
HAL Id: hal-00931535
https://inria.hal.science/hal-00931535

Submitted on 15 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new criterion for avoiding the propagation of linear
relations through an Sbox

Christina Boura, Anne Canteaut

To cite this version:
Christina Boura, Anne Canteaut. A new criterion for avoiding the propagation of linear relations
through an Sbox. Fast Software Encryption - FSE 2013, Mar 2013, Singapore, Singapore. pp.585–
604, �10.1007/978-3-662-43933-3_30�. �hal-00931535�

https://inria.hal.science/hal-00931535
https://hal.archives-ouvertes.fr

A new criterion for avoiding the propagation of
linear relations through an Sbox⋆

Christina Boura1,2 and Anne Canteaut1

1 SECRET Project-Team - INRIA Paris-Rocquencourt - B.P. 105
78153 Le Chesnay Cedex - France

2 Gemalto - 6, rue de la Verrerie - 92190 Meudon - France.
Christina.Boura@inria.fr, Anne.Canteaut@inria.fr

Abstract In several cryptographic primitives, Sboxes of small size are
used to provide nonlinearity. After several iterations, all the output bits
of the primitive are ideally supposed to depend in a nonlinear way on
all of the input variables. However, in some cases, it is possible to find
some output bits that depend in an affine way on a small number of
input bits if the other input bits are fixed to a well-chosen value. Such
situations are for example exploited in cube attacks or in attacks like the
one presented by Fuhr against the hash function Hamsi. Here, we define a
new property for nonlinear Sboxes, named (v, w)-linearity, which means
that 2w components of an Sbox are affine on all cosets of a v-dimensional
subspace. This property is related to the generalization of the so-called
Maiorana-McFarland construction for Boolean functions. We show that
this concept quantifies the ability of an Sbox to propagate affine relations.
As a proof of concept, we exploit this new notion for analyzing and
slightly improving Fuhr’s attack against Hamsi and we show that its
success strongly depends on the (v, w)-linearity of the involved Sbox.

Keywords. Sbox, Boolean function, linear relations, Maiorana-McFarland
construction, hash functions.

1 Introduction

In the construction of symmetric primitives such as block ciphers and hash func-
tions, nonlinear functions are iterated to provide confusion. In particular, it is
required that all the outputs of the primitive depend in a nonlinear way on the
inputs. However, it might happen that some output bits can be expressed in an
affine way as a function of a small number of input bits, when the other input
bits are fixed to some well-chosen values. Clearly, the sizes of the corresponding
sets of inputs and outputs provide a measure of the induced weaknesses: such a

⋆ Partially supported by the French Agence Nationale de la Recherche through the
BLOC project under Contract ANR-11-INS-011. c©IACR 2013. This article is the
final version submitted by the authors to the IACR and to Springer-Verlag on 23
April 2013.

property always holds for any input set of size 1, but it should be avoided for
larger sets. Actually, in such a situation, an attacker would be able to derive some
conditional relations of algebraic degree 1 between some inputs and some out-
puts of the primitive and to exploit them in a cryptanalysis, like a cube attack [9]
or an attack similar to the one presented by Fuhr on Hamsi [12]. However, it
is often difficult to determine whether such affine relations exist and even more
difficult to find them. Furthermore, from the designer’s point of view, it is not
easy to understand how such relations can be avoided at a low implementation
cost, especially without increasing the number of rounds.

Our Contributions. In this paper, we show that the number of affine relations
between input bits and output bits after several rounds of an SPN construction
depends on a new linearity measure of the Sbox, that we call (v, w)-linearity.
The parameters (v, w) quantify the ability of the Sbox to propagate affine re-
lations. More precisely, a vectorial function S from Fn

2 into Fm
2 is (v, w)-linear,

if there exist a subspace V ⊂ Fn
2 with dimV = v and a subspace W ⊂ Fm

2

with dimW = w such that all Boolean functions x 7→ λ · S(x), for λ ∈ W , have
degree at most 1 on all cosets of V . We show that the (v, w)-linear functions
correspond to the functions which follow the generalized Maiorana-McFarland
construction [18] applied to vectorial functions. In other words, the use of Sboxes
obtained by this construction, which have been extensively studied for instance
in [19,6,21,14], introduces some weaknesses into a cryptographic primitive, which
might be exploited by a cube attack or by an attack like [12].

As a proof of concept, we analyze and slightly improve Fuhr’s attack against
Hamsi with the new insights brought by this notion. Most notably, we show
that the feasibility of this attack mainly depends on the (v, w)-linearity of the
Hamsi Sbox. By classifying 4-bit Sboxes in terms of (v, w)-linearity, we exhibit
the families of Sboxes which considerably reduce the success of the attack.

The rest of the paper is organized as follows. In Section 2 we introduce the
notion of (v, w)-linearity and present some general properties. We characterize,
in this same section, the (v, w)-linear functions for certain values of (v, w) and
we exhibit a classification of 4-bit Sboxes with respect to this new criterion. In
Section 3, we recall the principle of the second preimage attack by Fuhr against
the hash function Hamsi. Section 4 points out that the notion of (v, w)-linearity
for the involved Sbox brings a new insight on Fuhr’s attack. In particular, a more
extensive use of this notion enables us to slightly improve the attack against
Hamsi. We also investigate the feasibility of the attack for all possible choices of
the 4-bit Sbox. We refer to [2] for further details, especially on the classification
of 4-bit Sboxes and on the algorithms we used for finding affine relations for
Hamsi-256.

2 The Notion of (v, w)-linearity

When we consider an Sbox, i.e., a vectorial function with several output coor-
dinates, some of its cryptographic properties are derived from the properties of
its components, in the following sense.

Definition 1. [20] Let S be a function from Fn
2 into Fm

2 . The components of
S are the linear combinations of its coordinates, i.e., the Boolean functions of
n variables Sλ : x 7→ λ · S(x), where λ ∈ Fm

2 and S0 is the null function.

In the following, we often consider the restriction of S to an (affine) subspace
a+V of Fn

2 . This restriction corresponds to the function x ∈ V 7→ S(a+x), and
it can be identified with a function of dimV variables.

2.1 Definition and Link with the Maiorana-McFarland Construction

Definition 2. Let S be a function from Fn
2 into Fm

2 . Then, S is said to be
(v, w)-linear if there exist two linear subspaces V ⊂ Fn

2 and W ⊂ Fm
2 with

dimV = v and dimW = w such that, for all λ ∈ W , Sλ has degree at most 1
on all cosets of V .

Obviously, a function S that is (v, w)-linear is equally (v, i)-linear for every
1 ≤ i < w. Similarly, it is (i, w)-linear for every 1 ≤ i < v.

Any Boolean function f which is linear on all cosets of a v-dimensional sub-
space V can be written as

f(x, y) = π(x) · y + h(x) with (x, y) ∈ U × V,

where U is a supplementary subspace of V , π is a function from U to Fv
2 and h is a

Boolean function from U to F2. This construction is a well-known generalization
of the so-called Maiorana-McFarland construction of bent functions [18]. This
class has been generalized to vectorial functions in [19] and studied by several
authors, e.g. [6,21,14]. Then, it follows that an Sbox is (v, w)-linear if and only if
its 2w components corresponding to W define a function which is equivalent to a
vectorial Maiorana-McFarland function, in the sense of the following proposition.

Proposition 1. Let S be a function from Fn
2 into Fm

2 , and V and W two linear
subspaces V ⊂ Fn

2 and W ⊂ Fm
2 with dimV = v and dimW = w. Then, S is

(v, w)-linear w.r.t. (V,W) if and only if the function SW corresponding to all
components Sλ, λ ∈ W , can be written as

SW (x, y) = M(x)y +G(x)

where Fn
2 is the direct sum of U and V , G is a function from U to Fw

2 and M(x)
is a w × v binary matrix whose coefficients are Boolean functions defined on U .

Proof. Let (λ1, . . . , λw) be a basis of W . Clearly, S is (v, w)-linear w.r.t. (V,W)
if and only if, for any 1 ≤ i ≤ w, Sλi

can be written as

Sλi
(x, y) = πi(x) · y + gi(x) .

Let G denote the function from U to Fw
2 whose w coordinates correspond to gi,

1 ≤ i ≤ w, and let M(x) denote the w × v matrix whose i-th row correspond
to the w coordinates of πi(x). Then, the previous condition can be equivalently
written as

SW (x, y) = M(x)y +G(x) .

⊓⊔

2.2 General Properties

It directly follows from the definition that (v, w)-linear functions have some
weaknesses with respect to the usual cryptographic properties. In particular,
the algebraic degree and the nonlinearity of some components of the Sbox both
decrease when v increases. Indeed, an upper bound on the degree of the compo-
nents of S can be directly deduced from Proposition 1.

Proposition 2. Let S be a function from Fn
2 into Fm

2 . If S is (v, w)-linear w.r.t.
(V,W), then all its components Sλ, λ ∈ W have degree at most n+ 1− v.

We now show that the (v, w)-linearity provides an upper bound on the non-
linearity of the function, i.e., on its distance to the set of all affine functions.
The following notation will be extensively used. For any Boolean function f

of n variables, we denote by F(f) the following value related to the Hamming
weight of f :

F(f) =
∑

x∈F
n

2

(−1)f(x) = 2n − 2wt(f) .

This quantity is just the discrete Fourier transform (aka., Walsh transform) at
point 0 of the sign function (−1)f .

Definition 3. The Walsh spectrum of an Sbox S from Fn
2 into Fm

2 is the mul-
tiset

W(S) = {F(Sλ + ϕα), α ∈ Fn
2 , λ ∈ Fm

2 \ {0}} ,

where ϕα denotes the n-variable linear function x 7→ α ·x. The nonlinearity of S
is the Hamming distance between the set of its nontrivial components {Sλ, λ 6= 0}
and the set of all affine functions. It is given by

2n−1 −
1

2
L(S) where L(S) = max

α∈F
n

2
,λ 6=0

|F(Sλ + ϕα)| .

Proposition 3. Let S be a function from Fn
2 into Fm

2 . If S is (v, w)-linear, then
L(S) ≥ 2v.

Proof. The result comes from the fact that the linearity of a Boolean function
f , L(f), is lower-bounded by the linearity of any of its restrictions to a subspace
(see e.g. Corollary V.3 in [4]). Since the restriction of Sλ, λ ∈ W , to V is affine,
it has linearity 2v. ⊓⊔

The notion of (v, w)-linearity is also related to the notion of normality introduced
by Dobbertin [11], and then generalized by Charpin [7] as follows: a Boolean
function f of n variables is said to be weakly v-normal, if it is affine on an (affine)
subspace V of dimension v. However, (v, 1)-linearity is a stronger requirement
than weak v-normality since the component of S needs to have degree at most 1
on all cosets of V while weak normality requires this property on a single coset.

It is worth noticing that the two conditions derived from Propositions 2 and 3,
i.e., deg f ≤ n+1− v and L(f) ≥ 2v are not sufficient for guaranteeing that f is
(v, 1)-linear. For instance, it has been shown in [5] that the Boolean function of
14 variables, f(x) = Tr(αx57) with α ∈ F4 \ F2, is not 7-weakly normal. Then,
this function is not (7, 1)-linear while it has degree 4 and satisfies L(f) = 27.

It is known that the Boolean functions which are affinely equivalent to a
Maiorana-McFarland bent function can be characterized by their second-order
derivatives [8]. The situation is similar for vectorial functions. In the following,
we denote by DaS the derivative of a function from Fn

2 into Fm
2 , i.e., DaS is the

function from Fn
2 into Fm

2 defined by DaS(x) = S(x+ a) + S(x).

Proposition 4. Let S be a function from Fn
2 into Fm

2 . Then, S is (v, w)-linear
w.r.t. (V,W) if and only if the function SW corresponding to all components
Sλ, λ ∈ W is such that all its second-order derivatives, DαDβSW with α, β ∈ V

vanish.

Proof. Let U denote a supplementary subspace of V .

– If S is (v, w)-linear w.r.t. (V,W), then for any x ∈ U ,

SW (x, y) = M(x)y +G(x),

where M(x) is a w × v matrix and G a function from U to Fw
2 . It follows

that, for any α, β ∈ V , we have

DαDβSW (x, y)=SW (x, y)+SW (x, y+α)+SW (x, y+β)+SW (x, y+α+β)=0 .

– Conversely, if the second-order derivatives of SW , DαDβSW with α, β ∈ V ,
vanish, then for any x ∈ U , the function Fx from V to Fw

2 defined by Fx(y) =
SW (x, y) is such that all its second-order derivatives vanish. However, if a
function has degree at least 2, then it has at least one second-order derivative
which does not vanish. It follows that, for any x ∈ U , SW has degree at most 1
on x+ V . ⊓⊔

2.3 (v, 1)-linear Functions

In the following, we focus on (v, 1)-linear functions since the highest value of v
such that S is (v, 1)-linear is a relevant parameter. Actually, as seen in Proposi-
tions 2 and 3, this value provides bounds on the degree and on the nonlinearity
of the corresponding component: deg f ≤ n + 1 − v and L(f) ≥ 2v. Obviously,
any function is (1, 1)-linear. Then, we first consider (2, 1)-linear functions. From
Proposition 4, a Boolean function is (2, 1)-linear if and only if one of its second-
order derivatives vanishes. We now give a sufficient condition for this property.

Proposition 5. Let f be a balanced Boolean function of n variables, n even,
with deg(f) ≤ 3. Then f is (2, 1)-linear.

Proof. Since f is balanced, it is obviously not bent. Then, by definition, f has
at least one derivative, say Dαf , that is not balanced. Since deg(f) ≤ 3, we
have that deg(Dαf) ≤ 2. If deg(Dαf) < 2, then DβDαf vanishes for at least all
values of β in a (affine) hyperplane. Thus, we deduce from Proposition 4 that f
is (2, 1)-linear. Suppose now that deg(Dαf) = 2 and consider its restriction to
a hyperplane H such that α 6∈ H. Let g denote this restriction, i.e. g = Dαf|H .

This restriction is a quadratic function of (n− 1) variables that is not balanced
(since its Hamming weight is half of the Hamming weight of Dαf). Since n is
even, n − 1 is odd and thus g cannot be bent. Therefore, g has at least one
derivative that is constant. That is, there exists some β ∈ Fn

2 such that DβDαf

is constant. Though, a quadratic function is balanced if and only if it has a
derivative equal to 1. Therefore, DβDαf is the all-zero function. ⊓⊔

Most notably, it follows that all nontrivial components of a permutation of F4
2

are (2, 1)-linear.
The other extremal case of (n − 1, 1)-linear Boolean functions can be com-

pletely characterized. Indeed, it can be shown that the necessary conditions on
the degree and nonlinearity of an (n − 1, 1)-linear Boolean function (Proposi-
tions 2 and 3) are sufficient.

Proposition 6. Let f be a Boolean function of n variables. Then, f is (n−1, 1)-
linear if and only if deg f ≤ 2 and L(f) ≥ 2n−1. Moreover, if deg(f) = 2 and
L(f) ≥ 2n−1, there exist exactly three distinct hyperplanes H such that f has
degree at most 1 on both H and H̄.

Proof. The fact that any (n − 1, 1)-linear function has degree at most 2 and
linearity greater than or equal to 2n−1 is derived from the previous proposi-
tions. Conversely, let us consider a quadratic Boolean function f (we assume
that deg f = 2 since the result is trivial for affine or constant functions). Any

quadratic function f satisfies L(f) = 2
n+h

2 where 0 ≤ h < n is the dimension of
the linear space of f , LS(f) (see e.g. [4, Appendix 1]):

LS(f) = {a ∈ Fn
2 : Daf : x 7→ f(x+ a) + f(x) is constant} .

Moreover, the set
LS0(f) = {a ∈ Fn

2 : Daf = 0}

is a subspace of LS(f) of dimension either dimLS(f) or (dimLS(f)− 1). Since
L(f) = 2n−1, there are exactly 4 values of α such that |F(f + ϕα)| = 2n−1,
and exactly three among these four have the same sign. Now, we will prove that
these four values are the elements of β + LS(f)⊥, where β = 0 if dimLS0(f) =
dimLS(f), and β ∈ LS0(f)⊥\LS(f)⊥ otherwise. We get from Lemma V.2 in [4]
that

∑

α∈LS(f)⊥

F2(f + ϕα+β) = 22
∑

e∈LS(f)

(−1)β·eF(Def)

= 22





∑

e∈LS0(f)

F(Def)−
∑

e∈LS(f)\LS0(f)

F(Def)



 = 22n .

Therefore, all four F2(f + ϕα+β), α ∈ LS(f)⊥, are equal to 22n−2. Now, since

2F((f + ϕβ)|Ha
) = F(f + ϕβ) + F(f + ϕβ+a)

and
2F((f + ϕβ)|H̄a

) = F(f + ϕβ)−F(f + ϕβ+a)

we deduce that f is linear both on Ha and H̄a for some a 6= 0, if and only if
there exist some u1, u2, u3 such that

F(f + ϕu1
) = F(f + ϕu2

) = F(f + ϕu3
) = (−1)b2n−1

and
F(f + ϕu1+u2+u3

)(−1)b+12n−1 .

Moreover, a can be any element in {u1 + u2, u1 + u3, u2 + u3}. Therefore, we
get that f is linear both on Ha and H̄a if and only if a is a nonzero element of
LS(f)⊥. ⊓⊔

If we focus on Sboxes which guarantee the best resistance to linear attacks,

i.e., on permutations S of Fn
2 with L(S) ≤ 2⌈

n+1

2
⌉, then, for n = 4, we deduce

from the previous propositions that any 4-bit permutation is (2, 1)-linear, and
that it is (3, 1)-linear if and only if it has maximal nonlinearity and a quadratic
component. For larger values of n, the situation is different. For instance, we can
prove the following.

Corollary 1. Let S be a permutation of Fn
2 with the best known nonlinearity,

that is L(S) ≤ 2⌈
n+1

2
⌉. Then, if n ≥ 5, S is not (n− 1, 1)-linear.

Proof. If S has a component that is (n−1, 1)-linear, then we deduce from Propo-
sition 3 that

n− 1 ≤

⌈

n+ 1

2

⌉

≤
n

2
+ 1.

Consequently, n
2 ≤ 2 and thus n ≤ 4. ⊓⊔

2.4 Classification of 4-bit Sboxes

Many symmetric primitives are based on 4-bit balanced Sboxes. Several clas-
sifications of these Sboxes have been previously provided. We can for example
mention the classification by De Cannière [3], the one provided by Leander and
Poschmann [17] and another one by Saarinen [22]. In particular in [17], the au-
thors have proved that, for affine equivalence, there are exactly 16 classes of
4-bit permutations which are optimal in terms of resistance against both linear
and differential attacks. Here, we go one step further in this classification, and

consider the notion of (v, w)-linearity for those 16 classes. Actually, the number
of pairs (V,W) such that an Sbox is (v, w)-linear w.r.t (V,W) is invariant under
affine equivalence.

The previous result shows that the number of quadratic components of the
Sbox plays an important role for (n − 1, w)-linearity. For instance, for a per-
mutation of F4

2 which is optimal for linear cryptanalysis, we have proved that
the number of pairs (V,W) with dimV = 3 and dimW = 1 such that S is
(3, 1)-linear w.r.t to (V,W) is equal to 3Q, where Q is the number of quadratic
components of S. Therefore, we first focus on the number of quadratic compo-
nents for a permutation of F4

2.
All classes of 5-variable Boolean functions for affine equivalence have been

exhibited in [1]. From this classification, since the 4-variable Boolean functions
can be seen as a subset of the functions in 5 variables, it can be deduced that any
of the 215 possible Boolean functions of four variables with degree at most 3 is
equivalent to one of the five functions given in Table 1. This table also provides
the corresponding Walsh spectra since affine equivalence preserves the multiset
composed of the magnitudes of all Walsh coefficients, i.e. functions belonging to
the same equivalence class, have the same multiset W(f) = {|F(f + ϕa)|, a ∈
Fn

2}.

Table1. Number of occurrences of each value in the Walsh spectrum of any of the five
equivalence classes for the 4-variable Boolean functions of degree at most 3.

Walsh spectrum

class representative ±16 ±12 ±8 ±4 0

I x1x2x3 1 7 8

II x1x2x3 + x1x4 2 8 6

III x1x2 4 12

IV x1x2 + x3x4 16 0

V 0 1 15

Proposition 7. Let S be a permutation of F4
2 having no affine or constant

component. Then, S has cI components of the class I, cII components of the
class II and cIII components of the class III, with

cI + cII + cIII = 15.

Moreover, the number Q of quadratic components of S (i.e., of components of
degree exactly 2) is equal to cIII and is of the form Q = 2r − 1, 0 ≤ r ≤ 4. It is
characterized by the Walsh spectrum of S (see Definition 3):

Q = W12 +
1

2
W8 − 15 ,

where Wi denotes the number of occurrences of i in W(S). Most notably, S and
S−1 have the same number of quadratic components.

Proof. As S is a permutation, all of its components are of degree at most 3
and are equivalent to one of the five above classes. By hypothesis, as S does
not have any constant or affine component, S has no component of the class
V. Moreover, the number of components of degree 2 is equal to the number of
components of degree at most 2. Similarly, as all the non-trivial components of
a permutation are balanced, S has no component of the class IV. The number
of non-trivial components of the permutation S is equal to 15. Therefore, cI +
cII + cIII = 15. The class III corresponds to quadratic functions. Consequently,
cIII represents the number of quadratic components Q of S. As the values of λ
such that degSλ ≤ 2 form a vectorial subspace of F4

2, Q has the form 2r − 1.
According to Table 1 we have that

W12 = cI

W8 = 2cII + 4cIII = 30− 2cI + 2cIII

implying that the number of quadratic components of S is given by cIII = W12+
1
2W8 − 15. Finally, as the inverse permutation of S has the same set (Wi)0≤i≤16

as S, the two permutations have the same number of quadratic components. ⊓⊔

We have carried out an exhaustive search among all the permutations of F4
2

in order to determine all possible 4-tuples (cI , cII , cIII , cV). All possible con-
figurations can be found in Appendix A of [2]. Then, we have exhibited some
permutations with Q ∈ {0, 1, 3, 7, 15}. But, permutations with Q = 15 satisfy
cV = 1, i.e., every quadratic permutation of F4

2 has one non-trivial component
of degree 1. There exist permutations with 7 quadratic components and optimal
nonlinearity, but they do not guarantee optimal resistance to differential attacks.

(v, w)-linearity of Optimal 4-bit Sboxes

We concentrate now on optimal permutations of F4
2, i.e., permutations which

guarantee an optimal resistance against linear and differential attacks. The ex-
haustive search over all 16 classes of such Sboxes in [17] shows that there are
8 classes of optimal Sboxes with Q = 0, 4 with Q = 1, and 4 with Q = 3. For
each of the 16 classes of optimal Sboxes, Table 2 gives, for each pair (v, w), the
number N(v,w) of subspaces V such that the Sbox is (v, w)-linear w.r.t. (V,W).

Since all optimal Sboxes have at most 3 quadratic components, we deduce
from Proposition 6 that they cannot be (3, 3)-linear, i.e. N(3,3) = 0.

The fact that, for all these Sboxes, N(2,1) = 35 comes from the following
result.

Proposition 8. Let S be a function from Fn
2 into Fn

2 of degree at most 3. Then,
for any pair (a, b) of elements in Fn

2 , there exists some nonzero λ ∈ Fn
2 such

that DaDbSλ = 0.

Equivalently, for any 2-dimensional subspace V ⊂ Fn
2 , there exists at least

one nonzero λ ∈ Fn
2 such that S is (2, 1)-linear w.r.t (V, {0, λ}).

Table2. Number N(v,w) of subspaces V of dimension v for which there exists a w-
dimensional W such that Gi is (v, w)-linear with respect to (V,W), for the 16 optimal
Sboxes Gi described in [17].

(v, w)

Q (2,1) (2,2) (2,3) (2,4) (3,1) (3,2) (3,3) (3,4)

G0 3 35 19 5 0 7 1 0 0

G1 3 35 23 3 0 7 1 0 0

G2 3 35 23 3 0 7 1 0 0

G3 0 35 5 0 0 0 0 0 0

G4 0 35 5 0 0 0 0 0 0

G5 0 35 5 0 0 0 0 0 0

G6 0 35 5 0 0 0 0 0 0

G7 0 35 5 0 0 0 0 0 0

G8 3 35 19 5 0 7 1 0 0

G9 1 35 13 0 0 3 0 0 0

G10 1 35 13 0 0 3 0 0 0

G11 0 35 5 0 0 0 0 0 0

G12 0 35 5 0 0 0 0 0 0

G13 0 35 5 0 0 0 0 0 0

G14 1 35 13 0 0 3 0 0 0

G15 1 35 11 1 0 3 0 0 0

Proof. The first statement is proved by contradiction as follows. Suppose that
there exists a pair (a, b) such that DaDbSλ 6= 0 for all λ 6= 0. This situation
can occur only if 〈a, b〉 has dimension 2. Obviously, all the (2n − 1) functions
DaDbSλ, λ 6= 0, are distinct since DaDbSλ1

+ DaDbSλ2
= DaDbSλ1+λ2

. Let
U be a supplementary subspace of 〈a, b〉. Then, the whole function DaDbSλ

is determined by its restriction to U since DaDbSλ(x) = DaDbSλ(x + v) for
any v ∈ 〈a, b〉. Then, because degDaDbSλ ≤ 1, the number of distinct and
nonzero DaDbSλ corresponds to the number of nonzero affine functions of (n−
2) variables, which is equal to (2n−1− 1). This leads to a contradiction since the
(2n − 1) functions DaDbSλ are all distinct. The equivalent formulation in terms
of (2, 1)-linearity is a direct consequence of Proposition 4. ⊓⊔

The next proposition explains why N(2,3) = 0 when Q = 0.

Proposition 9. Let S be a function from Fn
2 into Fn

2 such that all its non trivial
components have degree exactly (n− 1). Then, S is not (2, n− 1)-linear.

Proof. Suppose that there exist a hyperplane H and two nonzero distinct ele-
ments a and b in Fn

2 such that DaDbSλ = 0 for all λ ∈ H. Let L be a linear
permutation which maps a and b to the first two elements of the canonical
basis e1 and e2. Then, DaDbS(x) = De1De2(S ◦ L−1)(L(x)), implying that
De1De2(S ◦ L−1)λ = 0 for all λ ∈ H. Let M denote the set of all monomials
of degree (n − 1) of n variables whose second derivative with respect to e1 and

e2 vanishes. Then, |M| = n − 2. Since all (S ◦ L−1)λ, λ ∈ H \ {0} have de-
gree (n − 1), all their ANF contain a sum of monomials of M, and all these
(2n−1 − 1) sums must be distinct. However, this situation cannot occur since
there are only 2|M| − 1 = 2n−2 − 1 such sums. ⊓⊔

Moreover, a counting argument shows that for 4-bit permutations with optimal
nonlinearity,

N(2,2)+2N(2,3)+4N(2,4) = 5+8Q and N(3,1)+2N(3,2)+4N(3,3)+8N(3,4) = 3Q .

Indeed, let us denote by Aw (resp. Bw) the number of subspaces V of dimension 2
(resp. dimension 3) such that w is the highest dimension such that S is (v, w)-
linear w.r.t. (V,W) for some W of dimension w. Then,

N(2,i) =

4
∑

w=i

Aw and N(3,i) =

4
∑

w=i

Bw .

On the other hand, if Sλ is quadratic, it belongs to Class III identified in Table 1,
implying that it is (2, 1)-linear w.r.t. 19 subspaces of dimension 2, and (3, 1)-
linear w.r.t. 3 hyperplanes. If Sλ has degree 3, then it belongs to Class II, and
has three zero second-order derivatives. Then,

A1 + 3A2 + 7A3 + 15A4 = 3(15−Q) + 19Q and B1 + 3B2 + 7B3 + 15B4 = 3Q .

Since N(2,1) = 35 from Proposition 8, we deduce that

35 + 2N(2,2) + 4N(2,3) + 8N(2,4) = 45 + 16Q

and
N(3,1) + 2N(3,2) + 4N(3,3) + 8N(3,4) = 3Q .

It is also worth noticing that N(3,2) ∈ {0, 1, 3}. Actually, we have proved in
Proposition 6 that S is (3, 2)-linear w.r.t. (Ha, 〈λ1, λ2〉) if and only if a belongs
to all three sets LS(Sλ)

⊥, λ ∈ {λ1, λ2, λ1+λ2}. Therefore, either all these three
LS(Sλ)

⊥ are distinct, or they share one nonzero element or they are all equal.
From these results, we can deduce the values of N(v,w) in most cases for all

4-bit optimal Sboxes. All these values are provided in Table 2. In particular,
all figures for Q ∈ {0, 1} can be deduced from the previous propositions. For
Q ≥ 3, the weighted sum of N(3,1) and N(3,2) (resp. of N(2,2), N(2,3) and N(2,4))
can be explained theoretically, but a theoretical explanation of their exact in-
dividual values remains open. Most notably, Table 2 shows that there are five
different behaviours of 4-bit optimal Sboxes with respect to (v, w)-linearity. It is
worth noticing here that an Sbox and its inverse do not always have the same be-
haviour. Indeed, as pointed out in [17], any optimal Sbox Gi belongs to the same
equivalence class as its inverse except G0, G2, G14 and G15 which are such that
G−1

0 belongs to the same class as G2 and G−1
14 belongs to the same class as G15.

Then, we deduce that, for all Sboxes S in the four classes defined by G0, G2, G14

and G15, S and S−1 do not have the same behaviour regarding (v, w)-linearity.

3 Fuhr’s Attack against Hamsi-256

The hash family Hamsi was designed by Küçük [15] in 2008 for the SHA-3
competition. It was among the 14 algorithms that were chosen by the NIST
for the second round of the contest. A special feature of this function is that
its compression function consists of a small number of rounds of a permutation
with a particularly low algebraic degree. These weaknesses have been exploited
by Fuhr [12] and by Dinur and Shamir [10] in order to find second preimages
for the entire hash function. We show here that Fuhr’s attack is related to the
(v, w)-linearity of the Sbox used in Hamsi. More precisely, we use this notion
for formalizing an important part of the attack in [12], that is the search for
affine relations between some input and output bits of the compression function
of Hamsi-256. This enables us to slightly improve Fuhr’s result and to analyse
the influence of the choice of the Sbox on this type of attack.

3.1 Description of Hamsi-256

We start by describing the most important parts of the design of Hamsi-256,
the instance of the hash function outputting 256-bit digests. The Hamsi hash
function follows the Davies-Meyer construction. In Hamsi-256, the message is
padded and cut into 32-bit blocks. A linear code over F4 is used to expand each
32-bit message block to a 256-bit value (m0, . . . ,m7), where every mi is a 32-bit
word. Then, the 256-bit expanded message is combined together with the 256-bit
chaining value hi−1 and provides a 512-bit state. The inner permutation P is
then applied to this 512-bit state, seen as a 4× 4 matrix of 32-bit words.

Concatenation: The chaining value (c0, . . . , c7) is concatenated to the message
words (m0, . . . ,m7) to form a 512-bit state s = (s0, . . . , s15), seen as a 4 × 4
matrix. The state s as also the way that the message and the chaining value
words are arranged within it are illustrated in Figure 1.

s0 s1 s2 s3

s4 s5 s6 s7

s8 s9 s10 s11

s12 s13 s14 s15

m0 m1 c0 c1

c2 c3 m2 m3

m4 m5 c4 c5

c6 c7 m6 m7

Figure1. Input state of the inner permutation P in Hamsi-256.

The nonlinear permutation P of F512
2 is then applied to this concatenated

state. It is composed of three rounds of a permutation R, called the round
function. This round function is made up of three different layers of operations.
First, some constant values are added to the state. Then, a nonlinear layer
corresponding to 128 parallel applications of a 4-bit Sbox S is applied. Finally,
the bits of the state are mixed by a linear application L.

The substitution layer is based on a 4-bit Sbox S. S is one of the Sboxes used
in Serpent and is given by

S[16] = {8, 6, 7, 9, 3, 12, 10, 15, 13, 1, 14, 4, 0, 11, 5, 2}.

The algebraic normal forms of its coordinates are

y0 = x0x2 + x1 + x2 + x3

y1 = x0x1x2 + x0x1x3 + x0x2x3 + x1x2 + x0x3 + x2x3 + x0 + x1 + x2

y2 = x0x1x3 + x0x2x3 + x1x2 + x1x3 + x2x3 + x0 + x1 + x3

y3 = x0x1x2 + x1x3 + x0 + x1 + x2 + 1.

This Sbox is applied in parallel to the 128 columns of the state. In the first
round, due to the way that the state is obtained by concatenation, every Sbox
mixes two message bits with two bits coming from the chaining value.

The diffusion layer of Hamsi-256 is based on the linear function L : F128
2 →

F128
2 that operates on 32-bit words. In the case of Hamsi-256, this function is

called four times in total in every round, one time for every diagonal of the state.
The function L(a, b, c, d), with a, b, c, d ∈ F32

2 can be described as follows:

a := a ≪ 13 d := (d⊕ c⊕ (a ≪ 3)) ≪ 7
c := c ≪ 3 a := (a⊕ b⊕ d) ≪ 5
b := (b⊕ a⊕ c) ≪ 1 c := (c⊕ d⊕ (b ≪ 7)) ≪ 22

Truncation and Feed-forward: The truncation T : F512
2 → F256

2 eliminates the
second and the last row of the state:

T (s0, s1, s2, . . . , s14, s15) = (s0, s1, s2, s3, s8, s9, s10, s11).

The truncated 256-bit state is then XORed to the previous chaining value hi−1

to form hi.

Notations: Table 3 describes how we have numbered the 512 bits of the state.
According to the representation of the Hamsi state seen in Figure 1, we will say
that the bit 0 of the state, is the leftmost bit of s0, 31 is the rightmost bit of s0,
32 the leftmost bit of s1, 128 the leftmost bit of s4, etc.

3.2 Description of Fuhr’s Attack

Fuhr described in [12] a method for finding second preimages for Hamsi-256.
This cryptanalysis, of complexity equal to 2251.3 evaluations of the compression

0 31 32.63 64.95 96.127

128 . . . 159 160 . . . 191 192 . . . 223 224 . . . 255

256 . . . 287 288 . . . 319 320 . . . 351 352 . . . 383

384 . . . 415 416 . . . 447 448 . . . 479 480 . . . 511

Table3. Enumeration of the bits of the state.

function, was the first attack on this candidate that had a lower complexity
than the generic attack when treating small messages. The key idea in this
cryptanalysis consists in finding affine relations between some input bits and
some output bits of the compression function, when the other input bits are
fixed to a constant value. These relations lead to preimages for the compression
function of Hamsi-256. These pseudo-preimages for the hash function are then
transformed into second preimages by using a meet-in-the-middle approach.

In order to find affine relations between some input and output bits of the
compression function, Fuhr noticed that, for the Hamsi Sbox S,

S(1, x, 0, 1 + x) = (1, 0, 0, x), for every x ∈ F2, (1)

where the least significant bit is the leftmost bit.
With this property in mind, it is possible to choose a set of variables in the

following way. If y ∈ F32
2 , we will denote by yj the j-th bit of y. If the message

block after the constant addition in the first round is such that sj0 = 1 and s
j
8 = 0,

then we can define a variable bit xj ∈ F2 and set s
j
4 = xj and s

j
12 = 1 + xj .

Due to relation (1), after the application of the first nonlinear layer, only s
j
12 will

depend on xj . This has a particular interest as sj12 will be part of the input word
d of the linear function L, which has a relatively slow diffusion, much slower than
the words a or c. The same applies for the neighboring column of the state, i.e.
the words s1, s5, s9, s13. If s

j
1 = 1 and s

j
9 = 0, we define the variable bit yj ∈ F2

and set sj5 = yj and s
j
13 = 1 + yj .

For mounting the attack, a message block is randomly picked. The first step
is to choose the set of variables I = X ∪ Y . For this, the values of s0, s1, s8
and s9 before the first Sbox layer are computed. If sj0 = 1 and s

j
8 = 0 then the

variable xj is added to X. In the same way, if sj1 = 1 and s
j
9 = 0, the variable

yj is added to Y . Once the variable set has been chosen, one has to search for
a set of output bits of the compression function O such that each bit of this set
can be expressed as an affine function of the variables of I.

Suppose that such a set has been found and denote NO = #O and NI = #I.
Let x0, . . . , xNI−1 be the elements of I and z0, . . . , zNO−1 the elements of O.
Then, if we are given a chaining value h∗ it is possible to find preimages for
the compression function, i.e. a message block m and a chaining value h, such
that f(h,m) = h∗, where f is the compression function of Hamsi-256, with the
following simple algorithm, described in [12].

1. Choose a message m such that the conditions required by Equation (1) for
the positions indicated by the variables of I are satisfied.

2. Choose a chaining value h such that the conditions required by Equation (1)
for the positions indicated by the variables of I are satisfied.

3. Compute the bits z0, . . . , zNO−1. Compute the coefficients of the affine sys-
tem.

4. Solve the affine system. If the system has no solution then choose other
values for the constant part of h (without modifying the part of h imposed
by the conditions (1)) and go to Step 3. If there is still no solution, choose
another message m that fulfills the same constraints and go to Step 2.

5. If the affine system has a solution, check whether f(h,m) = h∗. This equation
has a solution with probability 2NO−256.

The overall complexity of the attack, corresponding to 2251.3 evaluations of the
compression function, has been estimated in [12] by a very precise estimation of
the number of binary operations performed during each step of the algorithm.

Searching for Affine Relations for the Compression Function A very
important part of the attack in [12] is the search for affine relations between
some input and some output bits of the compression function of Hamsi-256.

Due to Relation (1), after one round of computation all the bits of the state
depend affinely on the variable bits. However, this is not the case after the
second and the third round of the computation, since the initial variables pass
through the Sboxes of the last two rounds. Under some conditions though, some
output bits of an Sbox can still be expressed as a linear combination of the input
variables. The conditions identified in [12] are the following.

1. All but one input bits of the Sbox are constant. If this bit is some affine
combination of the initial variables, then this will also be the case for all the
four outputs of the Sbox.

2. If all the inputs of the Sbox depend on at most one initial variable, then all
the output bits of the Sbox will depend affinely on this variable.

3. If none of the first two situations occurs, this means that there exist at least
two inputs to the Sbox that depend in an affine way on at least two different
variables. However, by looking at the ANF of the four outputs of the Sbox,
it is possible to do the following two observations. The only nonlinear term
of the first output bit y0 is x0x2. Thus if this term is an affine combination
of the initial variables, this will also be the case for y0. Equally, if x0x1x2

and x1x3 are affine in the initial variables, this will also be the case for y3.

These properties were used by Fuhr in the search for a set of variable bits I
and a set of output bits O which affinely depend on the variable bits I. In his
first paper [12], the number of variable bits NI was fixed and then an automated
search was launched in order to determine the variable set that would give the
largest number NO of such output bits. These results could then be used in order
to generate the largest possible set of affine relations. By using this method, Fuhr

found for some I of sizeNI = 7,NO = 14 affine equations in I and forNI = 8, 11
affine equations for the compression function. Later, in [13] he improved these
results, by finding for NI = 8, 16 affine equations and for NI = 9, 11 affine
equations.

4 Analysis and Improvement of Fuhr’s Attack

We show in this section how to make the search for affine relations between the
input and the output bits of the compression function more efficient. Besides the
improvement on Hamsi, our approach can similarly be applied to the search for
affine relations for any SPN construction using small Sboxes. The success of this
part of the work depends, to a large extend, on the quality of the used Sboxes.
Our improvements are based on two different directions. The first one concerns
the way that the propagation through the Sboxes of the second and the third
round is treated. For this, we use the concept introduced in Section 2.

The second direction is related to the way we determine which Sboxes of
the first round should be affected and how. Furthermore, another differential
property of the Hamsi Sbox is used together with Relation (1) to go through the
Sbox layer of the first round.

4.1 Propagation of Affine Relations through the Hamsi Sbox

Let x = (x0, x1, x2, x3) denote the input to an Sbox and y = (y0, y1, y2, y3) its
output. As described in Section 3.2, Fuhr exploited the following two algebraic
properties of the Hamsi Sbox in order to treat the case when at least two input
variables of an Sbox are affected by at least two different variables in the second
and third round.

– y0 has degree at most 1 if x0x2 has degree at most 1.
– y3 has degree at most 1 if x1x3 and x0x1x2 have degree at most 1.

These two properties can be reformulated in the following way (where each vector

x of F4
2 is represented by the integer (

∑3
i=0 xi2

i)).

– S1 is (3, 1)-linear w.r.t. (Hα, 〈1〉) where Hα denotes the hyperplane 〈α〉⊥ for
α ∈ {1, 4, 5}.

– S8 is (2, 1)-linear w.r.t. (V, 〈8〉) for the three 2-dimensional subspaces V =
〈1, 8〉, V = 〈4, 8〉 and V = 〈5, 8〉.

With the notation used in [17] and in Table 2, the Hamsi Sbox is affinely
equivalent to G1. Therefore, there exist 23 subspaces V of dimension 2 for which
the Sbox is (2, 2)-linear and 3 subspaces of dimension 2 on which it is (2, 3)-
linear. For the Hamsi Sbox, all corresponding pairs (V,W) can be deduced from
Table 4.

From this table, we can check that, for λ = 1 (resp. for λ = 8), the properties
given by Fuhr describe the whole list of subspaces V such that S is (3, 1)-linear

V list of λ V list of λ V list of λ V list of λ

〈1, 2〉 {1, e, f} 〈2, 8〉 {1, e, f} 〈3, d〉 {3, c, f} 〈6, 8〉 {1, 4, 5, a, b, e, f}
〈1, 4〉 {e} 〈2, 9〉 {1, e, f} 〈4, 8〉 {1, 6, 7, 8, 9, e, f} 〈6, 9〉 {4, a, e}
〈1, 6〉 {4, a, e} 〈2, c〉 {1, e, f} 〈4, 9〉 {e} 〈6, a〉 {1, e, f}
〈1, 8〉 {1, 8, 9} 〈2, d〉 {1, e, f} 〈4, a〉 {1, 2, 3, c, d, e, f} 〈6, b〉 {5, b, e}
〈1, a〉 {1} 〈3, 4〉 {e} 〈4, b〉 {e} 〈7, 8〉 {1, 6, 7}
〈1, c〉 {f} 〈3, 5〉 {5, b, e} 〈5, 8〉 {1, 8, 9} 〈7, 9〉 {3, e, f}
〈1, e〉 {2, d, f} 〈3, 8〉 {1, 6, 7} 〈5, 9〉 {f} 〈7, a〉 {1}
〈2, 4〉 {1, e, f} 〈3, 9〉 {1} 〈5, a〉 {1} 〈7, b〉 {f}
〈2, 5〉 {1, e, f} 〈3, c〉 {f} 〈5, b〉 {2, d, f}

Table4. List of all λ ∈ F4
2 such that S is (2, 1)-linear w.r.t. (V, 〈λ〉), for each subspace

V of dimension 2.

(resp. (2, 1)-linear) w.r.t. to (V, 〈λ〉). Nevertheless, it appears that S is also (3, 2)-
linear, and (2, 2)-linear with respect to many other subspaces. In particular, we
can see that it is possible to identify other components of S which have also
degree at most 1 on the same subspaces. This is very useful in practice, as by
using this table we can now guarantee the affine propagation of some components
of S that we would have rejected before. For example we can observe that y1
and y2 are (2, 1)-linear with respect to three different subspaces of dimension 2
each. These cases that are not treated at all in [12] can now be used to search
for a possible affine propagation of the initial variables through the second and
the third round.

4.2 Searching for the Input Variables

In [12], Relation (1) is used in order to ensure the affine propagation through
the nonlinear layer of the first round. As we have already mentioned, this prop-
erty guarantees that after the Sbox layer of the first round, there is at most
one variable per active Sbox. We name active an Sbox that takes at least one
variable as input. In the contrary, we call an Sbox non-active if its input vector
is constant. Moreover, Relation (1) ensures that this unique variable belongs to
a word corresponding to the d-input of the linear function L (see Section 3.1). It
is easy to see from the description of L that the variables that belong to a word
d of the state propagate much slower than the variables in the words a and c. In
particular, each variable of a word d affects at most three bits of the state after
the application of the linear part. However, the variables of the words b have
the same slow propagation as the words d and this property was not exploited
in [12]. In this sense, the following property of the Hamsi Sbox appears to be
very useful:

S(1, x, 0, x) = (0, x, 1, 0), for every x ∈ F2. (2)

Our aim is to find a set of input variables I such that the set of output bits O
that are affine in I, is maximized. Then, the most difficult problem is to choose

which Sboxes of the state during the first round will be active. We have used
the following approach to solve this problem.

First, we restrict the search to the first 64 Sboxes of the state for the following
reason. Equally with the approach in [12], we are searching for a preimage h of a
given chaining value h∗. This is why the chosen variable bits of the internal state
must be assigned to positions that, after the concatenation, contain variables
coming out from the chaining value. By using Relation (1) or Relation (2), this
constraint is verified for the first half of the state. On the contrary, this does not
hold anymore for the second half, because the positions of the message bits and
the chaining value bits are interchanged.

However, it is obvious that we cannot test all the possible pairs (I,O) because
of the high complexity of such a search. For this reason we have adopted a
heuristic strategy, that can be found in Appendix B of [2]. This heuristic method
exploits the low diffusion through the three rounds of the function for finding
good candidates for the input and output sets. An algorithm for obtaining such
candidate sets is equally described in [2] (Algorithm 1). Once such candidate sets
have been obtained, we launch an automated search, to see which combination
of NI of the input bits in the candidate set gives the largest number of affine
output bits. For each test, we check the propagation through the last two rounds
by using the relations identified by Table 4. These techniques have led to the
following results.

4.3 Results

For NI = 9 input variables. For the 9 Sboxes {0, 7, 24, 30, 35, 37, 51, 59, 61}, we
are fixing the inputs as required by Relation (1) for the Sboxes {0, 30, 35, 37}
and by Relation (2) for the others. Then the 13 output bits

{6, 8, 43, 78, 262, 278, 313, 320, 343, 345, 350, 355, 380}

depend in an affine way on the 9 input variables. In particular, we are able to
find two more affine relations than in [12] for NI = 9 variables.

For NI = 10 input variables. For the 10 Sboxes {0, 7, 12, 16, 30, 35, 37, 51, 59, 61},
we are fixing the inputs as required by Relation (1) for the Sboxes {0, 16, 30, 35,
37} and by Relation (2) for the others. Then the 11 output bits

{6, 8, 43, 78, 278, 313, 320, 343, 345, 350, 380}

depend affinely on the 10 input variables. Here again we find two more output
bits than Fuhr in [12].

As we were able to find in both cases a higher number of affine equations
than those of the original paper, the overall complexity of the attack should
slightly decrease. However a complete complexity evaluation of our attack is
a very complex task since it requires to count down the performed number of
bitwise operations during all the steps of the attack. This procedure exceeds the
scope of this work.

5 Conclusions

We have introduced a new cryptographic property for vectorial Boolean func-
tions, that we call the (v, w)-linearity. This notion can be used as a new measure
of linearity for Sboxes and is related to the number of linear relations that prop-
agate through them. As the 4-bit balanced Sboxes are among the most used
building-blocks in symmetric primitives, we classify them according to this new
criterion. In particular, we analyse the (v, w)-linearity of “optimal” 4-bit permu-
tations, according to the classification of Leander and Poschmann in [17].

For instance, our analysis points out that the Sbox used in Hamsi does not
guarantee the best resistance to Fuhr’s attack. Indeed, if an Sbox belonging
to one of the classes G3, G4, G5, G6, G7, G11, G12 or G13 was used, the good
linear and differential properties of the Sbox would still be preserved, but the
function would be (v, w)-linear for a smaller value of w. In other words, the
Sbox would have fewer components which may remain affine with respect to
the input variables. Moreover, the number of 2-dimensional subspaces V such
that S is (2, w)-linear w.r.t. (V,W) for some W is quite large. This increases
the degrees of freedom in the cryptanalysis introduced by Fuhr, while the attack
would probably have failed for an Sbox without any quadratic component. In
order to verify this in practice, we implemented the same attack on the variant of
Hamsi based on some other Sbox. More precisely, we first used the representative
Sbox of the class G3, as this is given in [17] and then, the Sbox S0 of the finalist
of the SHA-3 competition, JH [23]. Indeed, we noticed that in both cases Fuhr’s
attack failed.

A future line of work would be to determine how the new notion of (v, w)-
linearity is related to some other recent attacks. For instance, the invariant
subspace attack [16] exploits a similar but stronger property of the 3 × 3 Sbox
used in PRINTcipher: two outputs of this Sbox are constant on a subspace of
dimension 1 and on all its cosets (the coset is here determined by the key). Some
relation to the resistance to first-order DPA could also be investigated.

Acknowledgments.

We would like to thank Maŕıa Naya Plasencia for her valuable advices, and
Christian Rechberger for very interesting discussions.

References

1. E.R. Berlekamp and L.R. Welch. Weight distributions of the cosets of the (32,6)
Reed-Muller code. IEEE Transactions on Information Theory, 18(1):203–207,
1972.

2. C. Boura and A. Canteaut. A new criterion for avoiding the propagation of linear
relations through an Sbox (Full version). IACR ePrint Report 2013/211, April
2013. http://eprint.iacr.org/2013/211.

3. C. De Cannière. Analysis and Design of Symmetric Encryption Algorithms. PhD
thesis, Katholieke Universiteit Leuven, 2007.

4. A. Canteaut, C. Carlet, P. Charpin, and C. Fontaine. On Cryptographic Properties
of the Cosets of R(1,m). IEEE Transactions on Information Theory, 47(4):1494–
1513, May 2001.

5. A. Canteaut, M. Daum, H. Dobbertin, and G. Leander. Finding nonnormal bent
functions. Discrete Applied Mathematics, 154(2):202–218, 2006.

6. C. Carlet and E. Prouff. Vectorial Functions and Covering Sequences. In Finite

Fields and Applications - Fq7, volume 2948 of Lecture Notes in Computer Science,
pages 215–248. Springer, 2004.

7. P. Charpin. Normal Boolean functions. J. Complexity, 20(2-3):245–265, 2004.
8. J.F. Dillon. Elementary Hadamard Difference sets. PhD thesis, University of

Maryland, 1974.
9. I. Dinur and A. Shamir. Cube Attacks on Tweakable Black Box Polynomials. In

EUROCRYPT 2009, volume 5479 of Lecture Notes in Computer Science, pages
278–299. Springer, 2009.

10. I. Dinur and A. Shamir. An Improved Algebraic Attack on Hamsi-256. In FSE

2011, volume 6733 of Lecture Notes in Computer Science, pages 88–106. Springer,
2011.

11. H. Dobbertin. Construction of bent functions and balanced Boolean functions with
high nonlinearity. In FSE’94, volume 1008 of Lecture Notes in Computer Science,
pages 61–74. Springer-Verlag, 1994.

12. T. Fuhr. Finding second preimages of short messages for Hamsi-256. In ASI-

ACRYPT 2010, volume 6477 of Lecture Notes in Computer Science, pages 20–37.
Springer, 2010.

13. T. Fuhr. Conception, preuves et analyse de fonctions de hachage cryptographiques.
PhD thesis, Télécom ParisTech, 2011.

14. K. C. Gupta and P. Sarkar. Improved Construction of Nonlinear Resilient S-Boxes.
In ASIACRYPT 2002, volume 2501 of Lecture Notes in Computer Science, pages
466–483. Springer, 2002.

15. Ö. Küçük. The Hash Function Hamsi. Submission to NIST (Round 2), 2009.
16. G. Leander, M. A. Abdelraheem, H. AlKhzaimi, and E. Zenner. A Cryptanalysis

of PRINTcipher: The Invariant Subspace Attack. In Advances in Cryptology -

CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science, pages 206–
221. Springer, 2011.

17. G. Leander and A. Poschmann. On the Classification of 4 Bit S-Boxes. In Arith-

metic of Finite Fields - WAIFI 2007, volume 4547 of Lecture Notes in Computer

Science, pages 159–176. Springer, 2007.
18. R. L. McFarland. A family of noncyclic difference sets. Journal of Combinatorial

Theory, Series A, 15:1–10, 1973.
19. K. Nyberg. Perfect nonlinear S-boxes. In Advances in Cryptology - EURO-

CRYPT’91, volume 547 of Lecture Notes in Computer Science, pages 378–385.
Springer-Verlag, 1991.

20. K. Nyberg. S-boxes and round functions with controllable linearity and differential
uniformity. In FSE’94, volume 1008 of Lecture Notes in Computer Science, pages
111–130. Springer-Verlag, 1995.

21. E. Pasalic and S. Maitra. Linear codes in generalized construction of resilient
functions with very high nonlinearity. IEEE Transactions on Information Theory,
48(8):2182–2191, 2002.

22. M.-J. O. Saarinen. Cryptographic analysis of all 4 × 4 sboxes. In Selected Areas

in Cryptography - SAC 2011, volume 7118 of Lecture Notes in Computer Science,
pages 118–133. Springer, 2012.

23. H. Wu. The Hash Function JH. Submission to NIST (Round 3), 2011.

