae

over positive integers) as main tool. Lastly, our reduction also proves that computing an

optimal weighted coloring of a disconnected graph may be hard even if optimal colorings of

each of its components can be done in polynomial-time.

Organization of the paper. The remainder of the paper is organized as follows. In

Section 2, we formally state the main results of the paper: in Section 2.1, an nO(log n)-time

algorithm is derived from previous works, and in Section 2.2 we prove our main result

assuming a technical reduction (Proposition 2). The remaining part of the paper is devoted

to the proof of Proposition 2. In Section 3, we give the main ideas of its proof. Finally, in

Section 4, we prove a technical result (Proposition 3) which allows us to prove Proposition 2.

2 Preliminaries

2.1 Sub-exponential algorithm

In this section, we show that there exists a sub-exponential algorithm to solve the Weighted

Coloring Problem in the class of bounded treewidth graphs (including trees). This is an

almost trivial consequence of previous works that mainly relies on the number of colors used

by weighted colorings in these graphs.

There exist weighted graphs G for which any optimal weighted coloring uses strictly

more than χ(G) colors: let us consider the 4-node path P4 with V (P4) = {a, b, c, d}, w(a) =

w(d) = 4 and w(b) = w(c) = 1 (see Figure 1). Any coloring of P4 with 2 = χ(P4) colors has

weight 8, and the optimal coloring {{a, d}, {b}, {c}} of P4 has weight χw(P4) = 6 but uses 3

colors.

Luckily, the number of colors used by optimal weighted colorings can be bounded by

O(log n) in the class of bounded treewidth graphs with n nodes. Indeed, Guan and Zhu

studied the number of colors used by an optimal weighted coloring [6]. More precisely, they

proved that the maximum number of colors of an optimal weighted coloring of a weighted

graph (G, w) is its first-fit chromatic number χF F (G) (a.k.a., Grundy number) [6]. This is

tight since, for any graph G, there exists a weight function w such that an optimal weighted

coloring of (G, w) uses χF F (G) colors. On the other hand, for any n-node graph G with

tree-width at most k, χF F (G) = O(k log n) [10]. In particular, this implies that, for any

n-node tree, there is an optimal weighted coloring using O(log n) colors. Finally, in the

class of bounded treewidth graphs and when the number r ∈ N of colors is fixed, there is

an algorithm (using dynamic programming on the tree-decomposition) that computes the

minimum weight of a coloring using at most r colors in time polynomial in O(nr) where n is

the number of vertices of the input graph [6].

By combining these results, the following proposition is straightforward:
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◮ Proposition 1. There exists an algorithm that solves the Weighted Coloring Problem

in time nO(log n) in the class of bounded treewidth graphs (including trees), where n is the

number of vertices of the input graph.

2.2 Main Result

We now formalize our main result. Recall that an instance of the 3-SAT Problem is any

Boolean formula Φ(v1, . . . , vη) over the variables v1, . . . , vη in the conjunctive normal form

(CNF) where each clause involves three variables. The size of Φ is η if it depends on η

variables and its number of clauses is polynomial in η. The 3-SAT Problem asks whether

there exists a truth assignment to the variables such that Φ(v1, . . . , vη) is true. It is well

known that the 3-SAT Problem is NP-complete [1]. A fundamental question is to know

whether it can be solved in sub-exponential time. Note that, otherwise, P 6= NP .

◮ Conjecture 1. Exponential Time Hypothesis (ETH)[7].

3-SAT cannot be solved in time 2o(η) where η is the size of the instance.

The main part of this paper is devoted to proving the following result.

◮ Proposition 2. For any Boolean formula Φ of size η, there exist a weighted tree (T, w)

with n = 2O(
√

η) vertices and M ∈ R such that Φ is satisfiable if and only if χw(T ) ≤ M .

Moreover, (T, w) and M are computable in time polynomial in n.

Proposition 2 allows us to prove that there is no polynomial-time algorithm to solve the

Weighted Coloring Problem in trees, unless ETH fails.

◮ Theorem 1. If ETH is true, then the best algorithm to compute the weighted chromatic

number of an n-node tree T has time-complexity nΘ(log n).

Proof. The existence of such an algorithm directly follows from Proposition 1. For purpose

of contradiction, let us assume that there exists an algorithm A that solves the Weighted

Coloring Problem in time no(log n) in the class of trees, where n is the number of vertices

of the input tree. Let Φ be any Boolean formula of size η. By Proposition 2, there exists a

weighted tree (T, w) with n = 2O(
√

η) = 2o(η) vertices and M ∈ R such that Φ is satisfiable

if and only if χw(T ) ≤ M . Consider the following algorithm to solve 3-SAT. For any

Boolean formula Φ of size η, first compute (T, w) and M in time 2o(η), then use Algorithm

A to compute χw(T ) in time no(log n) = 2o(η). By definition, Φ is satisfiable if and only if

χw(T ) ≤ M . Therefore, the above algorithm solves the 3-SAT Problem in time 2o(η) where

η is the size of the instance, contradicting ETH. ◭

The remaining part of the paper is devoted to the proof of Proposition 2.

3 From boolean variables to integral variables

Proposition 2 establishes a link between the Weighted Coloring Problem and 3-SAT.

Informally, to evaluate the time-complexity of the Weighted Coloring Problem, the

ideal way would be to reduce any 3-SAT formula Φ to a weighted tree (T, w) such that (1)

there is a correspondence between truth assignments of the variables of Φ and the optimal

colorings of T , and (2) Φ is satisfiable if and only if χw(T ) is at most some pre-defined value

M (depending on Φ). To do such a reduction, we would like to proceed as follows: given

a boolean formula Φ of size η, we build a weighted tree T such that any truth assignment

of Φ for which Φ is satisfied, we have a coloring of T of bounded weight, where the weight

of a color reflects the truth assignment of a variable. Hence, the desired weighted tree T
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must be such that any optimal coloring of T uses η colors. However, proceeding that way,

since the number of colors in an optimal weighted coloring of an n-node tree is at most

O(log n), T must have at least n = 2η nodes. Hence, a polynomial-time algorithm to solve

the Weighted Coloring Problem in T would only lead to an exponential-time algorithm

for deciding whether Φ is satisfiable.

3.1 From 3-SAT to INT-SAT

To bypass the above problem, we will use an auxiliary formula. Intuitively, given a 3-SAT

formula with η boolean variables, we will translate it into another logical formula with
√

η

integral variables. Using this new formula, we build a tree with 2
√

η nodes, where the weights

of the colors in coloring of bounded weight will correspond to the integral values of the

variables. Note that our method is close to the Split and List method of [16]. More formally,

◮ Definition 2. Given a set of n × m boolean variables (yi
j)i<n,j<m, an integral assignment

of these variables is a truth assignment such that, for any 0 ≤ i < n, at most one variable yi
j ,

0 ≤ j < m, receives value 1.

A boolean formula Φ with n × m boolean variables (yi
j)i<n,j<m is integrally satisfiable

w.r.t. (yi
j)i<n,j<m if there is an integral assignment of its variables that satisfies Φ.

The INT-SAT Problem takes a formula Φ with variables (yi
j)i<n,j<m as input and asks

whether Φ is integrally satisfiable w.r.t. (yi
j)i<n,j<m.

In what follows, we widely use the fact that there is a one-to-one mapping between any

integral assignment of a set of n × m boolean variables (yi
j)i<n,j<m and the set of n-tuples

(x1, . . . , xn) of integers in {0, . . . , m}. Indeed, for any i < n, xi = j if and only if yi
j = 1, and

xi = 0 if yi
j = 0 for all j < m.

We now show that 3-SAT can be sub-exponentially reduced to INT-SAT. This is an

important ingredient of the proof of Proposition 2. We also think this result has its own

interest and could be used in other contexts.

◮ Theorem 3. For any instance Φ of 3-SAT with size η, there is a Boolean formula Φint

of size n = 2O(
√

η), with variables (yi
j)i<

√
η,j<2

√
η , s.t. Φ is satisfiable if and only if Φint

is integrally satisfiable w.r.t. (yi
j)i,j. Φint can be computed in time O(n) and it is a CNF

formula where all variables appear positively.

Proof. Let Φ(u1, . . . , uη) be an instance of 3-SAT of size η = N2 (if η 6= N2, we can add

dummy variables). For any two integers a < N and b < 2N , let bit(a, b) correspond to the

a-th bit of the binary representation of b.

Let Φint be the formula obtained from Φ by replacing each literal uiN+j , 0 ≤ i < N and

0 ≤ j < N , by
∨

{ℓ|bit(j,ℓ)=1, 0≤ℓ<2N } vi
ℓ. Then, each literal ūiN+j , 0 ≤ i < N and 0 ≤ j < N

is replaced by
∨

{ℓ|bit(j,ℓ)=0, 0≤ℓ<2N } vi
ℓ. Hence, Φint has N · 2N variables

(v1
0 , . . . , v1

2N −1, v2
0 , . . . , v2

2N −1, . . . , vN
0 , . . . , vN

2N −1)

and poly(N) clauses of size O(2N ). Because Φ is in CNF, it is also the case for Φint. Moreover,

all variables appear positively in Φint.

It remains to show that Φint is integrally satisfiable if and only if Φ is satisfiable.

First, let us assume that Φ is satisfiable. Let u1, . . . , uη be a valid assignment of its

variables and, for any 0 < i < N , let xi be the integer with (uN(i−1)+1, . . . , uN(i−1)+N ) as

binary representation. Finally, for any i < N and j < 2N , let us define vi
j = 1 if xi = j and
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vi
j = 0 otherwise. By definition of Φint, (vi

j)0≤i<N, 0≤j<2N is a valid assignment and Φint is

therefore integrally satisfiable.

Conversely, let us assume that Φint is integrally satisfiable and let (x1, . . . , xN ) be N

integers representing a valid assignment for it. Let u1, . . . , uη be defined such that, for any

0 ≤ i < N , (uN(i−1)+1, . . . , uN(i−1)+N ) is the binary representation of xi. Then, u1, . . . , uη

is a satisfying assignment for Φ which is satisfiable. ◭

3.2 Proof of Proposition 2

Theorem 3 allows us to reduce any 3-SAT instance Φ of size η into an INT-SAT instance

Φint with size 2O(
√

η). The key point is that this reduction allows us to turn the choice of η

boolean variables into the choice of
√

η integers in {0, . . . , 2
√

η}. Then, in further sections,

we build a tree T with 2O(
√

η) vertices from the formula Φint, such that there is a one to

one mapping between any optimal weighted coloring of T and the
√

η-tuples of integers in

{0, . . . , 2
√

η}. Finally, our reduction ensures that the value of χw(T ) depends on the integral

satisfiability of Φint and therefore, on the satisfiability of Φ. More formally, the next section

is devoted to proving the following result:

◮ Proposition 3. For any CNF Boolean formula Φint of size n where all variables (yi
j)i,j

appear positively, there exist a weighted tree (T (Φint), w) with size polynomial in n and

M ∈ R s.t. Φint is integrally satisfiable w.r.t. (yi
j)i,j if and only if χw(T (Φint)) ≤ M . The

pair (T (Φint), w) and M are computable in time polynomial in n.

The proof of Proposition 2 is straightforward from Theorem 3 and Proposition 3.

4 Proof of Proposition 3

This section is devoted to the proof of Proposition 3.

Let us introduce some notations. Let n ∈ N and let m = 2n. Let Φint be a Boolean

formula with n × m variables {yj
i | 0 ≤ i < n, 0 ≤ j < m} and L clauses, where L is

polynomial in n. We assume that Φint is in the Conjunctive Normal Form and that each

variable appears positively. Moreover, we may assume that each variable appears at least

once. That is, Φint =
∧

ℓ≤L Qℓ and, for any ℓ ≤ L, Qℓ is the disjunction of pℓ ≥ 1 positive

variables.

Let ǫ > 0 such that nmǫ = o( 1
24n ) and let

M =

4n+2∑

i=0

1

2i
+ n(m − 1)ǫ < 2.

Let wj
i = 1/2i + jǫ, for any 0 ≤ i ≤ 4n + 3 and 0 ≤ j ≤ m. Let W = {wj

i | 0 ≤ i ≤
4n + 3, 0 ≤ j ≤ m} denote a set of weights. Note that the length of the encoding of these

weights is polynomially bounded. For any 0 ≤ k ≤ 3, let Wk = w0
4n+k = 1/24n+k. Finally,

for any rooted tree T , let r(T ) denote its root. A rooted tree S is a (proper) subtree of a

rooted tree T if there is an edge e of T such that S is the connected component of T \ {e}
that does not contain r(T ). We now define various subtrees required to build (T (Φint), w).

4.1 Binomial trees

We first define a particular family of binomial trees Bi, 0 ≤ i ≤ 4n + 2. They will be used

in the construction of T (Φint). Their role is to force the color of most of the nodes in any

coloring c of T (Φint) with w(c) ≤ M .
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◮ Definition 4. For any 0 ≤ i ≤ 4n+2, let Bi be the weighted rooted tree defined recursively

as follows (see Figure 2).

if i = 0, then B0 has a unique node with weight w0
0;

otherwise, Bi has a root of weight w0
i whose children are the roots of copies of B0, B1, . . . , Bi−1.

Note that Bi has 2i nodes and that it just contains nodes of weight w0
j , for 0 ≤ j ≤ i ≤

4n + 2. We will use these binomial trees with two main goals in our reduction:

enforce the number of used colors and the weights of these colors (up to an additive

constant cǫ) in any optimal weighted coloring of the tree we build from the 3-SAT formula;

forbid the color i to appear in any vertex that is adjacent to a root of a binomial tree Bi.

We get these properties according to the following lemmas:

B1

w
0

i−1
w

0

k
w

0

2
w

0

1

Bi

BkB2

B1B0

B0

w
0

0
w

0

1
w

0

i

Bi−1

B0

w
0

0

Figure 2 The construction of the binomial tree Bi.

◮ Lemma 5. Let 0 ≤ i ≤ 4n + 2. Let (T, w) be a weighted tree having Bi as subtree. If there

exists a coloring c of (T, w) with w(c) ≤ M , then, for any 0 ≤ k ≤ i:

1. all vertices of Bi with weight in w0
k receive the same color Sk of c; and

2. there exists a unique color class Sk in c of weight in {wj
k | 0 ≤ j ≤ m}.

Proof. The proof is by induction on the index i. In case i = 0, we prove both statements of

the lemma at once by observing that any two vertices of (T, w) of weight in {wj′

0 | 0 ≤ j′ ≤ m}
must belong to the same color class S0, otherwise we would conclude that w(c) ≥ 2, that

would be a contradiction to the fact that w(c) ≤ M < 2.

Now, let 0 ≤ k ≤ i, observe that the set of nodes of Bi with weight in w0
k is an independent

set that dominates the nodes of Bi with smaller weights (i.e., in {w0
k′ | k < k′ ≤ i}).

By induction hypothesis, for any 0 ≤ k < i, the set of nodes of Bi with weight in w0
k receive

the same color Sk of c and this color class is the unique with weight in {wj
k | 0 ≤ j ≤ m}.

Then, for any 0 ≤ k < i, the root of Bi cannot be colored Sk, since it has a neighbor with

weight w0
k. Let Si be the color of the root of Bi in c. We proved that the color Si cannot

contain nodes with weight greater than wm−1
i and that c cannot have another color S′

i 6= Si

with weight in {wj
i | 0 ≤ j ≤ m}, because, otherwise the weight of c would be at least

1
2i +

∑i
k=0

1
2k = 2 > M in both cases. ◭

◮ Corollary 6. Let (T, w) be a weighted tree having B4n+2 as subtree. Let c be any coloring

of (T, w) s.t. w(c) ≤ M . Then, c = (S0, . . . , Sk) with k ≥ 4n + 2 and, for any 0 ≤ i ≤ 4n + 2,

Si is the unique color with weight in {wj
i | 0 ≤ j ≤ m}.
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The trees we consider below will always satisfy the requirements of Corollary 6. Therefore,

we are able to identify a color by its weight. In other words, in what follows, for any coloring

c = (S0, . . . , Sk) of weight at most M and for any i ≤ 4n + 2, Si will be the unique color

such that w(Si) ∈ {wj
i | 0 ≤ j ≤ m}.

Recall that we defined, for any 0 ≤ k ≤ 3, Wk = w0
4n+k = 1/24n+k. By a slight abuse of

notation, for any 0 ≤ k ≤ 3, we denote Wk = S4n+k as the unique color with weight Wk.

4.2 Auxiliary trees and Variable-trees

This section is mainly devoted to the construction of subtrees that will represent the boolean

variables. First, the family of auxiliary trees Aj
i , 0 ≤ i < 4n, 0 ≤ j ≤ m, will be used to

introduce some choice when coloring T (Φint).

◮ Definition 7. For any 0 ≤ i < 4n, 0 ≤ j ≤ m, let Aj
i be the weighted rooted tree defined

as follows (see Figure 3). Note that Aj
i consists of 24n nodes.

1. Let u be its root with weight w(u) = W0, and connect it to a node v (its subroot) with

weight w(v) = wj
i ;

2. v is made adjacent to the root of a copy of Bℓ, for any 0 ≤ ℓ < i − 1;

3. u is made adjacent to the root of a copy of Bℓ, for any 0 ≤ ℓ < 4n, ℓ 6= i − 1.

Figure 3 Auxiliary tree A
j
i .

Figure 4 The variable tree T (yj
i ).

◮ Lemma 8. Let 0 ≤ i < 4n and 0 ≤ j ≤ m. Let (T, w) be any weighted tree having B4n+2

and Aj
i as subtrees. Let u and v be the root and the sub-root of Aj

i , respectively. For any

coloring c of (T, w) with weight w(c) ≤ M , then it holds:

either v is colored Si−1 and u must be colored with the color W0;

or v is colored Si (therefore, w(Si) ≥ wj
i ) and u can be colored with Si−1.

Proof. Recall that, by Corollary 6, we can identify the colors of c and their weights. By

Lemma 5, the root of each subtree Bk, 0 ≤ k < 4n, must be colored with Sk and then the

sub-root v can be colored only with color Si−1 or Si. Note that, if v is colored with color Sp

for some p > i, then w(Sp) ≥ wj
i , contradicting Corollary 6. In the first case, u is adjacent

to a node with color Sk, for any k < 4n. Therefore, u must be colored with color S4n = W0.

Otherwise, u may be colored with color Si−1. ◭
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Intuitively, the previous lemma states that, either we “pay" jǫ in the weight of color Si,

or u must be colored with the color W0. We now define the variable-trees T (yj
i ) using the

auxiliary trees.

◮ Definition 9. For any 0 ≤ i < n, 0 ≤ j < m, let T (yj
i ) be the weighted rooted tree,

representing the variable yj
i , defined as follows (see Figure 4):

let u be its root with weight w(u) = W1 and connected to the root of a copy of Bℓ, for

any 0 ≤ ℓ < 4n;

take one copy of Aj
4i+1, Aj+1

4i+1, Am−j
4i+3 and Am−1−j

4i+3 and:

connect r(Aj
4i+1) to r(Am−j

4i+3), and r(Aj+1
4i+1) to r(Am−1−j

4i+3 );

connect u with r(Aj
4i+1) and r(Am−j−1

4i+3 ).

Note that T (yj
i ) consists of O(24n) nodes (i.e. polynomial in nm).

◮ Lemma 10. Let (T, w) be any weighted tree having B4n+2 as subtree and containing T (yj
i )

as subtree, for all 0 ≤ i < n and 0 ≤ j < m. Let c be a coloring of T with weight w(c) ≤ M .

Then, there are (j0, . . . , jn−1) ∈ {0, . . . , m}n such that each root u of each subtree T (yj
i ),

for any 0 ≤ i < n and 0 ≤ j < m, satisfies:

if j 6= ji, then the color of u in c must be W1;

otherwise, neither of the two neighbors of u can be colored W1 and neither of these two

nodes need to be colored W0.

Proof. Since T contains B4n+2, by Corollary 6, a coloring c = (S0, . . . , Sk) of weight

w(c) ≤ M is such that k ≥ 4n + 2, and, for any 0 ≤ i ≤ 4n + 2, Si is the unique color such

that w(Si) ∈ {wj
k | 0 ≤ j ≤ m}. In particular, w(c) ≥ ∑4n+2

i=0 1/2i = M − n(m − 1)ǫ.

For any 0 ≤ i < n, let ji ≤ m be such that w(S4i+1) = wji

4i+1.

First, let us assume that ji < m. In particular, this means that every sub-root of a

subtree Ar
4i+1, for each ji < r ≤ m, is colored S4i (recall that its color is either S4i or S4i+1,

by Lemma 8). Consequently, any root of a subtree Ar
4i+1, for each ji < r ≤ m, must be

colored W0. Therefore, by the construction of the variable-trees, any root of a subtree Am−r
4i+3 ,

for each ji < r ≤ m, cannot be colored W0 because it is adjacent to a root of a subtree

Ar
4i+1. Thus, by Lemma 8, it must be colored S4i+2 and the color of each sub-root of Am−r

4i+3

must be S4i+3. Consequently, w(S4i+3) ≥ w
m−(ji+1)
4i+3 . Hence, for any 0 ≤ i < n, if ji < m,

we conclude that w(S4i+3) + w(S4i+1) ≥ wji

4i+1 + w
m−(ji+1)
4i+3 = (m − 1)ǫ + 1/24i+1 + 1/24i+3.

On the other hand, if ji = m, it follows directly that w(S4i+3)+w(S4i+1) ≥ mǫ+1/24i+1 +

1/24i+3.

Since w(c) ≤ M , it implies that, for any 0 ≤ i < n, ji < m and w(S4i+3) = wm−ji−1
4i+3 and,

for any 0 ≤ 2k < 4n, w(S2k) = w0
2k. Consequently, by a similar argument, the roots of all

subtrees Am−j
4i+3, for each 0 ≤ j ≤ ji, must be colored W0 and, then, the roots of all subtrees

Ar
4i+1, for each 0 ≤ j ≤ ji, must be colored S4i.

Let 0 ≤ i < n and 0 ≤ j < m. Consider a subtree T (yj
i ) of T . If j 6= ji, then (exactly)

one of the roots of Aj
4i+1 and Am−1−j

4i+3 must be colored W0. In that case, the color of the

root u of T (yj
i ) must be W1. Indeed, u is adjacent to the root of Bk, 0 ≤ k < 4n, and

therefore it cannot be colored Sk. Moreover, if u is colored W2, then we have a contradiction

as w(c) > M , because w(u) = W1. On the other hand, if j = ji, none of the roots of Aj
4i+1

and Am−1−j
4i+3 need to be colored W0. Finally, none of the roots of Aj

4i+1 and Am−1−j
4i+3 can be

colored W1 because their weight is W0 (it would imply w(c) > M). ◭

4.3 Clause-trees and definition of T (Φint)

We define the subtrees representing the clauses and combine them to get T (Φint).
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◮ Definition 11. Let Qℓ = ∨1≤k≤pℓ
uk be any clause of Φint (recall that, for any 1 ≤ k ≤ pℓ,

uk ∈ {yj
i | 0 ≤ i < n, 0 ≤ j < m} and that ℓ ≤ L). For any 1 ≤ k ≤ pℓ, let T (Qk

ℓ ) be the

rooted weighted tree defined recursively as follows:

1. T (Q1
ℓ) = T (u1);

2. for any k > 1, start with one copy of T (Qk−1
ℓ ) with root a and one copy of T (uk) with

root b. Let c, d be two nodes with weight W1 and e, f be two nodes with weight W2. For

each node v ∈ {c, d, e, f}, and for any 0 ≤ i < 4n, add one copy of Bi and make its root

adjacent to v. Add one copy of B4n+1 and make its root adjacent to e. Finally, we add

the edges {{a, f}, {b, c}, {c, f}, {d, e}, {e, f}} and d is chosen as the root.

Let us note T (Qℓ) = T (Qpℓ

ℓ ) the clause-tree corresponding to Qℓ and that consists of O(pℓ2
4n)

nodes (i.e. polynomial in nm). T (Qk
ℓ ) is depicted in Figure 5.

Figure 5 The clause tree T (Qk
ℓ ).

Figure 6 The final tree T (Φint).

◮ Lemma 12. Let (T, w) be any weighted tree having B4n+2 as subtree and containing T (Qk
ℓ )

as a subtree (ℓ ≤ L, k ≤ pℓ). Let c be any coloring of T with weight w(c) ≤ M . If a and b

are colored W1, then the color of the root d of T (Qk
ℓ ) must be W1;

Proof. We prove it by induction on the number of variables k of Qk
ℓ . Observe that in case

k = 1, then T (Qk
ℓ ) is a variable-tree and the lemma trivially holds as the vertex b does not

exist, thus the first statement is trivially satisfied, and, by Lemma 10, the color of its root

must be either W0 or W1.

Now, consider that a and b are roots of a variable-tree and of a clause-tree on k − 1

variables T (Qk−1
ℓ ), respectively. By Lemma 10 and by the inductive hypothesis, the colors

of a and b are either W0 or W1.

In case c(a) = c(b) = W1, by the hypothesis w(c) ≤ M , by Lemma 5 and Corollary 6, we

conclude that c is colored W0, f is colored W2, e is colored W0 and d is forced to be colored

W1. This proves the first statement of the lemma. Finally, by the construction of T (Qk
ℓ ), by

Lemma 5 and Corollary 6, the root d may be colored either W0 or W1, since w(c) ≤ M . ◭

◮ Definition 13. Let T (Φint) be the weighted rooted tree obtained as follows (see Figure 6).

Let r be the root with weight W3. For any 1 ≤ ℓ ≤ L, the root of one copy of T (Qℓ) is made

adjacent to r. For any 0 ≤ i ≤ 4n + 2, i 6= 4n + 1, r is made adjacent to the root of one copy

of Bi.

◮ Lemma 14. T (Φint) has size polynomial in m = 2n.

Proof. Observe that each clause-tree T (Qℓ) has size O(pℓ2
4n) (see Definition 11), where pℓ

is polynomial in m (since pℓ is at most the number nm of variables). Moreover, the number

L of clauses is polynomial in m by the definition of Φint. ◭
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◮ Lemma 15. If Φint is integrally satisfiable, then χw(T (Φint)) ≤ M .

Proof. Let (yj
i )i<n,j<m be a valid integral assignment for Φint. For any 0 ≤ i < n, let ji be

the (unique) index such that yji

i is true. We construct a coloring c of (T (Φint), w) such that

w(c) ≤ M . By Lemma 5, in any coloring c of T (Φint) such that w(c) ≤ M , the colors of all

nodes of the binomial subtrees of T (Φint) are forced. Consequently, we only need to decide

the colors of the following nodes: the roots and sub-roots of any copy of Aj
i , the roots of the

trees T (yj
i ), and the nodes added to connect the variables-trees into clause-trees (the nodes

a, b, c, d, e, f in Figure 5), for any 0 ≤ i < n and 0 ≤ j < m.

We first set the weight of color Si for any 0 ≤ i < 4n. In particular, for any 0 ≤ i < n,

the color S4i+1 must have weight wji

4i+1. As we observed in the proof of Lemma 10, this

choice fixes the colors of all roots and sub-roots of all the Aj
i trees, i.e. all the nodes in the

variable trees, except to the roots of the variable-trees T (yji

i ), by Lemma 10.

More precisely, for any 0 ≤ i < n and 0 ≤ j < m, let us consider a subtree T (yj
i ). Let

j′ ∈ {j, j + 1}. The sub-root of Aj′

4i+1 receives color S4i+1 if j′ ≤ ji and receives color S4i

otherwise. The root of Aj′

4i+1 receives color S4i if j′ ≤ ji and receives color W0 otherwise.

The sub-root of Am−j′

4i+3 receives color S4i+3 if j′ > ji and receives color S4i+2 otherwise. The

root of Am−j′

4i+3 receives color S4i+2 if j′ > ji and receives color W0 otherwise. Finally, if

j 6= ji, the root of T (yj
i ) is colored W1. On the other hand, if j = ji, none of the neighbors

of the root of T (yj
i ) is colored W0, therefore, we can color it either W0 or W1.

Now, let Qℓ = ∨1≤k≤pℓ
uk be any clause of Φint. We show that we can extend the

previous coloring such that the root of the clause-tree T (Qℓ) is colored W0 and the weight

of the coloring is < M . This is by induction on pℓ. Indeed, if pℓ = 1, then Qℓ consists of a

unique variable and this variable must be assigned to true (since the formula is true). Hence,

Qℓ = yji

i for some 0 ≤ i < n. That is T (Qℓ) is a subtree T (yji

i ). Hence, we can color the

root of it with W0.

Now, assume that the result is correct for any clause of length p ≥ 1 and let pℓ = p + 1.

Thus, Qℓ = up+1 ∨ (∨1≤k≤puk). Recall that T (Qℓ) is built from a variable subtree T (up+1)

and a clause-subtree T (Qp
ℓ ). There are two cases to consider: either our assignment satisfies

∨1≤k≤puk or not. In the first case, the root of the clause-tree T (Qp
ℓ ) (node b in Figure 5)

is colored W0 by induction. Moreover, by above paragraphs, the root of T (up+1) (node a

in Figure 5) can be colored W1. It is then easy to extend this coloring such that the root

of T (Qℓ) is colored W0: in Figure 5, node c is colored W1, node e is colored W2 and nodes

f and d are colored W0. If our assignment does not satisfy ∨1≤k≤puk, then it must satisfy

up+1. That is, up+1 = yji

i for some 0 ≤ i < n. By a similar induction, we prove that the root

of T (Qp
ℓ ) can be colored W1. Moreover, by above paragraphs, the root of T (up+1) = T (yji

i )

can be colored W0. This coloring can be extended such that the root of T (Qℓ) is colored W0:

in Figure 5, node f is colored W1, node e is colored W2 and nodes c and d are colored W0.

Thus, we color the roots of all the clause-trees with color W0 and the root of T (Φint)

with the color W1.

Hence, the weight of this coloring c is w(c) =
∑4n+2

i=0
1
2i + n(m − 1)ǫ = M . ◭

◮ Lemma 16. If Φint is not integrally satisfiable, then χw(T (Φint)) > M .

Proof. Φint is not integrally satisfiable. Let c be a coloring of T (Φint) with weight at most

M . By Lemma 10, there are integers (j0, . . . , jn−1) such that the color of the root of any

subtree T (yj
i ) is forced to be W1, if j 6= ji. Let Y = (yj

i )i<n,j<m be the corresponding

integral assignment. In other words, for any variable yj
i (0 ≤ i < n, 0 ≤ j < m), yj

i = 0 if

j 6= ji. Since Φint is not integrally satisfiable, there is a clause Q that is not satisfied by this
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assignment. Let us consider the clause-subtree T (Q). It has been built from variable-trees

corresponding to the variables constituting the clause Q. Because all these variables are

assigned to false, the roots of these variable-trees are all colored with W1, by Lemma 10.

By induction on the length of Q and by Lemma 12, the color of the root of T (Qℓ) must

be W1. Thus, the root of T (Φint) can just be colored W3. Consequently, the coloring c has

weight w(c) ≥
∑4n+3

i=0
1
2i + n(m − 1)ǫ > M . ◭

Proposition 3 follows directly from Lemmas 14, 15 and 16.
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