
HAL Id: hal-00932106
https://inria.hal.science/hal-00932106v1

Preprint submitted on 16 Jan 2014 (v1), last revised 11 Mar 2015 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Studying the SINR process of the typical user in Poisson
networks by using its factorial moment measures

Bartlomiej Blaszczyszyn, Holger Paul Keeler

To cite this version:
Bartlomiej Blaszczyszyn, Holger Paul Keeler. Studying the SINR process of the typical user in Poisson
networks by using its factorial moment measures. 2014. �hal-00932106v1�

https://inria.hal.science/hal-00932106v1
https://hal.archives-ouvertes.fr


Studying the SINR process of the typical user in

Poisson networks by using its factorial moment

measures

Bartłomiej Błaszczyszyn and Holger Paul Keeler

Abstract—Based on a stationary Poisson point process, a
wireless network model with random propagation effects (shad-
owing and/or fading) is considered in order to examine the
process formed by the signal-to-interference-plus-noise ratio
(SINR) values experienced by a typical user with respect to
all base stations in the down-link channel. This SINR process
is completely characterized by deriving its factorial moment
measures, which involve numerically tractable, explicit integral
expressions. This novel framework naturally leads to expressions
for the k-coverage probability, including the case of random
SINR threshold values considered in multi-tier network models.
While the k-coverage probabilities correspond to the marginal
distributions of the order statistics of the SINR process, a more
general relation is presented connecting the factorial moment
measures of the SINR process to the joint densities of these
order statistics. This gives a way for calculating exact values
of the coverage probabilities arising in a general scenario of
signal combination and interference cancellation between base
stations. The presented framework consisting of mathematical
representations of SINR characteristics with respect to the
factorial moment measures holds for the whole domain of SINR
and is amenable to considerable model extension.

Index Terms—Heterogeneous networks, multi-tier networks,
Poisson process, SINR, coverage probabilities, interference can-
cellation, antenna cooperation, shadowing, fading, propagation
invariance, factorial moment expansions, stochastic geometry.

I. INTRODUCTION

The steady rise of heterogeneous cellular networks, owing to

the deployment of recent technologies such as femtocells and

picocells to handle increased user-data, is driving the need for

new and more robust analytic methods. Based on information

theoretic arguments, a key performance metric is the signal-to-

interference-plus-nose ratio (SINR) in the downlink channel

experienced by a typical user in the network. The SINR

(or without noise simply SIR) is a function of propagation

processes, which incorporate the distance-dependent path-loss

function and (often assumed to be random) fading and/or

shadowing, which we refer to as simply propagation effects.

Knowledge of the distribution of the SINR leads to the cov-

erage probability and other SINR-based characteristics (such

as e.g the spectral efficiency) of the cellular networks, which

can be used to better design and implement such networks.

The irregularity of network base station locations suggests

that their placement is often best assumed to be random.
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This claim has been supported in recent years with tractable

stochastic geometry models based on the Poisson point process

yielding accurate solutions [1]. In addition to the tractability

and ‘worst-case’ arguments for Poisson models, a recent

convergence result has shown that a wide class of stationary

network configurations give results for functions of propaga-

tion processes, such as the SINR, as though the placement of

the base stations is a Poisson process when sufficiently large

log-normal shadowing is incorporated into the model [2, 3].

This adds weight to the argument for using the Poisson model,

which leads to more tractable expressions for the SINR and

related quantities.

Motivated by the ongoing deployment of heterogeneous net-

works and recent investigations for mathematical expressions

of the distribution of the SINR in Poisson models of these and

other networks (see related work in Section I-A), we wish to

introduce a general framework for studying arbitrary functions

of the process formed by the SINR values experienced by

a typical user with respect to all base stations in the down-

link channel. To meet this end we completely characterize

this process by deriving explicit, numerically tractable integral

expressions for its factorial moment measures of all orders

n ≥ 1. These measures represent the expected number of ways

that the typical user can connect to n different base stations

at different SINR threshold values. It is known that various

characteristics of an arbitrary point process admit series ex-

pansion representations involving integrals with respect to its

factorial moment measures [4, 5]. Surprisingly, in the case of

the SINR process many interesting characteristics (including

k-coverage probability, coverage under signal combination and

interference cancellation) can be written as expansions with

finite number of terms, hence the expansions need not be

approximations. This observation, reminiscent of the existence

of the pole capacity in cellular networks, is a consequence

of an algebraic property of the SINR process, limiting the

maximum number of stations that can cover a given point

with a SINR bounded away from zero. The calculation of

the corresponding expansion terms is arguably more intuitive

and computationally more efficient than previous methods

based on inversions of Laplace transforms for studying similar

problems.

The SINR process, considered above, is itself a function of

the propagation process, already studied in cellular networks,

and thus inherits the invariance/equivalence properties with
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respect to the distribution of the random propagation effects

(fading and/or shadowing) [6]. In fact, we also consider a

process formed by the values of the signal-to-total-received-

power-and-noise ratio. Working with this latter process is more

convenient and a simple mapping allows one to interpret the

results in terms of the original SINR process.

In summary, we define a point process formed by the

SINR values experienced by a typical user with respect to

all base stations in the down-link channel. The key result

is the complete characterization of the distribution of this

process via its factorial moment measures. These measures

lead in a natural way to the finite-dimensional distributions

of the order statistics of the SINR process thus allowing

one to study general functions of several strongest values of

the SINR process. We present particular probability results

for k-coverage and coverage with signal combination and

interference cancellation.

A. Related work

1) Propagation equivalence: In this work we employ

a useful result, recently called propagation invariance by

Błaszczyszyn and Keeler [6], that arises due to the model

being based on a Poisson process and the path-loss function

being a singular power-law. A classical and related result

on the invariance of shot noise for many types of functions

was discovered long ago by Gilbert and Pollak [7], and later

examined in further detail by Lowen and Teich [8] for power-

law functions, hence revealing that Poisson shot noise only

depends one moment.

For wireless networks, Haenggi [9, Proposition 3] observed

the so-called propagation invariance, as a particular case, and

derived related results under a Nakagami fading model. In

the context of SINR of cellular networks, Błaszczyszyn et

al. [10] independently observed this invariance characteristic

for interference and propagation losses in general, thus al-

lowing propagation effects to be incorporated into the model

by just one moment. Pinto et.al [11] derived and used a

similar result to show that the node degree of secrecy graphs

(based on Poisson processes) is invariant for the distribution

of propagation effects. In all three papers papers [9–11], the

invariance results are obtained by defining a point process on

the positive real line, which we call the propagation (loss) pro-

cess, and showing that if the base station configuration forms a

homogeneous Poisson process, then the propagation process is

an inhomogeneous Poisson point process on the positive real

line. More specifically, Błaszczyszyn et al. [10, Proposition

5.5] observed that this propagation process depends on only

one moment of the propagation effects, and not its distribution,

by explicitly deriving its density measure. Conversely, Pinto

et.al [11, Theorem 3.3] did not strictly observe propagation

invariance in our sense as they used a more general path-

loss function and not necessarily the singular power-law1, and

1Under certain conditions, there exists a trade-off between how general
the path-loss function can be and to which stochastic process the invariance
result applies. Assuming a singular power-law path-loss function results in
the invariance property applying to the propagation processes. The invariance
result of Pinto et al. [11] applies to a function of propagation processes, hence
it holds under more general path-loss functions in the spirit of Gilbert and
Pollak [7].

proved their invariance result for another quantity by mapping

different (inhomogeneous Poisson) propagation processes and

obtaining an identical process. Haenggi [9] independently

defined the propagation process (as “path loss process with

fading”) and observed [9, Proposition 1] that it is a (possibly

inhomogeneous) Poisson process without stating its density

measure in general form.

2) SINR coverage: For multi-tier 2 cellular networks, re-

searchers [12–15] recently developed models based on the

Poisson process that led to closed-form expressions for the

coverage probability of the typical user. To derive expressions

for the coverage probability, they make the simplifying as-

sumption that the SINR (or SIR) threshold τ , which is the

technology-dependent level that the SINR must exceed to

establish a connection, is greater than one (or zero in dB). This

assumption on the τ value (or multiple τ values in the multi-

tier model) implies that at maximum only one base station in

the entire network at any instant can cover the typical user.

More specifically, Dhillon et al. [14] and Mukherjee [15]

both derived results for the distribution of the (downlink)

SINR based on models that involve superpositions of Poisson

processes with Rayleigh fading. Madhusudhanan et al. [13]

obtained similar SINR expressions, but derived and used the

propagation invariance to show that their (and hence, the above

results [14, 15]) results hold for arbitrary propagation effects.

Keeler et al. [16] independently used the same reasoning to

derive the SINR-based probability of the typical user being

covered by at least k base stations in a single-tier network

by first assuming Rayleigh fading, then lifting the assumption

via propagation invariance. In this k-coverage work they in-

troduced the use of symmetric sums, thus allowing for a wider

range of SINR-based quantities, such as the coverage number,

to be obtained. The use of symmetric sums is an extension of

the inclusion-exclusion principle, which in the cellular network

context appears in the work of Mukherjee [15], but is then

reduced due to the assumption τ ≥ 1.

For τ < 1, semi-closed expressions for the 1-probability

coverage in multi-tier networks have been derived [13–15].

However, these approaches all require the (numerical) inver-

sion of Laplace transforms, which is avoided here by deriving

results based on the work in [16] where the τ ≥ 1 assumption

was relaxed for a single-tier network.

For tractability, the aforementioned multi-tier results [13–

15] all assumed constant and identical path-loss exponents

across all tiers. Madhusudhanan et al. [17] showed that a

multi-tier network is stochastically equivalent to a single-tier

network with unity parameters while all the original parame-

ters are incorporated into the density of the (inhomogeneous

Poisson) propagation process. This result was later extended

by Błaszczyszyn and Keeler [6] to the case of random path-

loss exponents and other parameters in a Poisson network,

thus showing a random heterogeneous network is equivalent

to a network with constant parameters and an isotropic base

station density. This equivalence result, a variation of which

we use here, allowed for the comparison of markedly different

2Terms “multi-tier” and “heterogeneous” networks are often used inter-
changeably, but we later adopt a model-specific terminology in which the
former is an instance of the latter.
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networks, for example single-tier and multi-tier types, by

examining their equivalent (isotropic) forms.

3) Cooperation and interference cancellation: In this work

we do not aim to perform detailed analysis on various types

of cooperation or interference cancellation, but rather demon-

strate the power of the factorial moment approach by deriv-

ing coverage probability for two proposed models of these

respective schemes. That said, research featuring stochastic

geometry models of cooperation or interference cancellation

has remained relatively untouched until recently. Baccelli and

Giovanidis [18] recently introduced a stochastic geometry

framework for studying pair-wise base station cooperation

in cellular networks. They make the tractability assumption

of Rayleigh fading 3 and use Laplace techniques to derive

expressions for the coverage probability under geometry-

based cooperation policies with a parameter (for optimization

purposes) representing the degree of cooperation. Parallel to

this work Akoum and Heath [19] developed a Poisson-based

stochastic geometry model in order to examine interference co-

ordination by introducing the concept of cooperation clusters.

They assume Rayleigh fading and a non-singular power-law

path-loss function and represent coordination clusters with a

(Poisson-Poisson) cluster process, which leads to bounds on

the coverage probability expression.

In the setting of interference cancellation, Zhang and

Haenggi [20, 21] tackled the problem of calculating the

probability of decoding and removing n interfering signals

in Poisson networks by independently using the aforemen-

tioned approach of mapping propagation effects and the path-

loss values to the positive real line. Provided τ ≥ 1, they

derived [21] a closed-form expression for the SIR-based

probability of decoding the n-th strongest signal, and used

it to obtain bounds for the mean number of decoded users

and the probability of decoding n users. Later Zhang and

Haenggi [22] applied these results to a heterogeneous network

model (with single τ ) and concluded that a large part of the

performance gained from interference cancellation is possible

by just removing the largest interfering signal. Parallel to this

work, Quek and et al. [23] developed a Poisson-based model

of a heterogeneous network with arbitrary propagation effects

(and single τ ) in order to study the probability of removing

the n-th strongest signal and to decode the signal of interest

after n removals. They used two competing methods (based

on Laplace transforms and truncated stable distributions) to

derive approximations for the probability of decoding the n-

th strongest signal given that the previous n− 1 signals were

decoded. The Laplace method was then used to derive an

expression for the coverage probability (given n signals are

removed by interference cancellation), which agreed well with

simulation results. In these works [20–23] the line of thought

of using the order statistics of the propagation process arises,

but it is then observed that such an approach appears quite

intractable (an issue circumvented here by instead deriving

and using the order statistics of the SINR process).

3It is tempting to suggest that some of these results [18] may form part
of other work, based on the Poisson point process and a singular path-loss
function, that holds under arbitrary propagation effects, but such a thorough
and conclusive analysis is not part of this paper.

4) Factorial-moment expansion: In the theory of point

processes factorial moment measures are an important set

of tools that completely characterize a simple point process,

hence they are used in stochastic geometry; see Daley and

Vere-Jones [24, 25] or Stoyan et al. [26]. It has been shown that

expectations of general functions of simple point processes can

be written as (possibly infinite) expansions of the correspond-

ing factorial moment measures, provided some convergence

condition. This Taylor-like expansion theorem was first de-

veloped for unmarked point processes in one dimension by

Błaszczyszyn [4], then generalized to higher dimensions by

Błaszczyszyn et al. [5]. Kroese and Schmidt [27] specifically

considered also independently marked point processes. It was

recently applied in the setting of wireless networks to derive

series expansions of the interference process induced by non-

Poisson base station configurations [28]. Apart from these

results, we are unaware of other work where factorial moment

measure expansions have been used in a similar setting to that

presented here.

To study the SINR process we define a related process

which is more tractable and, it turns out, is similar to the

well-studied Poisson-Dirichlet process. Pitman and Yor [29]

surveyed in detail a generalized version of this process and

derived various theoretical results. More recently, the factorial

moment measures of this generalized version were derived by

Handa [30], the work of which partly inspired us to derive

the joint probability density of the order statistics of the SINR

process, which we use to calculate the coverage probability

under proposed signal combination and interference cancella-

tion models.

II. HETEROGENEOUS NETWORK MODEL AND QUANTITIES

OF INTEREST

We first present a cellular network model under which we

define three related point processes on the positive half-line.

A. Network and propagation model

We consider the “typical user” approach where one assumes

a typical user is located at the origin and examines what he

perceives in the network. On R
2, we model the base stations

with a homogeneous or stationary Poisson point process Φ =
{X} with density λ. Define the path-loss function as

ℓ(|x|) = (K|x|)β , (1)

with path-loss constant K > 0 and path-loss exponent β > 2.

Given Φ, let {(SX , PX)}X∈Φ be a collection of independent

(across X) and identically and arbitrarily distributed positive

random vectors that form independent marks of X . Let SX

represent the random propagation effects 4 from the origin to

X . For a signal emanating from a base station at X , let the

PX represent the power of that signal. Let (S, P ) be equal

in distribution to {(SX , PX)} and note that S and P are not

necessarily independent. We will refer to the above network

(model) as a heterogeneous network (model).

4S may be written as a product of two random variables representing the
fading and shadowing.
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B. Propagation (loss) process

We define the propagation (loss) process, considered as a

point process on the positive half-line R
+, as

Θ = {Y } :=

{
ℓ(|X|)

PXSX
: X ∈ Φ

}
, (2)

which is a Poisson process; for proof, see [3, 10] where P is

not random.

Lemma 1 (Propagation invariance). Assume that

E[(PS)
2
β ] <∞. (3)

Then the propagation process {Y } is an inhomogeneous

Poisson point process with intensity measure Λ ([0, t)) = at
2
β ,

where the propagation constant is

a :=
λπE[(PS)

2
β ]

K2
. (4)

Remark 2. In terms of propagation processes, this simple yet

useful result allows one to represent propagation effects by

setting the product PS = 1, for example, and replacing λ
with λ′ = λE[(PS)2/β ]; for more details see [6]. 5

C. SINR process

We define the SINR process on the positive half-line R
+ for

a typical user as

Ψ = {Z} := {SINR(X) : X ∈ Φ} , (5)

where

SINR(X) :=
Y −1

W + γ(I − Y −1)
, (6)

the constant W ≥ 0 is the additive noise power, and

I =
∑

Y ∈Θ

Y −1, (7)

is the power received form the entire network (so that I−Y −1

is the interference), and the constant γ ∈ [0, 1] is parameter

that represents the “strength” of interference cancellation tech-

niques.

Remark 3. If we set γ = 0, then the signal-to-noise ratio

(SNR) process, SNR(X) = Y −1/W , is the inverse of the

propagation (loss) process rescaled.

D. Modified SINR process

To study Ψ, it will be helpful to define the modified SINR

process on (0, 1/γ] as

Ψ′ = {Z ′} :=
{

SINR′(X) : X ∈ Φ
}
. (8)

where

SINR′(X) :=
Y −1

W + γI
, (9)

5The typical user approach coupled with the singular path-loss function
(1) allows one to extend the model to d dimensional space and also replace
the constant density of base stations by an isotropic power-law function rα

with −d < α < β − d. This generalization can be done by simply replacing
2/β by α/β + d/β in the whole statement of Lemma 1 and π/K2 by

νd/((1 + α/d)Kd) in (4), where νd = πd/2/Γ(1 + d/2) is the volume of
the unit-radius d-dimensional ball; cf e.g. [21, Lemma 1].

Note that the modified SINR is actually the signal-to-total-

received-power-and-noise ratio.

Remark 4. For W = 0, the modified SINR process is similar

to the much studied Poisson-Dirichlet point process [31,

Chapter 9], which may be defined using (9) with W = 0,

γ = 1, and letting {Y −1} be an inhomogeneous Poisson

process with an intensity (measure) ΛPD(dt) = θt−1e−zdt
with some constant θ > 0. Note that in our case {Y −1}
is an inhomogeneous Poisson process with intensity measure

(2a/β)t−1−2/βdt. Much is known about the Poisson-Dirichlet

process, including its factorial moment measures, however, we

cannot use these results in a straightforward manner, but some

of our results (in Section V-A) are partly inspired by recent

results on a generalized form of this process [30].

Naturally, working with Ψ′ simplifies the algebra due to the

common denominator in its definition and its bounded domain

(0, 1/γ). Information on Ψ′ gives information on Ψ by the

relation

Z =
Z ′

1− γZ ′
, (10)

or equivalently

Z ′ =
Z

1 + γZ
. (11)

III. FACTORIAL MOMENT MEASURES OF THE SINR

PROCESS

We will derive the factorial moment measures of the mod-

ified SINR process {Z ′} defined for n ≥ 1 as

M ′(n)(t′1, . . . , t
′
n)

: =M ′(n) ((t′1, 1/γ]× · · · × (t′n, 1/γ])

= E




∑

(Z′
1,...,Z′

n)∈(Ψ′)×n

distinct

n∏

j=1

1(Z ′
j > t′j)


 , (12)

where 1 denotes the indicator function. The factorial measures

of {Z ′}, which in turn give those of {Z}, not only completely

characterize these processes, but allows one to express in a

natural manner the probabilities of various events related to

SINR coverage, as we shall see in this paper.

Before deriving M ′(n), we introduce two useful integrals,

the first of which arose in the k-coverage problem [16] while

the second is a generalization of another integral in the same

work. For x ≥ 0 define

In,β(x) =

2n
∞∫
0

u2n−1e−u2−uβxΓ(1−2/β)−β/2

du

βn−1(C ′(β))n(n− 1)!
(13)

where

C ′(β) =
2π

β sin(2π/β)
= Γ(1− 2/β)Γ(1 + 2/β). (14)

Note that

In,β(0) =
2n−1

βn−1(C ′(β))n
. (15)
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For all xi ≥ 0 define

Jn,β(x1, . . . , xn) =
(1 +

∑n
j=1 xj)

n

×

∫

[0,1]n−1

∏n−1
i=1 v

i(2/β+1)−1
i (1− vi)

2/β

∏n
i=1(xi + ηi)

dv1 . . . dvn−1, (16)

where 



η1 = v1v2 . . . vn−1

η2 = (1− v1)v2 . . . vn−1

η3 = (1− v2)v3 . . . vn−1

· · ·

ηn = 1− vn−1.

(17)

Remark 5. It is not straightforward to observe (but fol-

lows from Theorem 7) that Jn,β(x1, . . . , xn) is invariant

under any variable permutation. It has been defined to be

analogous to the single-variable version Jn,β(x) found in

[16], with Jn,β(x, . . . , x) = Jn,β(x). For more remarks on

Jn,β(x1, . . . , xn), including its representation as a functional

of n− 1 independent beta random variables see Appendix A.

We now observe that the factorial moment measure is zero

outside a simplex defined by t′i values.

Lemma 6. For t′i ∈ (0, 1/γ], the factorial moment measure

of the modified SINR process (8) satisfies

M ′(n)(t′1, . . . , t
′
n) = 0, (18)

when

γ
n∑

i=1

t′i ≥ 1. (19)

Proof: This is a direct consequence of a well-known

result [32, Proposition 6.2], which states that if the inter-

section of SINR cells [32, Definition 5.1] is not empty, then∑n
i=1 t

′
i ≤ 1/γ.

We define

t̂i = t̂i(t
′
1, . . . , t

′
n) :=

γt′i

1− γ
n∑

j=1

t′j

(20)

and present the main result, which characterizes the modified

SINR process (8).

Theorem 7 (Factorial moment measure of Ψ′
i). Assume that

moment condition (3) holds. Then for t′i ∈ (0, 1/γ], the

factorial moment measure of order n ≥ 1 of the modified

SINR process (8) satisfies

M ′(n)(t′1, . . . t
′
n)

= n!

(
n∏

i=1

t̂
−2/β
i

)
In,β((W/γ)a

−β/2)Jn,β(t̂1, . . . , t̂n),

(21)

when

γ

n∑

i=1

t′n < 1, (22)

and

M ′(n)(t′1, . . . t
′
n) = 0, (23)

otherwise.

Proof: Expression (23) is due to Lemma 6. For expression

(21), the proof is included in Appendix B. It follows in a

similar fashion to that of the main theorem in [16] .

We immediately obtain the moment measure of the SINR

process, which is defined by

M (n) (t1, . . . tn, )

: =M (n) ((t1,∞]× · · · × (tn,∞]) (24)

= E




∑

(Z1,...,Zn)∈(Ψ)×n

distinct

n∏

j=1

1(Zj > tj)


 . (25)

Corollary 8 (Factorial moment measure of Ψi). Assume the

propagation moment condition (3). Then for ti ∈ (0,∞), the

SINR process (5) has the moment measure

M (n) (t1, . . . tn, ) =M ′(n) (t′1, . . . , t
′
n) , (26)

where

t′i =
ti

1 + γti
. (27)

Proof: The result follows from the relationship between

Ψi and Ψ′
i captured in expressions (10) and (25).

IV. COVERAGE PROBABILITIES IN HETEROGENEOUS

NETWORKS WITH VARYING SINR THRESHOLDS

In this section we will present a result in which the factorial

moments of the SINR process naturally arise, thus illustrating

an intuitive and convincing reason for their introduction before

applying them in a more general setting. We will see that the

k-coverage probability framework introduced in [16] holds for

very general settings. In this regard, we will define marked

versions of the previously introduced point processes with the

inclusion of SINR threshold values. Informally, we will refer to

a network (model) in which each value of S, P and the SINR

threshold is random and depends on each base station as a

heterogeneous network (model) with varying SINR thresholds.

A. Heterogeneous network model with varying SINR thresh-

olds

Given Φ = {X}, let {TX}X∈Φ be a collection of positive

random variables that each represent the SINR threshold of

a base station. For each X ∈ Φ, the positive random vector

(SX , PX , TX) forms its independent mark. Our network model

is now described by the independently marked point process

Φ̃ := {(X, (SX , PX , TX))}. (28)

Note that the coordinates of (SX , PX , TX) are not necessarily

independent to each other. The marked process Φ̃ induces the

independently marked propagation process

Θ̃ := {(Y, T )} =

{(
ℓ(X)

PXSX
, TX

)}
. (29)

Effectively, what the typical user ‘experiences’ in a hetero-

geneous network is captured by the independently marked
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point process Θ̃. This process admits a propagation invariance

result [6], analogous to Lemma 1, which was originally given

with random β, but is now presented with constant β (see

Appendix E for proof).

Lemma 9 (Marked propagation invariance). Assume that

E[(PS)2/β ] <∞.

Then the propagation process Θ̃ is an independently marked

inhomogeneous Poisson point process on R+ with intensity

measure

Λ(s, t) := E[
∑

(Y,T )∈Θ̃

1(Y ≤ s, T ≤ t)] (30)

=
λπs2/β

K2
E

[
(PS)2/β1(T ≤ t)

]
. (31)

If two network models induce the same marked propagation

processes Θ̃, then we say they are stochastically equivalent.

Furthermore, two equivalent networks also induce the same

independently marked SINR process

Ψ̃ := {(Z, T )}. (32)

where Z = SINR(X) as given by expression (6).

Lemma 9 allows one to construct an equivalent network

with some of the previously random marks set to constants.

There is a subtlety in this ability to ‘push’ randomness

away from certain marks onto others that serves as a useful

technique in proofs, which we leverage in the next result.

Corollary 10. For the network Φ̃, there is a stochastically

equivalent network

Φ̃∗ = {(X∗, (SX∗ = 1, PX∗ = 1, TX∗))}, (33)

with density

λ∗ := λE[(PS)2/β ] = aK2, (34)

where given {(X∗)}, the marks TX∗ are independent (across

X∗), and with a distribution given by

FT∗ := P(T ∗ ≤ t) =
E
[
(PS)2/β1(T ≤ t)

]
,

E[(PS)2/β ]
. (35)

Consequently, Φ̃∗ induces the marked SINR process

Ψ̃∗ := {(Z∗, T ∗)}, (36)

which is equal in distribution to Ψ̃, hence the factorial moment

measures of {Z∗} are equal to these of {Z}, namely M (n)

with propagation constant a = πλ∗/K2. The same is true for

the modified SINR process induced by Φ∗.

Proof: Set the marks to S = 1 and P = 1, substitute

FT∗ , and verify that the resulting propagations process forms

a marked Poisson process with intensity measure Λ(s, t) given

by (31).

B. Coverage number and symmetric sums

We now introduce some quantities of interest that first

appeared in the single-tier case [16], but hold under the more

general setting of heterogeneous networks. We consider the

coverage number of the typical user, which is defined as the

number of base stations to which the typical user can connect,

namely

N :=
∑

(Z,T )∈Ψ̃

1 [Z > T ] . (37)

The probability of the typical user being covered by at least

k base stations, or the k-coverage probability, is

P(k) := P{N ≥ k }. (38)

In particular, the coverage probability of the typical user is

P := P(1). In the spirit of the previous k-coverage result [16],

we introduce the notion of symmetric sums. For n ≥ 1, define

the n th symmetric sum

Sn := E

[ ∑

(Zi,Ti)∈(Ψ̃)×n

distinct

1 (Zi > Ti, i = 1, . . . , n )
]

(39)

We set S0 := 1, and observe that Sn is the expected number

of ways that the typical user can connect to n base stations

that exceed their specific SINR threshold values TX .

The following Sn-based identities are akin to the famous

inclusion-exclusion principle (for example, see [33, IV.5 and

IV.3] for (40) and (41), respectively) and stem from the

Schuette-Nesbitt formula (which we recall for completeness

in Appendix F, see also [34]).

Lemma 11. We have for k ≥ 1

P(k) =

∞∑

n=k

(−1)n−k

(
n− 1

k − 1

)
Sn , (40)

P{N = k } =

∞∑

n=k

(−1)n−k

(
n

k

)
Sn , (41)

E[zN ] =

∞∑

n=0

(z − 1)nSn , z ∈ [0, 1] , (42)

E[N ] = S1 . (43)

We will see, via Lemma 13, that the above (apparently

infinite) summations reduce to finite sums (owing to Sn = 0
for large enough n) under very reasonable model conditions.

Proposition 12. For the network Φ̃, under the assumptions of

Theorem 7, the n th symmetric sum is

Sn =
1

n!

∫

(R+)n

(
n∏

i=1

FT∗(ti)

)
M (n)(dt1, . . . , dtn), (44)

which is equivalent to

Sn =
1

n!

∫

(R+)n
M (n)(t1, . . . , tn)

n∏

i=1

FT∗(dti), (45)

where M (n) and FT∗ are given by (26) and (35) respectively.
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Proof: Corollary 10 implies

Sn := E

[ ∑

(Z∗
i
,T∗

i
)∈(Ψ̃∗)×n

distinct

1 (Z∗
i > T ∗

i , i = 1, . . . , n )
]
,

which becomes

Sn = E

[ ∑

(Z∗
i
,T∗

i
)∈(Ψ̃∗)×n

distinct

P

(
Z∗
i > T ∗

i , i = 1, . . . , n |Ψ̃∗
)]

= E

[ ∑

(Z∗
i
,T∗

i
)∈(Ψ̃∗)×n

distinct

n∏

i=1

FT∗(Z∗
i )
]

=
1

n!

∫

(R+)n

(
n∏

i=1

FT∗(zi)

)
M (n)(dz1, . . . , dzn),

where the last line follows from Campbell’s theorem for

marked point processes and the definition of factorial moment

measures [26, Chapter 4]. For equation (45), by Lemma 6 and

Corollary 8,

lim
ti→∞

M (n)(t1, . . . , tn) = 0, i ∈ [1, n]. (46)

Note that M (n)(t1, . . . , tn) is a decreasing function in ti, and

lim
t1→0

FT∗(ti) = 0. (47)

Then apply integration by parts

∫

(R+)n
M (n)(t1, . . . , tn)

n∏

i=1

FT∗(dti)

=

∫

(R+)n
M (n)(dt1, . . . , tn)FT∗(t1)

n∏

i=2

FT∗(dti), (48)

and repeat until proof is completed.

The next result shows that the expressions involving infinite

sums of Sn reduce to finite sums. For real x denote by ⌈x⌉
the ceiling of x (the smallest integer not less than x).

Lemma 13. Assume there exists tmin > 0 such that P(T ≥
tmin) = 1. Then Sn = 0 for n ≥ 1/(γtmin), which implies that

one can replace ∞ by ⌈1/(γtmin)⌉ in the sums in expressions

given in Lemma 11, namely equations (40)–(42)

Proof: If T ≥ tmin almost surely, then the same holds

true for T ∗. Consequently by (45) and Lemma 6 Sn = 0 when

nγtmin(1 + γtmin) ≥ 1. The largest n for which the opposite,

strict inequality holds is ⌈1/(γtmin)⌉.

C. Multi-tier network example

We illustrate our k-coverage framework by examining an

increasingly popular multi-tier cellular network model. Infor-

mally, we refer to a heterogeneous network as a multi-tier

network if the marks T are set to constants that depend only

on the tier to which the base station belongs.

On R
2 we represent m tiers of base stations with m

independent homogeneous Poisson point processes {Φj} with

densities {λj}. More precisely, consider the independently

marked point process

Φ̃j := {(Xj , (SXj
, PXj

, τj))}, (49)

where the SINR threshold mark has been set to a non-random

τj , and where the distribution of the random vector (Pj , Sj) is

equal to that of (SXj , PXj ), such that the base station power

and propagation effects may depend on the tier, and

E[(PjSj)
2/β ] <∞, j = 1, . . . ,m. (50)

Let K and β again be the path-loss parameters for the entire

network, and denote

λ∗j = λjE[(PjSj)
2/β ]. (51)

We call the superposition Φ̃ := ∪m
j=1Φ̃j the m-tier network

model.

Corollary 14. An equivalent (to Φ̃) single-tier network Φ̃∗

exists with the path-loss exponent β, path-loss constant K = 1,

assumes P ∗ ≡ 1, S∗ ≡ 1, and a base station density given by

λ∗ =
m∑

j=1

λ∗j , (52)

and marks T ∗ with distribution

P(T ∗ = τj) =
λ∗j
λ∗
, j = 1, . . . ,m. (53)

Proof: For each j tier Φ̃j , there is an equivalent tier Φ̃∗
j

with Pj = 1, Sj = 1, and density λ∗i . Using the superposition

theorem [31], the result follows from Corollary 10.

Remark 15. Note that a “randomly” selected base station of

Φ belongs to the j th tier with probability λj/
∑m

j=1 λ, while a

“randomly” selected signal from the propagation process {Z∗}
originates from a base station in the j th tier with probability

λ∗j/
∑m

j=1 λ
∗.

The following result gives an explicit Sn expression for

the multi-tier model with arbitrary propagation effects in the

domain of all ti > 0, and thus, in conjunction with Lemma

(11), allows one to calculate the k-coverage probabilities,

which generalizes previous results [13, 14, 16].

Corollary 16. Assume propagation moment condition (3) for

all m tiers of a mult-tier network. Then

Sn =
1

n!




∑

j∈{1,...,n}
ij∈{1,...,m}

M (n) (τi1 , . . . , τin)

n∏

j=1

λ∗ij/λ
∗


 . (54)

Proof: This stems directly from Corollary 14 amd expres-

sion (45).

D. Single-tier network example

For the special case of a single-tier stationary Poisson

network model Φ = {X} with density λ and a (deterministic)

SINR threshold τ the k-coverage probability expressions de-

rived in [16] follow. The second statement (case with γτ ≥ 1)

is a special case of [14, Theorem 1].

Corollary 17. Assume the moment condition E[(PS)2/β ] <
∞ for a single-tier network. Then

Sn = Sn(τ) = τ−2n/β
n In,β((W/γ)a

−β/2)Jn,β(τn), (55)
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for 0 < γτ < 1/(n − 1) and Sn = 0 otherwise, where a is

given by (4) and τn is given by

τn := τn(τ) =
γτ

1− (n− 1)γτ
,

Moreover, the k-coverage probability is

P(k) = P(k)(τ)

=

⌈1/(γτ)⌉∑

n=k

(−1)n−k(n−1
k−1)τ

−2n/β
n In,β((W/γ)a−β/2)Jn,β(τn) ,

For γτ ≥ 1 we have ⌈1/(γτ)⌉ = 1 and

P(1)(τ) =
2(γτ)−2/β

Γ(1 + 2
β )

∫ ∞

0

re−u2Γ(1−2/β)−(W/γ)a−β/2uβ

du .

(56)

Remark 18. If we set W = 0 (to consider an “interference

limited network”), then {Z} becomes the SIR process, which

is clearly scale-invariant due to the definition of the regular and

modified SIR process in terms of the propagation process (also

evident by the factorial moment measures being independent

of λ). Under the stationary single-tier Poisson model with

γ = 1, the inverse of the largest SIR value, known as the

interference factor f , has been studied [3] by deriving its

Laplace transform

Lf (ξ) : = E[e−ξf ] =
1

ϕβ(ξ)
, (57)

where

ϕβ(ξ) := e−ξ + ξ2/βγ(1− 2/β, ξ),

and γ(z, ξ) =
∫ ξ

0
tz−1e−tdt is the lower incomplete gamma

function. The distribution of f is directly related to P (in the

interference limited network) by P(f ≤ s) = P(1/s), which

gives the Laplace transform relation

ξ

∫ ∞

0

P(1/s)e−ξsds = Lf (ξ) =
1

ϕβ(ξ)
.

V. FINITE-DIMENSIONAL DISTRIBUTIONS OF THE SINR

PROCESS

In this section we show how the factorial moment measures

of the SINR process can be used to derive joint densities of

the k strongest values of the SINR process. This allows one to

express, for example, coverage probabilities under interference

cancellation and/or base station cooperation.

A. Joint densities of order statistics

Denote the order statistics of the modified SINR process

Ψ′ = {Z ′} by

Z ′
(1) > Z ′

(2) > Z ′
(3) . . . ,

such that Z ′
(1) is the largest modified SINR value in Ψ′. In

complete analogy one can consider order statistics Z(1) >
Z(2) > Z(3) . . . of the (non-modified) SINR process Ψ =
{Z}. However, as we shall see, Ψ′ is a more apt tool when

studying interference cancellation and base station coopera-

tion.

Remark 19. By its definition (38), P(k)(τ) evaluated in

Corollary 17, as a function of τ , is the tail-distribution of the

k th order statistics of the SINR process, P(k)(τ) = P{Z(k) >
τ}. By the fact that the mappings (10) and (11) are monotonic,

increasing, P(k)(τ ′/(1 − γτ ′)) = P{Z ′
(k) > τ ′}. Moreover,

given that the functions x/A and x/(A−x) = A/(A−x)−1
are increasing in x, Z(i) (or Z ′

(i)) represent the value of the

SINR (or modified SINR) experienced by the typical user

with respect to the base station offering the k th smallest

propagation loss Y (k), where Y (1) < Y (2) < . . . is the process

of order statistics of {Y }.

We will express now the joint probability density

f ′(k)(z
′
1, . . . , z

′
k) of the vector (Z ′

(1), . . . , Z
′
(k)) of k (k ≥ 1)

largest order statistics of the modified SINR process.

For i ≥ 1, write

µ
′(k+i)
k (z′1, . . . , z

′
k) (58)

=

∫ 1/γ

z′

k

. . .

∫ 1/γ

z′

k

µ′(k+i)(z′1, . . . , z
′
k, ζ

′
1, . . . , ζ

′
i) dζ

′
1 . . . dζ

′
i,

where µ′(n)(t′1, . . . , t
′
n) = (−1)n ∂nM ′(n)

∂t′1...∂t
′
n
(t′1, . . . , t

′
n) is the

density of the factorial moment measure M ′(n) of the modified

SINR process. It is easy to see that (58) can be evaluated more

directly differentiating k times M ′(n)

µ
′(k+i)
k (z′1, . . . , z

′
k) (59)

= (−1)k
∂kM ′(k+i)(t′1, ..., t

′
k, z

′
k, ..., z

′
k)

∂t′1 . . . ∂t
′
k

(t′1 = z′1, ..., t
′
k = z′k).

For convenience we define also µ
′(k+i)
k for i = 0 as the density

of M ′(k); µ
′(k)
k := µ′(k). We will call µ

′(n)
k (k ≤ n) “partial

densities” of M ′(n). In Appendix C and D we will show how

these partial densities can be explicitly calculated.

The equivalent notations apply to the SINR process Ψ =
{Z}, which we skip without loss of completeness.

Proposition 20. Under the assumptions of Theorem 7, the

joint probability density of the vector of k strongest values of

the modified SINR process (Z(1), . . . , Z(k)) is equal to

f ′(k)(z
′
1, . . . , z

′
k) =

imax∑

i=0

(−1)i

i!
µ
(k+i)
k (z′1, . . . , z

′
k), (60)

for z′1 > z′2 > · · · > z′k and f ′(k)(z
′
1, . . . , z

′
k) = 0 otherwise,

where the upper summation limit is bounded by

imax <
1

γz′k
− k. (61)

Proof: The result is effectively that of Handa [30, Lemma

5.3] who details how it follows from a relationship between

finite point processes and their Janossy measures (see [24,

Section 5.4]). The original result has the infinite series in (60).

However, by Lemma 6 M ′(i+k)(t′1, ..., t
′
k, z

′
k, ..., z

′
k) = 0

when t′1 + . . . + t′k + izk ≥ 1/γ and consequently, by (59),

µ
(k+i)
k (z′1, . . . , z

′
k) = 0 whenever z′1+ ...+z

′
k−1+(i+1)z′k ≥

1/γ. Hence, a necessary condition for µ
(k+i)
k (z′1, . . . , z

′
k) > 0

is z′1 + . . . (i + 1)z′k < 1/γ which, since z′1 > · · · > z′k,
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implies (k+ i)z′k < 1/γ. This proves (61). The original result

of Handa has also a convergence condition

∞∑

n=0

M ′(n)(c, . . . , c)

n!
(1 + ε)n <∞

for each c ∈ (0, 1/γ) and some ε = ε(c), which is trivially

satisfied in our case by the previous observation regarding

imax.

The bound on imax given in (61) is only an upper bound

of the maximum index of non-zero terms of the expansion

of f ′(k)(t
′
1, . . . , t

′
k) in terms of the partial densities of the

factorial moment measures. For some particular domains of

(t′1, . . . , t
′
k), a smaller value of imax can be given; cf the proof

of Proposition 21 in the next section.

B. SINR with interference cancellation and signal combina-

tion

We will now demonstrate how to use the order statistics of

the modified SINR process to express SINR values accounting

for general interference cancellation (or management) and

signal combination techniques.

Consider a set of k ≥ 1 strongest signals received by the

typical user (Y (i))−1 (recall that Y (1) < Y (2) < . . . are order

statistics of the propagation process {Y }). Consider a subset

U ⊂ [k] := {1, . . . , k} of this set. We define SINR under

Interference Cancellation and Signal Combination (ICSC-

SINR)

SINRU,k =

∑
i∈U (Y

(i))−1

W + γI − γ
∑k

j=1(Y
(j))−1

, (62)

where signals in U are combined and interference from all

remaining interferers in [k] \ U is canceled. It is easy to see

that the ICSC-SINR coverage events can be expressed using

the order statistics of the modified SINR process as follows

{SINRU,k > τ }

=
{∑

i∈U

(Y (i))−1 > τW + γτI − γτ
k∑

j=1

(Y (j))−1
}

=
{
(1 + γτ)

∑

i∈U

Z ′
(i) + γτ

∑

j∈[k]\U

Z ′
(j) > τ

}

=
{∑

i∈U

Z ′
(i) + γτ ′

∑

j∈[k]\U

Z ′
(j) > τ ′

}
, (63)

where, τ ′ = τ/(1 + γτ).
Note that the ICSC-SINR coverage (63) says that the ratio of

the combined signals to noise plus non-canceled interference

is larger than the threshold τ . The probabilities

P(U,k)(τ) := P{SINRU,k > τ}

= P

{∑

i∈U

Z ′
(i) + γτ ′

∑

j∈[k]\U

Z ′
(j) > τ ′

}
(64)

as function of τ give the distribution of the ICSC-SINR, thus

allowing one to study coverage, spectral efficiency and other

characteristics of this channel with ICSC.

The interference cancellation may by imperfect and only

reduce the interference power by a factor γ̄ < γ; cf [35].

This can be taken into account by replacing γ by γ̄ in (64).

Also (63) may yet ignore (practical) conditions under which

signal cancellation can be effectively performed. In order to

take them into account one can modify (63) as follows

P
(U,k)
IC (τ) := P

{∑

i∈U

Z ′
(i) + 1(IC)γτ ′

∑

j∈[k]\U

Z ′
(j) > τ ′

}
,

(65)

where 1(IC) denotes the indicator of a suitable condition for

the feasibility of the interference cancellation (IC). Natural

conditions for IC can also be expressed in terms of the values

Z ′
(i) i = 1, . . . , k, and thus P

(U,k)
IC can be calculated using

Proposition 20. Similarly, conditions for the feasibility of the

signal combination can be introduced. Here are two examples

of natural IC conditions.

1) Successive interference cancellation (SIC): consists

in first decoding the strongest interfering signal (among k
strongest), subtracting it from the interference, then decoding

the second strongest one, and so on. Assume that one can

decode a signal if its SINR is larger than some threshold ǫ
(called IC threshold). Denote the indexes of the interfering

signals to be decoded and subtracted by j1, . . . , jk′ , where

k′ = k − |U|, starting from the strongest one. SIC condition

can be written then as the superposition of the following

conditions.

Z ′
j1 >ǫ

′

Z ′
j2 + γǫ′Z ′

j1 >ǫ
′

. . .

Z ′
jk′

+ γǫ′
k′−1∑

l=1

Z ′
jl
>ǫ′ ,

where ǫ′ = ǫ/(1 + γǫ).

2) Independent interference cancellation (IIC): is a weaker

condition assuming that all interfering signals to be canceled

can be decoded independently: Z ′
(j) > ǫ′ for all j ∈ [k] \ U .

C. Signal to residual interference ratio of the k th strongest

signal

Following Zhang and Haenggi [20, 21] let us consider cov-

erage by the k th strongest signal with all k−1 stronger signals

canceled from the interference, P(U,k)(τ) with U = {k}.

The following result follows from Proposition 20. Its second

statement (case γτ > 1) with W = 0 was proved in [21].

Proposition 21. Under the assumptions of Theorem 7 we have

P({k},k)(τ) =

=

imax∑

i=0

(−1)i

i!

∫ 1/γ

0

. . .

∫ 1/γ

0

1

(
γτ ′

k−1∑

i=1

z′i + z′k > τ ′
)

× 1(z′1 > . . . > z′k)µ
(k+i)
k (z′1, . . . , z

′
k) dz

′
1 . . . dz

′
k ,
(66)

where the upper summation limit is bounded by

imax < 1/(γτ ′)− 1 = 1/(γτ) . (67)
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For γτ ≥ 1 we have imax = 0 and

P({k},k)(τ)

=
Ik,β((W/γ)a

−β/2)

Ik,β(0)(γτ)2k/βΓ(1 + 2k/β)(Γ(1− 2/β))k

=
2k−1Ik,β((W/γ)a

−β/2)

βk−1(γτ)2k/βΓ(1 + 2k/β)(Γ(1 + 2/β))k(Γ(1− 2/β))2k
.

(68)

Proof: Using Proposition 20, in order to calculate the

probability P({k},k)(τ) = P{ γτ ′
∑k−1

i=1 Z
′
(i) + Z ′

(k) > τ ′ }
one needs to integrate the density f ′(k) over the domain

γτ ′
∑k−1

i=1 z
′
i + z′k > τ ′. A necessary condition for the partial

density µ
′(k+i)
k present in the expansion (61) to be non-null

is
∑k−1

i=1 z
′
i + (i + 1)z′k < 1/γ (cf. the proof of Proposition

20). Combining this condition with the integration domain we

obtain (τ ′ − z′k)/(γτ
′) + (i + 1)z′k < 1/γ, which can be

rewritten as z′k(1 + i − 1/(γτ ′) < 0. Since z′k ≥ 0 we have

i < 1/(γτ ′)−1, which proves (67). The fact that imax does not

depend on the integration variables allows one to interchange

the summation and integration as in (66).

For γτ ≥ 1 we have imax = 0 and the probabilities

P({k},k)(τ) can be evaluated as integrals of the k th fac-

torial moment measure of the modified SINR process over

γτ ′
∑k−1

i=1 z
′
i + z′k > τ ′. This is another justification of the

equation in (b) in the proof of [21, Theorem 1] and the

remaining part of the proof follows the lines presented there,

with the contribution of the non-zero noise resulting from the

form of the factorial moment measure M ′(k).

[21, Proposition 2] brings also some approximations for

P
({k},k)
SIC (τ), that is the probability of the above signal-to-

residual-interference coverage of the k th strongest signal with

SIC condition (with IC threshold ǫ = τ ). Exact value of this

probability can be obtained restricting the integration domain

in (66) as explained in Section V-B1.

In the next section we will consider a somewhat opposite

problem, namely, how the coverage by the strongest signal can

be improved by removing k − 1 successive strongest signals

from the interference or by combining them with the strongest

signal.

D. Improving the strongest signal by interference cancellation

and cooperation

In this section we consider the following two scenarios:

• When the receiver, being served by the strongest base

station, is able to suppress the interference created by the

subsequent k − 1 strongest stations. 6

• When the subsequent k−1 strongest stations can combine

their signals with the strongest one.

More specifically, for any ǫ, τ , with 0 < ǫ < τ , and ǫ′ =
ǫ/(1+γǫ), τ ′ = τ/(1+γτ), we define the following coverage

6Cf e.g. [36, 37] for methods allowing one to remove from the strong
desired signal a weaker interfering one.

probabilities

P
(k)
IC (τ, ǫ) := P

{
SINR{1},k > τ when Z(k) > ǫ

Z(1) > τ otherwise

}

= P

{
Z ′
(1) + γτ ′

(
Z ′
(2) + . . .+ Z ′

(k)

)
1(Z ′

(k) > ǫ′) > τ ′
}

and

P
(k)
SC(τ, ǫ) := P

{
SINR[k],k > τ when Z(k) > ǫ

Z(1) > τ otherwise

}

= P

{
Z ′
(1) +

(
Z ′
(2) + . . .+ Z ′

(k)

)
1(Z ′

(k) > ǫ′) > τ ′
}
.

Note that P
(k)
IC (τ, ǫ) is the probability of the coverage by the

strongest signal with the cancellation of the interference com-

ing from subsequent k − 1 strongest signals, whenever these

signals individually can be decoded at the SINR level ǫ and

no interference cancellation otherwise. Similarly P
(k)
SC(τ, ǫ)

is the probability of the coverage by the strongest signal

combined with k − 1 subsequent strongest signals, whenever

these signals individually can be decoded at the SINR level

ǫ and no signal combination otherwise. Remember that the

coverage probability evaluated in Corollary 17 corresponds to

P(τ) = P(k)(τ) = P{Z ′
(1) > τ ′ }. It is immediately seen that

P
(k)
SC(τ, ǫ) ≥ P

(k)
IC (τ, ǫ) ≥ P(k)(τ)

for all 0 < ǫ ≤ τ . In order to study the difference between

the coverage probabilities, denote

∆
(k)
IC (τ, ǫ) (69)

:= P

{
Z ′
(1) + γτ ′

(
Z ′
(2) + . . .+ Z ′

(k)

)
> τ ′

and ǫ′ < Z ′
(i) < τ ′, i = 1 . . . k

}

∆
(k)
SC(τ, ǫ) (70)

:= P

{
Z ′
(1) + . . .+ Z ′

(k) > τ ′

and ǫ′ < Z ′
(i) < τ ′, i = 1 . . . k

}
.

and note that

P
(k)
IC (τ, ǫ) = P(τ) + ∆

(k)
IC (τ, ǫ)

P
(k)
SC(τ, ǫ) = P(τ) + ∆

(k)
SC(τ, ǫ) .

We have the following result regarding the increase of

the coverage probability of the strongest signal induced by

the interference cancellation or signal combination with the

subsequent k − 1 strongest stations.

Proposition 22. Under the assumptions of Theorem 7,

∆
(k)
IC (τ, ǫ) = (71)

imax∑

i=0

(−1)i

i!

∫ τ ′

ǫ′
. . .

∫ τ ′

ǫ′
1

(
z′1 + γτ ′(z′2 + . . .+ z′k) > τ ′

)

× 1(z′1 > . . . > z′k)µ
(k+i)
k (z′1, . . . , z

′
k) dz

′
1 . . . dz

′
k
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and

∆
(k)
SC(τ, ǫ) = (72)

imax∑

i=0

(−1)i

i!

∫ τ ′

ǫ′
. . .

∫ τ ′

ǫ′
1

(
z′1 + . . .+ z′k) > τ ′

)

× 1(z′1 > . . . > z′k)µ
(k+i)
k (z′1, . . . , z

′
k) dz

′
1 . . . dz

′
k

where the upper summation limit is bounded by

imax <
1

γǫ′
− k. (73)

Proof: The result follows from Proposition 20. The fact

that the integration domain is bounded away from 0 by ǫ′

and (61) implies this particular bound on imax. Since it

does not depend on the integration variables allows one to

interchange the summation and integration as in (71) and (72).

Note that the parameter ǫ mathematically allows the expan-

sions of ∆
(k)
IC and ∆

(k)
SC to be finite ones for imax < ∞. We

will further numerically study this problem in Section VI-C.

VI. NUMERICAL RESULTS

A. Setting

1) Model assumptions: We illustrate our mathematical

framework and methods by calculating results for several

cellular network models. For all results, we have set γ = 1,

PS = 1 and K = 1 and assumed an interference limited

network (W = 0) 7 hence the results are scale-invariant (do not

depend on λ). Exceptions are results for muti-tier networks,

where we will be more specific about P and λ.

To illustrate the impact of the strength of the path-loss

we consider two path-loss exponent values β = 3 and 5.

The network simulations (validating our analytic results) were

done in a circular region of radius 10 length units, which

was empirically found to be sufficiently large to render so-

called edge effects negligible, with with number of network

simulations being around 105.

The SINR thresholds τ, ǫ are expressed in dB; i.e. τ(dB) =
10 log10(τ)dB.

2) Numerical integration: We employ a quasi-Monte Carlo

integration method (based on Sobol points) for integrating the

multi-dimensional integrals, which is supported by the theory

that says this type of numerical integration generally performs

better than regular Monte Carlo integration [38, 39]. From

our empirical findings, the evaluation of the Jn,β integral is

achieved quickly on a standard machine in a matter of seconds

(the number of sample points mostly ranges from 103 to 104

points). The nature of the integral such as (71) and (72) allows

the integration with respect to the z′i and vi (from Jn,β) to be

done in the same computation step, which takes slightly longer

to evaluate than Jn,β . Although, Sobol points perform well in

general, it should be noted that the type of quasi-random points

can be better chosen if a more thorough analysis of the Jn,β

integral kernel is performed, but this beyond the scope of this

study.

7Since including a noise term often makes little difference except for very
low network density values
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Fig. 1. For β = 3, k-coverage probability P(k)(τ) for a single-tier network.
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Fig. 2. The same functions as on Figure 1 for β = 5.

B. Coverage probability

1) Single-tier network: Figures 1 and 2 present the k-

coverage probability P(k)(τ) for k = 1, 2, 3 with β = 3 and

5, respectively. Recall that P(k)(τ) is tail distribution function

of the SINR related to the k th strongest signal.

2) Two-tier network: We consider two-tier network (cf

Section IV-C) with λ1 = λ2/2, P1 = 100P2 and β = 3.

Considering two values for τ2, namely τ2 = 1(dB) and

τ2 = −2(dB), on Figures 3, 4, 5 we plot 1- and 2-coverage

probability P(k), k = 1, 2 as functions of τ1. The parameters

of the two-tier network are based on previous results [14,

Fig.7.]. For 1-coverage probability, the results agree with those

in [14], thus validating the generalized symmetric sum method

in the multi-tier setting.

For comparison purposes, on Figures 3, 4, 5 we consider

also a single-tier network model with intensity λ∗ given

by (52) i.e., λ∗ = λ1P
2/β
1 + λ2P

2/β
2 (which gives equivalent

propagation and SINR processes) for which we calculate the

similar k-coverage probabilities with constant SINR thresholds

τ = E[T ∗] = (τ1λ1P
2/β
1 + τ2λ2P

2/β
2 )/λ∗, equal to the mean

of the random SINR threshold mark in the truly equivalent

model. Note that for the considered parameter values, this
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Fig. 3. For β = 3 and for a two-tier network with λ1 = λ2/2, P1 = 100P2

τ2 = 1(dB), the 1-coverage probability P(1) as a function of τ1 compared to
a single-tier network model with equivalent propagation process and constant
SINR thresholds.
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Fig. 4. 1-coverage probability P(1) for two-tier and single-tier network as
on Figure 3 with τ2 = −2dB.
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Fig. 5. 2-coverage probability P(2) for two-tier and one tier-network as on
Figure 3 (with τ2 = −2dB).

model offers quite reasonable approximation of the original

two-tier one, in particular for τ > 1 (although visually the

corresponding plots almost coincide, it remains an approxi-

mation).

−5 0 5 10 15
0

0.05

0.1

0.15

0.2

τ(dB)

∆
(τ
,
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SC

IC

SC sim.

IC sim.

Fig. 6. For β = 3, the increase of the coverage probability of the

strongest signal induced by the interference cancellation ∆
(2)
IC(τ, ǫ) or signal

combination ∆
(2)
SC(τ, ǫ) with the second strongest station assuming ǫ′ = 0.1

(or ǫ = −9.5424dB).
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Fig. 7. The same functions as on Figure 6 for β = 5.

C. Coverage with interference cancellation and cooperation

On Figures 6, 7, 8 and 9 we study the increase of the

coverage probability of the strongest signal induced by the

interference cancellation ∆
(2)
IC(τ, ǫ) or signal combination

∆
(2)
SC(τ, ǫ) with the second strongest station. We consider

two values of the path-loss exponent β = 3 and β = 5
and the decoding threshold (for cancellation and combination)

ǫ = −9.5424dB and −12.7875dB.

The plots of the probabilities reveal that the increase of

coverage probability is largest around the threshold τ = 1
(0dB). Also, as the path-loss exponent β increases the differ-

ence between the gain under IC and SC decreases (cf. Figure 6

to 9). This is explained by realizing that the second largest

interfering signal, which is removed under IC, weakens as β
increases.

Recall that the decoding threshold ǫ mathematically allows

the expansion of ∆
(k)
IC and ∆

(k)
C in (71) and (72) to be finite

ones, hence they are complete expressions when some imax <
∞ terms are included. Although as ǫ decreases more terms

are needed, not all the integral terms are necessary to gain a

good approximation (Figure 10 and 11). Numerical evidence
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Fig. 8. The same functions as on Figure 6 with β = 3 and ǫ′ = 0.05 (or
ǫ = −12.7875dB).
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Fig. 9. The same functions as on Figure 6 with β = 5 and ǫ′ = 0.05 (or
ǫ = −12.7875dB).

confirms the mathematical intuition that as ǫ decreases the

integral kernel approaches the singularity at ti = 0 (for some

integer i ∈ [n]), hence the peak of the resulting integral

increases.

Results for ǫ′ = 0.05 (i.e., ǫ = −12.7875dB) were obtained

with relative ease and speed, but for smaller ǫ′, it becomes

computationally impracticable.

Broadly speaking, the more integration points are needed for

larger β and smaller ǫ. The effect of β probably stems from

the Sobol points not sampling the integral kernel adequately,

which could be improved by way of a suitable importance

sampling. That said, for β = 5 and ǫ′ = 0.05 the ∆ probability

plots (Figure 9) were still obtained fast (in seconds) except for

small τ which required slightly more time.

VII. FUTURE DIRECTIONS AND CONCLUSIONS

We propose some model and technique extensions, discuss

their feasibility and conclude the work.

A. General functions of the SINR process via the factorial-

moment expansion

We used the factorial moment measures of the SINR process

Ψ to derive expressions for k-coverage probabilities via the
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One term
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Three terms

Fig. 10. For β = 3, the complete (10-term) expression and 1, 2, and 3-term

approximations for the ∆
(2)
C probability with ǫ′ = 0.1 (or ǫ = −9.5424dB).
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Fig. 11. For β = 3, the complete (20-term) expression and 1, 2, and 5-term

approximations for the ∆
(2)
C probability for a heterogeneous network under

two base station cooperation with ǫ′ = 0.05 (or ǫ = −12.7875dB).

famous inclusion-exclusion principle. More general character-

istics of the coverage number can be obtained directly using

Schuette-Nesbitt formula (which we recall for completeness

in Appendix F, see also [34]). Using a result by Handa [30,

Lemma 5.3], we also demonstrated how to calculate the joint

densities of the order statistics of the SINR process using its

factorial moment measures. It turns out that all these results

can be seen as instances of some more general expression al-

lowing one to calculate (at least theoretically) the expectations

of general functions φ of simple point processes by means of

a (finite or infinite) Taylor-like expansion. The terms of this

expansion are integrals of some kernels (entirely characterized

by φ) with respect to the factorial moment measures of the

considered point process, cf [4].

More specifically, under appropriate convergence conditions

(whose presentation is beyond the scope of this paper) one

can write the expectation of a general function φ of the (say)



14

modified SINR point process Ψ′ as

E[φ(Ψ′)] (74)

=φ(∅) +
∞∑

n=1

∫ 1/γ

0

. . .

∫ 1/γ

0

φt′1,...,t′n M
′(n)(dt′1, . . . , dt

′
n) ,

where φ(∅) denotes the value of the function φ evaluated on

the empty configuration of points (no points) and

φt′1 = φ({t′1})− φ(∅)

φt′1,t′2 =
1

2

(
φ({t′1, t

′
2})− φ({t′1})− φ({t′2}) + φ(∅)

)

. . .

φt′1,...,t′n =
1

n!

n∑

k=0

(−1)n−k
∑

t′
i1

,...,t′
ik

distinct

φ({t′i1 , . . . , t
′
ik
}) .

For example, setting

φ({t′1, . . .}) = 1(max
i≥1

t′i > τ ′)

and applying (74) one obtains (40) with k = 1 in the case

of constant (modified) SINR threshold τ ′. More generally,

using (74) with

φ({t′1, . . .}) =
∏

k

(
h(t′k)1(t

′
k > τ ′) + 1(t′k ≤ τ ′)

)

one obtains the following expansion of the probability generat-

ing function (cf [24, Eq. 5.5.4]) of the modified SINR process

E

[ ∏

Z′∈Ψ′

(
h(Z ′)1(Z ′ > τ ′) + 1(Z ′ ≤ τ ′)

)]

= 1 +

nmax∑

n=1

1

n!

∫ 1/γ

τ ′

. . .

∫ 1/γ

τ ′

n∏

k=1

(h(t′k)− 1)M ′(n)(d(t′1, . . . , t
′
n)) ,

where the structure of our point process imposes nmax <
1/(γτ ′), for any bounded function h(·). This expansion can

be easily transformed to the one for modified SINR via the

mapping (10). See [24, Sec. 5.5] for other classical moment

expansion results.

Thus the factorial-moment expansion provides a way for

calculating various SINR-based quantities, thus opening a

range of other possible models coupled with analytic methods.

B. Varying path-loss exponent model

For tractability we used a fixed path-loss exponent β and

K throughout this work. However, an argument can be made

based on the Hata-like path-loss models that both constants in-

corporate base station height [40, Section 2.7.3]. Consequently,

more adequate heterogeneous network models may require β
and K to be random marks of base stations. Extension of our

model to random K is straightforward. Considering random

β is more complicated. It was recently shown that in terms

of propagation losses, a Poisson network with random β and

constant base station density λ is equivalent to some network

with constant exponents and an isotropic (but not power-law)

density [6]. Assuming such density increases the complexity of

the factorial moment integrals, but they may remain amenable,

particularly to numerical means. Multi-tier models with values

of β depending on tiers have been considered in [17, 41].

C. Other path-loss functions

Path-loss functions other than the commonly used (singular)

power-law function ℓ have been previously proposed, includ-

ing exponential types and modified power-laws with the sin-

gularity removed (for example, ℓ(|x|) = min(1, (|x|)β). Un-

fortunately, two immediate drawbacks arise when employing

other path-loss functions. The propagation invariance (Lemma

1) would no longer hold 8, hence the factorial moments

would need to be calculated for different distributions of

propagation effects. Furthermore, the algebraic tractability in

our work would quickly diminish; for example, the change of

variables used (in Section B) would, most probably, not work

in simplifying the integrals.

D. Non-Poisson base station configurations

Our derivation of the explicit expressions of Sn, via the fac-

torial moment measures of the SINR process, hinges heavily

upon the tractable nature of the Poisson process (in particular,

Slivnyak’s theorem). Despite this, the M (n)-dependent Sn

terms and related expressions introduced in Section IV-B

do not rely upon the Poisson assumption. More specifically,

assume a simple point process Φ = {X} representing the

base stations, which gives rise to a corresponding modified

SINR process Ψ′ = {Z ′}. Then deriving the Sn terms is again

equivalent to the task of finding the corresponding factorial

moment measures of {Z ′}, which in turn immediately give

those of {Z}.

However, a non-Poisson base station configuration would

require considerably more work due to Slivnyak’s theorem

no longer being applicable. Furthermore, we have leveraged

propagation invariance considerably, which flows directly from

the Poisson assumption. Without it, the factorial moment

measure of {Z ′} would need to be calculated for different

distributions of propagation effects given that the propagation

invariance would not hold. The propagation invariance also

granted us the ability to create an equivalent and more tractable

network Φ∗ used in Proposition 12. A cellular network model

with base stations positioned according to a Ginibre process

was recently considered in [42] where an expression for the

SINR coverage probability by the closest base station was

derived assuming Rayleigh fading (which does not impact the

choice of the serving station, as in [43], [16, Section IV.C] for

the Poisson model).

E. Conclusions

We have presented a novel framework for studying general

down-link characteristics in a heterogeneous cellular network.

It is based on the explicit evaluation of the factorial moment

measures of the point process formed by the SINR values

observed by a typical user with respect to all network stations.

We have demonstrated the benefits of this approach by extend-

ing existing results and deriving new ones regarding the SINR

coverages probabilities, in particular pertaining to the usage of

signal combination and interference cancellation techniques.

8For certain path-loss functions, less elegant invariance results may exist
where propagation processes rely upon two or more propagation moments.
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APPENDIX

A. Remarks on Jn,β

The integral Jn,β(x1, . . . , xn) can be written as

Jn,β(x1, . . . , xn)

=
1

n

n∑

j=1

∫

[0,1]n−1

n−1∏
i=1

v
i(2/β+1)−1
i (1− vi)

2/β

∏
i 6=j

(xi + ηi)
dv1 . . . dvn−1.

For n = 1 the integral J1,β(x1) = 1 and for n = 2 the integral

reduces to a sum of two integrals of the same type

J2,β(x1, x2) =
1

2

∫ 1

0

v
2/β
1 (1− v1)

2/β

×

[
1

(x1 + v1)
+

1

(x2 + 1− v1)

]
dv1 .

The general solution to this integrals is

∫ 1

0

v2/β(1− v)2/β

x+ v
dv

=
1

x
B(2/β + 1, 2/β + 1)

× 2F1(1, 2/β + 1; 2(2/β + 1);−1/x),

where is 2F1 a hypergeometric function [44, Equation 15.6.1].

Given the definition of Jn,β , one can write

Jn,β(x1, . . . , xn) =
1

n
E

[
H(x1, . . . , xn, Ṽ1, . . . , Ṽn)

]

×
n−1∏

i=1

B(1 + 2/β, i(2/β + 1)),

where the permutation-invariant function

H(x1, . . . , xn,Ṽ1, . . . , Ṽn)

=

n∑

j=1

(xj + Ṽj)

n∏

i=1

(xi + Ṽi)
−1

= (

n∑

j=1

xj + 1)

n∏

i=1

(xi + Ṽi)
−1

and Ṽi are beta random variables with distributions B(2/β +
1, i(2/β + 1)). This interpretation may offer an alternative

way for numerically evaluating Jn,β ; for example, simulating

Vi and estimating the mean of H . Furthermore, as remarked

earlier there seems to be a deeper connection with the modified

SINR process and Poisson-Dirichlet processes owing to them

both being connected to beta variables of this type, cf. [30].

B. Proof of Theorem 7

In view of the propagation invariance Lemma 1, without

loss of generality we can assume K = 1 and (PS) having

exponential distribution with mean one and replace λ with

a/(πΓ(1+2/β)), where a is given by (4) (note that Γ(2/β+1)
is the 2/β th moment of exponential variable of mean one).

The definition of Ψ′ = {Z ′} and its factorial moment

measure (12) give via the Campbell’s formula (for facto-

rial moment measures) and Slivnyak theorem (for example,

see [26])

M ′(n)(t1, . . . tn)

=an
∫

(R2)n

E




n∏

j=1

1




Ejtj

W + γ[I +
n∑

i=1

Eiti]
> tj







× dx1 . . . dxn,

where Ei := (PiSi)/(ℓ(ri)ti). The integral reduces to

M ′(n)(t1, . . . tn)

= (2πa)n
∫

(R+)n

E




n∏

j=1

1




Ej

W + γ[I +
n∑

i=1

Eiti]
> 1







× r1dr1 . . . rndrn

= (2πa)n
∫

(R+)n

P




min[E1, . . . , En]

W + γ[I +
n∑

i=1

Eiti]
> 1


 r1dr1 . . . rndrn.

Since PiSi are exponentially distributed with unit means, then

Ei are also exponentially distributed with means 1/µi =
1/(tiℓ(ri)), and let

ÊM = min(E1, . . . , En),

which is another exponential variable with parameter µM =
n∑

i=1

µi. Let

D =
n∑

i=1

Eiti − ÊM

n∑

i=1

ti,

which has a mixed distribution. For example, with probability

µ1/(
n∑

i=1

µi) the event ÊM = E1 occurs, and, hence, D =

n∑
i=2

(Ei− ÊM )ti. The memoryless property of the exponential

distribution implies that ÊM and D are independent. The latter

has the distribution

P(D ≤ d) =
1

n∑
i=1

µi




n∑

j=1

µjP(
∑

i 6=j

Eiti ≤ d)


 . (75)
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Observe that

P




min(E1, . . . , En)

W + γ[I +
n∑

i=1

Eiti]
> 1




= P




ÊM

W + γ[I +D + ÊM

n∑
i=1

ti]
> 1




= P

(
ÊM

W + γ[I +D]
> T̂n/γ

)

= P

(
ÊM

W/γ + I +D
> T̂n

)
,

where

T̂n := T̂n(t1, . . . , tn) = γ/(1− γ
n∑

i=1

ti).

Given that W , I , D, and ÊM are mutually independent, and

that ÊM is exponentially distributed, hence

P

(
ÊM

W/γ + I +D
> T̂n

)

= LW/γ(µM T̂n)LI(µM T̂n)LD(µM T̂n),

which is a product of three Laplace transforms. The first

transform

LW/γ(ξ) = e−ξW/γ

and the second (see equation 2.25 in [32])

LI(ξ) = e−aξ2/βπC′(β)/K2

immediately follow. Given expression (75), then the Laplace

transform of a general exponential variable and the convolution

theorem imply that the distribution of D has the transform

LD(ξ) =

n∏
i=1

µi

n∑
i=1

µi




n∑

j=1

1(
∏
i 6=j

[µj + tjξ]

)



.

After substituting the explicit path-loss function (1) with K =
1, which will be recovered later, and some algebra we arrive

at

P

(
ÊM

W/γ + I +D
> T̂n

)

=

(
n∏

i=1

tir
β
i e

−(W/γ)T̂ntir
β
i

)
e
−a(T̂n

n∑
i=1

tir
β
i )

2/βπC′(β)

n∑
i=1

tir
β
i

×
n∑

j=1




1
∏
i 6=j

[tir
β
i + tiT̂n

n∑
k=1

tkr
β
k ]


 .

Hence, the integral

M ′(n) (t1, . . . , tn)

= (2πa)n
∫

(R+)n

(
n∏

i=1

tir
β
i e

−(W/γ)T̂ntir
β
i

)

n∑
i=1

tir
β
i

× e
−a(T̂n

n∑
i=1

tir
β
i )

2/βπC′(β)

×
n∑

j=1




1
∏
i 6=j

[tir
β
i + tiT̂n

n∑
k=1

tkr
β
k ]


 r1dr1 . . . rndrn,

with the variable change si := rit
1/β
i (aT̂

2/β
n πC ′(β))1/2

reduces to

M ′(n) (t1, . . . , tn)

=
2nT̂

−2n/β
n

(C ′(β))n

×

∫

(R+)n

(
n∏

i=1

t
−2/β
i sβ+1

i e−(W/γ)(aπC′(β))−β/2sβi

)

n∑
i=1

sβi

× e
−(

n∑
i=1

sβi )
2/β n∑

j=1




1
∏
i 6=j

[sβi + tiT̂n
n∑

k=1

sβk ]


 ds1 . . . dsn.

(76)

We introduce a change of variables inspired by the n-

dimensional spherical coordinates

s1 = u[sin θ1 sin θ2 . . . sin θn−1]
2/β

s2 = u[cos θ1 sin θ2 . . . sin θn−1]
2/β

s3 = u[cos θ2 sin θ3 . . . sin θn−1]
2/β

· · ·

sn = u[cos θn−1]
2/β .

Note that uβ =
∑n

i=1 s
β
i and

∏n
i=1 si = un[

∏n
i=1 qi]

2/β

where we use the shorthand qi = qi(θ1, . . . , θn) := (si/ui)
β/2

for ui > 0. For β = 2, we obtain n-dimensional spherical

coordinates with a Jacobian

Ĵ(û, θ̂1, . . . , θ̂n) = ûn−1
n−1∏

i=1

sini−1 θ̂i,

while our variables have the Jacobian

J(u, θ1, . . . , θn)

=

(
2

β

)n−1

Ĵ(u, θ1, . . . , θn)

[
n−1∏

i=1

sini θi cos θi

]2/β−1

.

Denote z := (W/γ)(aΓ(1 − 2/β))−β/2. The change of
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variable renders the integral as

M ′(n) (t1, . . . , tn)

=
2nT̂

−2n/β
n

(C ′(β))n

∫

(R+)n

(
n∏

i=1

t
−2/β
i sβ+1

i e−zsβi

)

n∑
i=1

sβi

× e
−(

n∑
i=1

sβi )
2/β n∑

j=1




1
∏
i 6=j

[sβi + tiT̂n
n∑

k=1

sβk ]


 ds1 . . . dsn

=
2nT̂

−2n/β
n

(C ′(β))n

(
2

β

)n−1 n∏

i=1

t
−2/β
i

∞∫

0

u2n−1e−(u2+zuβ)du

×

∫

[0,π/2]n−1

n∑

j=1

n−1∏
i=1

[
sini θi cos θi

]4/β+1
[sin θi]

i−1

∏
i 6=j

[q2i + tiT̂n]
dθ1 . . . dθn−1.

We then substitute vi = sin2 θi, and define ηi and t̂i accord-

ingly. We define Jn(x1, . . . , xn) to be analogous (to equation

(15) in [16]),

Jn,β(x1, . . . , xn)

=
1

n

∫

[0,1]n−1

n∑

j=1

n−1∏
i=1

v
i(2/β+1)−1
i (1− vi)

2/β

∏
i 6=j

(xi + ηi)
dv1 . . . dvn−1,

but observe, since
∑n

j=1 ηj = 1, that the above reduces to

integral (16), completing the proof.

C. Partial densities of M ′(n)

We will now detail how to calculate the partial derivatives
∂k

∂t′1,...∂t
′

k
of M ′(n), for k ≤ n and thus obtain explicit

expressions for µ′k+i
k . Note first that the integrals In,β do

not depend on {t′i} and write

M ′(n)(t′1, . . . , t
′
n)

n!In,β(Wa−2/β)
=

n∏

i=1

t̂
−2/β
i Jn,β({t̂i})

=
1

n

∫

[0,1]n−1

R({vi})Q({t̂i}, {ηi})dvi,

where

Q({t̂i}, {ηi}) =
(1 +

∑n
j=1 t̂j)

n∏
i=1

(t̂
2/β+1
i + t̂

2/β
i ηi)

, (77)

R({vi}) :=
n−1∏

i=1

v
i(2/β+1)−1
i (1− vi)

2/β , (78)

{t̂i} are related to {t′i} via (20) and {ηi} are related to {vi}
via (17). Note that only Q depends on {t′i}, specifically

Q := Q({t′i}) =
γ−b(1− γ

∑n
j=1 t

′
j)

b

n∏
i=1

[t′α+1
i + (ηi/γ)(1− γ

∑n
j=1 t

′
j)t

′α
i ]

×
γ
∑n

j=1 t
′
j

(1− γ
∑n

j=1 t
′
j)
,

where α = 2/β and b = n(α+ 1).
This can be written as

Q := Q̄+

n∑

j=1

h(j)Q̄

where

Q̄({t′i}) := Q̄ =
γ−b(1− γ

∑n
j=1 t

′
j)

b

n∏
i=1

[t′α+1
i + (ηi/γ)(1− γ

∑n
j=1 t

′
j)t

′α
i ]
,

and

h(j)({t′i}) := h(j) =
γt′j

(1− γ
∑n

i=1 t
′
i)
.

Remark 23. Calculating the partial derivatives ∂k

∂t′1,...∂t
′

k
of

M ′(n) (t′1, . . . , t
′
n) reduces to the calculation of these deriva-

tives for Q̄ and h(j)Q̄. This is a tedious but straightforward

task. One can use computer symbolic integration (for example,

Maple) to easily obtain explicit expressions for these deriva-

tives. Due to the space constraint we will not develop here

explicit expressions for the general case k ≤ n but only for

k = 2 and arbitrary n ≥ 2. These expressions are used in the

numerical examples presented in this paper.

1) Second-order derivatives: Assume k = 2 and n ≥ 2.

Let us introduce the auxiliary functions

A :=γ−b(1− γ

n∑

j=1

t′j)
b

B :=

n∏

i=1

[t′α+1
i + (ηi/γ)(1− γ

n∑

j=1

t′j)t
′α
i ]−1,

write Q̄ = AB, and adopt a subscript notation to denote partial

derivatives ∂2

∂t′1,∂
′

2
such that

Q̄12 :=
∂2Q̄

∂t′1t
′
2

= A12B +A1B2 +A2B1 +AB12,

and

[h(j)Q̄]12 :=
∂2[h(j)Q̄]

∂t′1t
′
2

= h
(j)
12 Q̄+ h

(j)
1 Q̄2 + h

(j)
2 Q̄1 + h(j)Q̄12,

where

Q̄1 = A1B +AB1, Q̄2 = A2B +AB2.

Now only the partial derivatives of the functions h(j), A and

B remain to be calculated, which we do in what follows.

a) Derivatives of h(j): For j = 1 or 2, h(j) has the first

order derivative

h
(j)
j =

γ[1− γ(
∑n

i=1 t
′
i − t′j)]

(1− γ
∑n

i=1 t
′
i)

2

and the second order derivative

h
(j)
12 =

−γ2 + 2γ2[1− γ(
∑n

i=1 t
′
i − t′j)](1− γ

∑n
i=1 t

′
i)

−1

(1− γ
∑n

i=1 t
′
i)

2
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For k > 2 and j = 1 or 2, the first order derivative is

h
(k)
j =

γ2(t′k)

(1− γ
∑n

i=1 t
′
i)

2
,

while the second order derivative is

h
(k)
12 =

2γ3(t′k)

(1− γ
∑n

i=1 t
′3
i )
.

b) Derivatives of A: For the function A, the partial

derivatives are immediately given

A1 = A2 = −bγ−b+1(1− γ
n∑

j=1

t′j)
b−1

A12 = b(b− 1)γ−b+2(1− γ
n∑

j=1

t′j)
b−2.

c) Derivatives of B: The complexity of B requires a

couple of extra steps motivating further auxiliary functions

C(n) :=

n∏

j=3

B(j),

where

B(j) = [D(j) − ηjt
′α
j (t′1 + t′2)]

−1

and

D(j) = t′α+1
j + (ηj/γ)(1− γ

n∑

i=3

t′i)t
′α
j ,

while noting that D(1) and D(2) are respectively independent

of t′2 and t′1. One can write B = B(1)B(2)C(n) (for n = 2, the

empty product implies C(2) = 1), hence the partial derivative

is given by

B12 =B
(1)
12 B

(2)C(n) +B
(1)
1 B

(2)
2 C(n) +B

(1)
2 B

(2)
1 C(n)

+B(1)B
(2)
12 C

(n) +B(1)B
(2)
1 C

(n)
2 +B(1)B

(2)
2 C

(n)
1

+B
(1)
1 B(2)C

(n)
2 +B

(1)
2 B(2)C

(n)
1 +B(1)B(2)C

(n)
12 .

The first order derivatives are given by

B
(1)
1 =− (D

(1)
1 − η1[(α+ 1)t′α1 + αt′α−1

1 t2])(B
(1))2

B
(2)
2 =− (D

(2)
2 − η2[(α+ 1)t′α2 + αt′α−1

2 t1])(B
(2))2,

where for j = 1 or 2,

D
(j)
j = (α+ 1)t′αj + (ηj/γ)αt

′α−1
j (1− γ

n∑

i=3

t′i).

Furthermore,

B
(1)
2 =η1αt

′α
1 (B(1))2

B
(2)
1 =η2αt

′α
2 (B(2))2.

The second order derivatives are

B
(1)
12 =αη1t

′α−1
1 (B(1))2

− 2η1t
′α
1 (D

(1)
1 − η1[(α+ 1)t′α1 + αt′α−1

1 t2])(B
(1))3

B
(2)
12 =αη2t

′α−1
2 (B(2))2

− 2η2t
′α
2 (D

(2)
2 − η2[(α+ 1)t′α2 + αt′α−1

2 t1])(B
(2))3.

The product function C(n) has identical first derivatives

C
(n)
1 = C

(n)
2 = C(n)

n∑

i=3

ηit
′α
i B

(i),

while

C
(n)
12 = C

(n)
2

n∑

i=3

ηit
′α
i B

(i) + C(n)
n∑

i=3

[ηit
′α
i B

(i)]2.

D. Matrix form of M ′(n)

Factorial moment measures M ′(n) admit some matrix-

determinant representation. 9 We introduce some notation. For

n ≥ 1, denote by ∆(z) the n×n diagonal matrix with entries

z = (z1, . . . , zn) ∈ R
n on the diagonal, by 1 = (1, . . . , 1)T

the n-dimensional column vector of 1’s (()T stands for the

matrix transpose). Denote by I = ∆(1) the n × n identity

matrix. We will use “×” symbol for the matrix multiplication

and | · | or det() for the (square) matrix determinant.

The following identity will be used in what follows (cf [45,

Lemma 1.1] or [46, Theorem 13.7.3]). For n × n matrix A,

n-dimensional column vector x and the row vector z

|A+ xz| = |A|(1 + zA−1
x) . (79)

For given functions ϕ, ψ from R
+ × [0, 1] to R

+ and two

vectors z = (z1, . . . , zn) ∈ R
n, η = (η1, . . . , ηn) ∈ [0, 1]

denote

K[ϕ, ψ](z,η) =∆((ϕ(z1, η1), . . . , ϕ(zn, ηn)) (80)

+ 1× ((ψ(z1, η1), . . . , ψ(zn, ηn)) .

Applying the determinant identity (79) we obtain

det
(
K[ϕ, ψ](z,η)

)
=

n∏

i=1

ϕ(zi, ηi)
(
1 +

n∑

i=1

ϕ(zi, ηi)

ψ(zi, ηi)

)
.

(81)

Note that different rows of the matrix K[ϕ, ψ](z,η) depend on

different entries of z and consequently by the Leibniz formula

for the determinant

∂n det(K[ϕ, ψ](z,η))

∂z1 . . . ∂zn
= det(K[ϕ′, ψ′](z,η)) , (82)

where ϕ′ = ϕ′(z, η) = d
dzϕ(z, η) and similarly for ψ′.

Applying again the identity (79) we obtain

∂n det(K[ϕ, ψ](z,η))

∂z1 . . . ∂zn

=

n∏

i=1

ϕ′(zi, ηi)
(
1 +

n∑

i=1

ϕ′(zi, ηi)

ψ′(zi, ηi)

)
. (83)

Define the following two functions on R
+ and R × [0, 1],

respectively,

G(z) = z−1, H(z, η) = z−2/β(z + η)−1 . (84)

9This representation is different from that used to define determinantal point
processes, which suggests, but does not prove, that the modified SINR process
is not a determinantal point process.
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Remark 24. Using the determinant identity (79) and (77) it

is easy to see that

Q({t̂i}, {ηi}) = det
(
K
[
H,

H

G

]
(t̂,η)

)
. (85)

The above representation may offer an alternative way of

calculating the partial derivatives of Q, following the lines

explained in [46, Sections 15.8–15.9] and using the Sherman–

Morrison formula; [46, eq. (2.25)]).

E. Proof of Lemma 9

By the displacement theorem [32, Section 1.3.3] and Camp-

bell’s theorem [32, Corolloary 2.2], Ψ is a Poisson point

process with intensity measure

Λ(s, t) = E[
∑

(Y,T )∈Θ̃

1(Y ≤ s, T ≤ t)] (86)

= λE

∫

R2

1(Y ≤ s)1(T ≤ t)dx (87)

= λ(2π)E

∫ ∞

0

1(r ≤ (sPS)1/β)1(T ≤ t)rdr. (88)

F. Schuette-Nesbitt formula

The following result is often used in insurance mathematics

(see, for example, [34] for a proof). Let B1, B2, . . . Bm denote

arbitrary events, and define the n th symmetric sum for them

as Sn =
∑

i1,i2,...,in
distinct

P

(⋂n
j=1Bij

)
. Let the random variable N

denote the number of the aforementioned events that occur,

that is N =
m∑
i=1

1Bi .

Theorem 25. [Schuette-Nesbitt formula] For arbitrary coeffi-

cients c1, c2, . . . cm the following holds true

m∑

n=0

cnP(N = n ) =

m∑

n=0

(∆nc)0Sn,

where ∆ is the forward difference operator; that is, (∆c)k =
ck+1 − ck and ∆k = ∆∆k−1.
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