M. [. Amenta and . Bern, Surface Reconstruction by Voronoi Filtering, Discrete & Computational Geometry, vol.22, issue.4, pp.481-504, 1999.
DOI : 10.1007/PL00009475

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

N. Amenta, S. Choi, T. K. Dey, and N. Leekha, A SIMPLE ALGORITHM FOR HOMEOMORPHIC SURFACE RECONSTRUCTION, International Journal of Computational Geometry & Applications, vol.12, issue.01n02, pp.125-141, 2002.
DOI : 10.1142/S0218195902000773

H. [. Aurenhammer, . Edelsbrunneraur87-]-f, and . Aurenhammer, An optimal algorithm for constructing the weighted voronoi diagram in the plane, Pattern Recognition, vol.17, issue.2, pp.251-257, 1984.
DOI : 10.1016/0031-3203(84)90064-5

J. Boissonnat, R. Dyer, and A. Ghosh, The stability of Delaunay triangulations, 2012. Submitted to International Journal of Computational Geometry and Applications (special issue for SoCG Boissonnat and J. Flötotto. A coordinate system associated with points scattered on a surface, Computer-Aided Design, vol.7, issue.1 3, pp.30161-174, 2004.

J. Boissonnat, L. J. Guibas, and S. Y. Oudot, Manifold Reconstruction in Arbitrary Dimensions Using Witness Complexes, Discrete & Computational Geometry, vol.33, issue.2, pp.37-70, 2009.
DOI : 10.1007/s00454-009-9175-1

URL : https://hal.archives-ouvertes.fr/hal-00488434

P. [. Belkin and . Niyogi, Laplacian eigenmaps and spectral techniques for embedding and clustering, Advances in Neural Information Processing Systems, pp.585-591, 2002.

J. Boissonnat, F. Nielsen, and R. Nock, Bregman Voronoi Diagrams, Discrete & Computational Geometry, vol.12, issue.2, pp.281-307, 2010.
DOI : 10.1007/s00454-010-9256-1

URL : https://hal.archives-ouvertes.fr/hal-00488441

]. G. Bre94 and . Bredon, Topology and Geometry, Graduate Text in Mathematics, vol.37, p.38, 1994.

M. Belkin, J. Sun, and Y. Wang, Discrete laplace operator on meshed surfaces, Proceedings of the twenty-fourth annual symposium on Computational geometry , SCG '08, pp.278-287, 2008.
DOI : 10.1145/1377676.1377725

J. Boissonnat, C. Wormser, and M. Yvinec, Locally uniform anisotropic meshing, Proceedings of the twenty-fourth annual symposium on Computational geometry , SCG '08, pp.270-277, 2008.
DOI : 10.1145/1377676.1377724

URL : https://hal.archives-ouvertes.fr/inria-00275430

[. Boissonnat and M. Yvinec, Algorithmic geometry, p.28, 1998.
DOI : 10.1017/CBO9781139172998

. Cde-+-00-]-s-w, T. K. Cheng, H. Dey, M. A. Edelsbrunner, S. Facello et al., Sliver Exudation, Journal of ACM, vol.47, issue.16, pp.883-904, 2000.

S. Cheng, T. K. Dey, and E. A. Ramos, Manifold Reconstruction from Point Samples Delaunay triangulation based surface reconstruction, Proc. ACM-SIAM Symp. Discrete Algorithms Effective Computational Geometry for Curve and Surfaces, pp.1018-1027, 2005.

B. Chazelle, An optimal convex hull algorithm in any fixed dimension, Discrete & Computational Geometry, vol.16, issue.4, pp.377-409, 1993.
DOI : 10.1007/BF02573985

G. Carlsson, T. Ishkhanov, V. De-silva, and A. Zomorodian, On the Local Behavior of Spaces of Natural Images, Lieutier. Smooth Manifold Reconstruction from Noisy and Nonuniform Approximation with Guarantees. Comp. Geom: Theory and Applications, pp.1-12, 2008.
DOI : 10.1007/s11263-007-0056-x

S. [. Chazal and . Oudot, Towards persistence-based reconstruction in euclidean spaces, Proceedings of the twenty-fourth annual symposium on Computational geometry , SCG '08, pp.232-241, 2008.
DOI : 10.1145/1377676.1377719

URL : https://hal.archives-ouvertes.fr/inria-00197543

P. [. Clarkson and . Shor, Applications of random sampling in computational geometry, II, Discrete & Computational Geometry, vol.1, issue.5, pp.387-421, 1989.
DOI : 10.1007/BF02187740

D. Cohen-steiner and T. K. Da, A greedy Delaunay Based Surface Reconstruction Algorithm. The Visual Computer, pp.4-16, 2004.
URL : https://hal.archives-ouvertes.fr/inria-00072024

S. Cheng, Y. Wang, and Z. Wu, PROVABLE DIMENSION DETECTION USING PRINCIPAL COMPONENT ANALYSIS, Sur la sphère vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk, pp.415-440, 1934.
DOI : 10.1142/S0218195908002702

]. T. Dey06 and . Dey, Curve and Surface Reconstruction: Algorithms with Mathematical Analysis, 2006.

C. [. Donohu and . Grimes, Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data, Proceedings of the Natural Academy of Sciences, pp.5591-5596, 2003.
DOI : 10.1073/pnas.1031596100

H. Federer, Curvature Measures. Transactions of the, pp.418-491, 1959.

]. H. Fed69 and . Federer, Geometric measure theory 30 [Flö03] J. Flötotto. A coordinate system associated to a point cloud issued from a manifold: definition, properties and applications, 1969.

E. [. Funke and . Freedman, Smooth-surface reconstruction in near-linear time Efficient simplicial reconstructions of manifolds from their samples, Proc. ACM-SIAM Symp. Discrete Algorithms, pp.781-780, 2002.

]. J. Fu93 and . Fu, Convergence of curvature in secant approximations, Journal of Differential Geometry, vol.37, issue.9, pp.117-190, 1993.

A. Ghosh, Piecewise linear reconstruction and meshing of submanifolds of Euclidean space, pp.31-37, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01095861

M. Gopi, S. Khrisnan, and C. T. Silva, Surface Reconstruction based on Lower Dimensional Localized Delaunay Triangulation, Proc. Eurographics, pp.363-371, 2000.
DOI : 10.1111/1467-8659.00439

U. [. Giesen and . Wagner, Shape Dimension and Intrinsic Metric from Samples of Manifolds. Discrete and Computational Geometry, Li. Generating Well-Shaped d-dimensional Delaunay Meshes, pp.245-267, 2003.

A. [. Lafon and . Lee, Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.28, issue.9, pp.1393-1403, 2006.
DOI : 10.1109/TPAMI.2006.184

]. W. Mas67 and . Massey, Algebraic Topology : An Introduction, Graduate texts in Mathematics, vol.56, p.37, 1967.

B. Nadler, S. Lafon, R. R. Coifman, and I. G. Kevrekidis, Diffusion maps, spectral clustering and eigenfunctions of fokker-planck operators, Neural Information Processing Systems, 2005.

P. Niyogi, S. Smale, and S. Weinberger, Finding the Homology of Submanifolds with High Confidence from??Random??Samples, Discrete & Computational Geometry, vol.33, issue.11, pp.419-441, 2008.
DOI : 10.1007/s00454-008-9053-2

B. [. Rourke and . Sanderson, Introduction to Piecewise-Linear Topology, p.33, 1972.
DOI : 10.1007/978-3-642-81735-9

S. T. Roweis and L. K. Saul, Nonlinear Dimensionality Reduction by Locally Linear Embedding, Science, vol.290, issue.5500, pp.2323-2326, 2000.
DOI : 10.1126/science.290.5500.2323

]. J. She05 and . Shewchuk, Star splaying: An algorithm for repairing delaunay triangulations and convex hulls, Proc. ACM Symp. on Computational Geometry, pp.237-246, 2005.

D. [. Seung and . Lee, COGNITION: The Manifold Ways of Perception, Science, vol.290, issue.5500, pp.2268-2269, 2000.
DOI : 10.1126/science.290.5500.2268

J. B. Tenenbaum, V. De-silva, and J. C. Langford, A Global Geometric Framework for Nonlinear Dimensionality Reduction, Science, vol.290, issue.5500, pp.2319-2323, 2000.
DOI : 10.1126/science.290.5500.2319

H. Whitney, Geometric Integration Theory, p.35, 1957.
DOI : 10.1515/9781400877577

]. E. Zee66, H. Zhang, and . Zha, Seminar on Combinatorial Topology Institut des HautesÉtudesHautes´HautesÉtudes Scientifiques (Paris) and University of Warwick (Coventry), Notes Principal manifolds and nonlinear dimension reduction via local tangent space alignment, SIAM Journal of Scientific Computing, vol.26, issue.1 3, pp.33313-338, 1963.