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Learning Discriminative Part Detectors for Image Classi cation and
Cosegmentation

Jian Sun Jean Ponce
Xi'an Jiaotong University, INRIA, Ecole Normale Sugrieure

Abstract

In this paper, we address the problem of learning dis-
criminative part detectors from image sets with category
labels. We propose a novel latent SVM model regularized
by group sparsity to learn these part detectors. Starting
from a large set of initial parts, the group sparsity regular-
izer forces the model to jointly select and optimize a set of
discriminative part detectors in a max-margin framework.
We propose a stochastic version of a proximal algorithm to Figure 1. We learn discriminative part detectors for an image set
solve the corresponding optimization problem. We apply With the same category label. The part detectors are applied to
the proposed method to image classi cation and Cosegmen_image classi cation and cosegmentatioBegt viewed in coloy.

tation, and quantitative experiments with standard bench- part detectors as part template / threshold pairs. Given a
marks show that it matches or improves upon the state of|arge set of initial parts, the group sparsity regularizer forces
the art. the model to automatically select and optimize a small set
1. Introduction of discriminative part detectors in a max-margin framework.
The proposed model tends to select the parts that more fre-
Part-based models have attracted much attention in comquently and strongly appear in positive training images than
puter vision recently [2, 4, 11, 15, 24, 32]. They represent in the negative ones.
objects or images by a set of important parts, and achieve We apply the learned part detectors to image classi ca-
state-of-the-art results for object detection [4, 15], action tion and cosegmentation. For classi cation, we encode an
recognition [39], segmentation [2], etc. image by max-pooling over the responses of the learned part
Learning these models has, however, been a challengedetectors to the image. For cosegmentation, we propose a
An essential question is how to ef ciently learn and select novel model using the object cues provided by the learned
object / image parts that are discriminative for the image part detectors in a discriminative clustering framework [16].
categories of interest. Deformable part model (DPM) [15] We achieve competitive or state-of-the-art performances on
represents objects by a set of discriminatively learned de- ve classi cation and cosegmentation databases.
formable parts. The positions and number of parts are
heuristically initialized given the object bounding box. In 1.1. Related Work

poselet [4] and discriminative patch (DP) [11, 32] mod-  Traditional image representations are primarily based
els, part detectors are separately learned by linear SVMson quantization of low-level features, e.g., bag-of-words
from image patch cluste.rs. Dlscr|m|nat|ve.parts are th_en (BoWs) [9] or sparse coding [38]. The image is then rep-
selected by ranking the image parts and discarding unim-resented by spatially pooling the codes globally on a coarse
portant ones. _ o grid (HOG [10]) or a spatial pyramid [20] for image clas-
In this work, we aim to learn class-speci ¢ d'SC“m'”aj si cation. This approach achieves excellent results, but the
tive part detectors from images of the same category (Fig-dictionary of low-level features is rarely related to category
ure 1). We propose a novel latent SVM model regularized semantics.
by group sparsity to jointly select and optimize a set of dis- Object-bank [21] is an interesting attempt to represent
criminative part detectors in a single framework. We model jmage by high-level semantics. It represents images by
WILLOW project-team, Bpartement d'Informatique de I'Ecole Nor- POOling th? responses of pre-_trained O_bje(-‘rt dete(ft_ors to the
male Sugrieure, ENS/INRIA/CNRS UMR 8548. image. This idea is also applied to action recognition [29],




and achieves promising results, but it relies on a large set ofscoreS( «; ( 1;z)) is higher than . Furthermore, we

pre-trained detectors to fully represent the objects / actionssay that the party appears in an imagé when there ex-

of interest. ists at least one positianthat satis esr;( ;1) > 0. Fig-
Part-based models represent image by mid-level imageure 2 shows examples of part detectors. As shown in this

parts. The deformable part model (DPM) [15] represents gure, after thresholding the matching scores using Eq.(1),

an object by a set of deformable parts learned from ob- irrelevant image parts are suppressed and only signi cantly
the performance. In poselet [4], a large number of object
parts are learned from human-labelled keypoints in differ-
ent poses. Discriminative patches (DP) [32] learn distinc- >

tive image parts using discriminative clustering. Both of .

the poselet and DP methods separately learn a set of part :

detectors using linear SVMs and select the distinctive ones . i

computer vision, since it involves a weak form of super- )

vision, i.e., images contain similar objects, to segment out Figure 2. Examples of part detectors. With the Iearneq part thresh-
these objects. Its multi-class extensions [17, 18] try to seg-silg:\;e%‘?}rr: Sgltgbctors can produce clean responses to imdgest. (
ment out multiple classes of objects from images. Recently,

di_scrimiljative cosegmeqtation [8] has successfully been ap- 5 Learning Part Detectors by Group Sparsity

plied to image classi cation.

weakly supervised fashion. Contrary to part-based mod-examples for an image category. As shown in Figure 3, the
els [4, 15, 32] which heuristically select part detectors, our input of our approach is an image set composed of posi-
model is able to jointly select and optimize a set of discrim- tive and negative training examples. First, we automatically
inative part detectors in a single framework thanks to group pick an initial set of candidate part detectors associated with
sparsity regularization. This allows us to achieve state-of- the image category. They frequently appear in the positive
the-art results in image classi cation and cosegmentation. training images but may not be discriminative. Then we use

ject bounding boxes. Strongly-supervised DPM [3] fur- similar image parts have non-zero responses.
ther incorporates human-annotated object parts to improve
by heuristically ranking their importance.

Cosegmentation [19, 25, 34] is a challenging task in

In this paper, we propose to learn class-specic dis- In this section, we aim to learn a set of image part detec-
criminative part detectors based on category labels in ators that best discriminate the positive and negative training

. . L . a novel latent SVM model to select and optimize nal part

2. Learning Discriminative Part Detectors detectors with group sparsity regularization.

In this section, we will propose a novel latent SVM
model with group sparsity regularization to learn a set of
discriminative part detectors for an image category. To initialize the candidate part detectors for animage cat-
egory, we randomly crop a large number of image parts (ap-
proximately ten thousands) from the positive training im-

Given animagé, we rst extract dense features at xed ages. Then we perforikrmeans clustering (600 clusters in
intervals over the image grid. Amage partis a box whose  our implementation) over these sampled image parts. This
top-left corner is positioned a, and it is represented by is similar to the construction of a visual word dictionary in
a feature vector( 1;z) that concatenates all the feature BoWs. We only retain suf ciently large clusters of size 10
vectors within the box. We further de ne jgart detector ~ or more. Assume that we have clusters of image parts,

2.3. Initialization of Part Detectors

2.1. Part Detector De nition

« = ( «; k) (k=1; :K)asa pair ofpart template  then we initializeK part detector$ g}, , and each part
k / part threshold x, and de ne its response to image part detector = f ; «gis de ned as a pair of part template
(1;z)as x and part thresholds which are taken as theth cluster

center and zero value respectively.

rzC i) =ISCwk; ( 1;2)  «l+s 1)

where[al. = max(a;0), andS( «; ( |;z)) is thematch-
ing scorebetween the part template and the image part.  With the above initialization, we now learn a set of part
In this work, we simply de ne the matching score as detectors that best discriminate the positive and negative
S(x; (Lz)= [ (1z). training images. We require that the learned part detectors

Based on Eq.(1), the part detector has non-zero re-  should appear more frequently and strongly in the positive
sponse to imagé at positionz only when the matching training images than in the negative ones.

2.4. Learning Discriminative Part Detectors
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Figure 3. An illustration of our learning framework. Given a training set of positive and negative images for an image category, we rst
initialize a set of part detectors as discussed in Section 2.3. Then we jointly select and optimize a set of part detectors, i.e., part template /
threshold pairs, by a novel latent SVM model regularized by group sparsity as discussed in Section 2.4.

Before introducing our learning method, let us rst de- choose tlgdl;z structured sparsity norm in this paper, i.e.,

ne the con dence of image belonging to the currentcat- R(B) = Ezl ji «ii2; which is the sum of, norm of part
egory given class-speci ¢ part detectors f g, : templates, and is convex w.rB.. In summary, we learn the
% discriminative part detectors by solving:
ol )= (4 (hzd Wl @ € x )
k=1 argmin 5 (1 ya(g(ei)+ B+ i ke

wherezy is a latent variable indicating the image part posi- n=1 k=1

tion with maximum response:

(6)
whereg(l,; ) depends on latent variables in Eq.(3).

zc =argmax,, | 4 ( 1;2); ©) .Th'e aboyg SVM modgl tries to enforce tiggt; )+. b.
1if | is positive training image, amg(l; )+ b 1if I is
and | de nesthe set of all possible part positiond inOb- negative training image. This forces the learned part detec-
serve from Eq.(2) thay(l; ) Ois de ned as sum of the  tors to have larger responses to positive training images than
maximum responses of all the part detectors to imadm- to negative ones. It implies that the learned part detectors
agel thus has higher con dence belonging to this category should bediscriminative i.e., more frequently and strongly
when more parts appear lirand have higher responses. trigger in the positive training images than in the negative

Next we learn part detectors using a latent SVM model ones. With group sparsity regularization, the optimization
with group sparsity regularization. The basic idea is to procedure will automatically discard the less discriminative
jointly select and optimize the part detectors by maximiz- part detectors among the initial ones.
ing the margin of the con dence valugl; ) on positive Let us briey compare our model to the latent SVM
and negative training images. Denote the training image setin [15]. First, our proposed latent SVM model is regular-
asfl,;ynoN.; wherey, =1 if I, belongs to the category ized by group sparsity which is able to automatically select
and otherwise, = 1. The cost function is de ned as: discriminative part detectors from a large pool of initial de-

tectors. Second, our learned part detectors are pairs of part
L L ) template and part threshold. With the part thresholds, parts
E( b= N L(g(tn:) iyn:D) + R (B); “) are not required to appear in every image of the category,
n=t which makes the detectors robust to intra-class variations

whereB = f g, isthe setof all part templates ahds ~ caused by poses, sub-categories, etc.
the squared hinge loss function:

cY sy h) = Y4 B2 -
Lol ) syip =11 (gl )+ Bl ©®) The latent SVM model of Eq.(6) is semi-convex [15]
andbis the bias term of SVM. We have chosen this function W-I.t. the part detectors, i.e., it is convex for the neg-
because it is differentiable w.r.g andb. We could have  ative examples and non-convex for the positive examples.
used other differentiable losses, e.g., a logistic function. ~ This can be justi ed by the following facts. Firsgy(l; ) is

3. Optimization Algorithm

R(B) is a regularization term over the part templates. CONVeX wrt. = f EK:l . This can be easily_shown
We impose group sparsity [40] over part templates, whereby noting thatg(l; ) = ,_; maxf 7 T I;zy);Og if de-
each template is considered as a group. This regularizanoting % = [ [; «]" and T I;zx) = [ T(I;2z«); 17,

tion forces the algorithm to automatically select a few dis- which is the maximum of linear functions. Second, the
criminative part detectors with non-zero templates from a cost function in Eq.(6) is convex and non-decreasing w.r.t.
large set of candidate part detectors. Typical group spar-g(l; ) if | is a negative example (i.ey,= 1). There-
sity terms includel;., andl;.; regularizers [40]. We  fore the cost is convex w.r.t. for the negative examples.
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Figure 4. Examples of learned part detectors, detected parts and total response maps of part detectors to images. The learned part detectors
have higher responses to the discriminative regions in each category. Response maps are shown as the original images masked by the
linearly normalized total response maps in range of [0,Bgs viewed in color. More examples are shown in supplementary material

However, it is non-convex for the positive examples. gradients (w.r.t. ; k) are computed as:
Following [15], we optimize Eq. (6) by iteratively per- @l _ nYn  ifyn(g(ln; )+ b<1
forming the following two steps. First, we update the la- @b 0 otherwise,

tent variables for all the positive examples based on Eq. (3). @l

. . : Inh;zZn if C is satis ed
Second, given the set of latent variables for all the posi- n¥n (1niZnk)

i imi 0 otherwise,

tive examples (denoted &), we optimize part detectors @« 7 otherwise

f «; «d<., and bias terni by minimizing the convex cost @I, _ nyn ifCis s_atls ed @
E( ;b;Zp) which is the cost function in Eq.(6) with xed @« 0 otherwise,

latent variables for positive examples. We stop the itera-
tion when a maximal number of iterations is reached or the
parameters do not change signi cantly any more.

where n = 2(1  yn(9(ln;) + D), znx is the k-
th latent variable for imagé,, C denotes the conditions
of [ (lnizax) > «andyn(g(ln;)+ b < 1

We now discuss how to minimiz&( ;b;Z,) givenZ,. The optimization ofE( ;b;Z) is a large-scale and high-
This cost function is smooth fdp and piecewise-smooth ~dimensional convex optimization problem. To make it
for . Therefore, we utilize a gradient descent method tractable, we propose to use a stochastic algorithm in which
to optimizeb and a subgradient method to optimize a subset (six random samples) of training images are sam-
f «; kOk.; simultaneously. Due to the group sparsity reg- pled to approximate the gradients / subgradients [13].
ularization forf kgE:1 , we utilize a proximal method [13] After optimization, non-discriminative part templates are

to optimize . It is known to be an effective approach to set to zero due to thig;, regularization. We discard these
the optimization of convex loss functions with sparse regu- part detectors with zero part templates and derive a set of
larization, and the basic procedure is to update the param-discriminative part detectors. To illustrate the learned part
eters using a proximal operator which can be shown to bedetectors, we de ne theesponse map of a part detectog

Prox ( k)= ﬁ ki «ijiz 1+ forly regularizer. to an imagd as the weighted sum of all the detected parts
e appearing in the image pyramid, i.e.,
In summary, we minimize the ener@( ;b;Z,) by it- X X
eratlgely updatlng the parameters‘;‘;+l = Prox ( R( ;1) = r( w;15)M,(1%); 8)
1 ) gt = ¢ 1 t+1 = s z2 s
N n= 1F,@k N n=1L @b' k
P& ne S, where s the step-size, and, = wherel S is the image at scalg r,( ;1%) is the response

L(g(l n; ) ;Yn:; b). The involved gradient (w.r.b) and sub-  value de ned in Eq.(1)M,(I3) is the binary mask of



indicating the region occupied by image part located at po- a training set with the input images as positive examples
sitionz. The part mash , (1 ®) is re-scaled b)é, therefore  and a set of diverse background images as negative exam-

the response maR( ;) has the same resolution bsin ples. As shown in Figure 4(b) and Figure 5(b), the discrimi-
our implementation, we construct an image pyramid in ve native part detectors response more strongly and frequently
scaling factors, i.es2f2 1;2 71 2%;29 . in the common objects of the image set, which provides a

Figure 4 shows examples of learned part detectors andhigh-level object cue for cosegmentation.
detected parts. As shown in Figure 4(a), the learned detec-
tors are discriminative for the categories considered, e.g.,
wheelchairs, faces, buildings and cars. Figure 4(b) shows
total response mapsf part detectors by summirig( ;1)
over all the learned part detectors. It shows that the learned §
part detectors have large responses to the salient regions
which are discriminative for the image category, and have Figure 5. Cosegmentation example (the image comes from “sign”

low responses to the cluttered backgrounds. Itindicates thatategory of MSRC database). (b) Total response map. (c) Initial
our algorithm can effectively derive a set of discriminative segmentation mask. (d) Final segmentation boundary.

part detectors and discard the unimportant ones. Please see

supplementary materidbr more examples. Givenimagd , we aim to assign labek = fx;gto pix-
els, andx; = 1 for foreground pixel anc; = O for back-
4. Applications ground pixel. It can be considered as a weakly supervised

clustering problem. Discriminative clustering has achieved

Discriminative part detectors provide a mid-level and state-of-the-art performance on cosegmentation [16, 17]. In
discriminative representation for an image category. We this work, we design a novel cosegmentation algorithm by
now apply them to image classi cation and cosegmentation. embedding the object cue provided by part detectors into
the discriminative clustering framework.

We denote image feature asfor pixel i, and ( v;) is

Given an image database, we learn class-speci ¢ part de-2 mapping ofv; into a high-dimensional Hilbert space.
tectors for each category using one-vs-all training. We de- Discriminative clustering [16] tries to jointly infer the seg-
note all the learned part detectors from different categoriesment labelsX and non-linear separating surfate2 F

4.1. Image Classi cation

as = f gk, K is the total number of part detectors. based on kernel SVM by minimizing:
Based on our learning method for part detectors, an image . 1 X ; o
| can be naturally encoded by a vector of coflesgy., , Ec(Xifidjl)= — [1 xi(f" (vi)+ d + cjifji* (9)
- T (] SR Iy,
and each code, = [rr12ax e (1hz) ]+, which is the !
z 1
max-pooling over the responses of part detectprto all whered is bias term, and . is regularization parameter.
the image parts ih. Discriminative clustering is an unsupervised method for

Following object-bank [21], we improve the above cod- segmentation. In our approach, we incorporate the object
ing method by the following steps. We resize the image cue provided by part detectors and label smoothness into
resolution in ve scaling factorsf@ 1;2 7:1:2%: 2g) to the above formulation, then the optimization problem is:

capture image parts in different scales. Then for each image 1 X

in each scale, we use spatial pyramid matching (SPM) [20] min E(X;f;d ) = Ec(X;fid jI) + 7 [Eo(xij ;1)
dividing the image region into spatial cells in three levels. x 12

Finally, the imagd is coded by _conc_atenatlng all f[he codes + Es(xi;x;jl)]; (10)
computed over the image regions in each spatial cell and 2N (i)

each scale. This coding method will produce a feature vec-
tor with the length oMK , whereM is the number of  whereN (i) is the neighborhood df E, is de ned based
cells in spatial pyramid. Given the image codes, we use aon the common object cue shared by the image set:
linear SVM with squared hinge loss function to produce the R 1) % =0
classi cation results. ot = ik P
EO(XIJ !I) O iin :l, (11)
4.2.Im mentation . . .
age Cosegmentatio whereR; is the value of response map in Eq.(8) at pixel
For cosegmentation, we aim to segment the common ob-i. Obviously, thig, model prefers to assign foreground la-
jects in an image set with the same category label. Given anbel to pixel with | Ri( ;1) > , and is automat-
image sef1,gN\_; with the same category of objects, we ically set for each image by enforcing that pixels above

rst learn discriminative part detectors= f gf., from this threshold occupy at mog0% of the image areaEg



Table 1. Comparison on 15-Scenes database.

is the smoothness term de ned &s(x;;X;jjl) = jX;

Gye yCii2 Single feature Multiple features

xjjexp( Y2y 28] whereve is color vector at pixel Methods mAP Methods mAP

. . . . Sparse-coding [38] | 80:3 0:9 Object-bank [21] 80.9

i,and isthe mean of the squared distances between adja- SPM [20] 814 05 BSPR [36] 88:9 06

cent colors over the imagées is submodular and encour- Graph-matching [12]| 82:1  1:1 Suetal. [33] 87:8 0:5
. . . DSS [31] 85:5 0:6 Xiao et al. [35] 88.1

ages the segmentation boundary to align with strong edges LPR [30] 85:8

We optimize Eq.(10) by alternatively inferring the SVM Ours 86:0 0:8

parameter§f; d g and the segmentation lab¢l. GivenX, ) .

ff;dg can be found by minimizing. since it is the only Our algorithm performs well compared to the algorithms
term that depends dn andd in Eq.(10). This can be done using single feature. The state-of-the-art result on this
by a standard kernel SVM algorithm. Giveh d g, the seg- database is 88.9% in BSPR [36] which is based on multi-

mentation labeX can be computed by minimizing Eq.(10) ple features and dense sampling of pooling regions. Our
with xed f:d , which can be ef ciently optimized by graph method can potentially be improved by incorporating com-
cuts [7]. We initializeX by solving: parable advanced pooling methods beyond SPM.

X ] X ) Table 2. Comparison on MIT-indoor 67 scenes categorization.
argmin, f [Eo(Xij ;1)+ 5 Es(xi;xjjl]g; Methods mAP
i2 P 2N (i) DPM [26] 30.4
DPM + GIST + SPM [26] 43.1
(12) Object-bank [21] 3756
which is based on the object cue and label smoothness. D[icgfm?gol]ﬂl 22-;
In our implementation, feature vectois the concatena-  Hybrid-parts [41] 398
tion of HOG featurev" and color feature/ with length Hybrid-parts JE) GIST + SPM [41] 317_5
of L and L. respectively. Color values are scaled to e :
[0, 1]. In kernel SVM, we utilize kerneK (vi;v;) = Table 2 shows the comparison of our method with

exp( C(ﬁjjvih vjhjj§+ %jj\/iC vfjj%)) with .=5.1It state-of-the-art algorithms on the challenging MIT-indoor
is a valid kernel since it is multiplication of two radial basis database. For each category, we follow the same setting as
kernels. When we optimiz¥ using graph cuts, we utilize in [27] and use approximately 80 images for training and
superpixels [1] to de ne the graph, in which per-pixel costs 20 images for testing. We learn a total of 4926 (12% of the
E.; E, are averaged in each superpixel. Figure 5 shows annumber of initial detectors) part detectors for 67 classes,

example of initial and nal cosegmentation results. and achieve 51.43% in mAP using a single HOG feature.
) Compared to discriminative patches learned by discrimina-
5. Experiments tive clustering [32] (14070 patches are learned), we perform

To learn part detectors, we extract dense HOG features_Signi cantly better, which shows the advantage of our learn-

at eight-pixel intervals, and each image part is representedng TethOd't P_erl-category accuracies are showsupple-
as concatenation of all HOG features in the correspondingmen ary materia

region. We utilize multiple sizes of part templatés ( 8, Table 3. Comparison on UIUC-Sports database.
6 6,4 4feature cells) to capture features at different Hyb?i"d?t;:rfss ] ad
scales. The discriminative part detectors are learned in one- Object-bank [21] 76.3
vs-all mode for each database. The regularization param- S Y B T
eter controls the sparsity of the solution. We have xed LSA[23] 82:3 1:84
Ours 86:4 0:88

it to 0:005in all experiments, which retains 10-15% of the

art detectors. Please see next section for a preliminary in- _ Lo
P b y Table 4. Comparison on Caltech-101 database using single feature.

vestigation of the effect of on the number of parts and Viothods AP
classi cation performance. SPM [20] 64:4 0.8
Macro-feature [5] 75:7 11
H H Sparse-coding [38] | 73:2 0:5
5.1. Image Classi cation Multi-way pooling[6] | 77:1 0:7
. . . Graph-matching[12] | 80:3 1:2
We test our classi cation method on four representative . ours ot2] 788 05

image databases for scene categorization (15-Scenes [20],
MIT-indoor [27]), object recognition (Caltech-101 [14])
and event categorization (UIUC-Sports [22]). We use mean
average precision (mAP) to measure the accuracy.

Table 1 shows comparison results on 15-Scenes (10
training images per category). Our discriminative part de-
tectors perform signi cantly better than the low-level visual — 17he state-of-the-art result on Caltech-101 using multiple features is
words in [20, 38] and high-level object detectors in [21]. 84.3% achieved in [37] by multiple kernel learning.

Tables 3 and 4 show comparison results on UIUC-Sports
and Caltech-101, in which 70 and 30 images per-category
are used for training respectively. Our algorithm achieves
0state-of-the-art results on UIUC-Sports and competitive
results on Caltech-101 using a single featureGraph-
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Figure 6. Examples of class-speci ¢ part detectors and their total response maps to irBagesigwed in coloy

matching [12] performs better than ours on Caltech-101 us-score as in [17] to measure the segmentation accuracy. Ta-
ing kernel method de ned by dense matching. However it ble 5 shows comparison results between our algorithm and
achieves signi cantly lower results on 15-Scenes in Table 1, the state-of-the-art cosegmentation algorithms. The algo-
probably because objects in Caltech-101 are well alignedrithm of [25] fails to converge on four classes. Our initial
and can be densely matched with higher accuracy. segmentation based on object cues alone already achieves
Figure 6 shows examples of learned part detectors andbetter results than the method in [19]. Our full algorithm
their total response maps. As shown in Figure 6(a,b), theachieves the highest accuracy on this database. Figure 8
shoes and movie screens are effectively detected by oushows examples of our cosegmentation results.
learned part detectors for categories of “ShoeShops” and
“MovieTheater” in MIT-indoor database. Our learned part Tabl_e 5. Comparison of_the proposed cosegmenta_tion method with
detectors can effectively detect the discriminative image JOU!in et al. [16, 17], Kim et al. [19], and Mukherjee et al. [25]
parts and suppress the cluttered backgrounds. Ours.init” indicates the initial segmentation of our approach.

Datasets | Images | [16] [17] [19] [25] Oursinit  Ours

Bike 30 423 433 299 428 46,5 50.7

Bird 30 332 477 299 - 22.8 31.0

Car 30 59.0 59.7 371 525 55.0 615

Cat 24 30.1 319 244 5.6 36.5 48.0

Chair 30 376 396 287 394 39.4 489

Cow 30 450 527 335 26.1 38.2 45.6

. Dog 26 413 418 330 - 324  46.6
- Face 30 66.2 70.0 332 408 48.4 50.3
Flower 30 509 519 402 - 50.2 75.7

House 30 505 51.0 322 664 51.1 61.5

Plane 30 217 216 251 334 28.2 28.1

I . e Sheep 30 60.4 66.3 60.8 457 478 652

Sign 30 552 58.9 432 - 50.9 69.9

Tree 30 60.0 670 612 559 55.8 70.1

Average 46.7 50.2 36.6 — 43.1 53.8

Figure 7. The effect of regularization parameter on the classi ca-
tion performance (tested on 15-Scenes database). 6. Conclusion

Effect of regularization parameter on performance
in Eq.(6) determines the number of selected part detectors
Figure 7 shows the effect of on the performance tested on . - . o
) . achieves promising results for image classi cation and
15-Scenes database. With the increase @fe observe that . R
cosegmentation. We have shown that discriminative part

the number of learned part detectors decreases fast, and th(‘?etectors provide mid-level cues to determine the position

classi cation accuracy increases then decreases, however, IS obiects. In the future. we are interested in oraanizin
quite stable to when0:002 0:015. ) ' ' 9 g

these part detectors in graph structure for object detection.

We have proposed a novel latent SVM model to learn
discriminative part detectors for image categories. It

5.2. Image Cosegmentation

We test our algorithm on MSRC database and compareACknOWIedgement

with the state of the art. This database is commonly used This work was supported by the European Research
for testing binary cosegmentation algorithms [16, 19, 25]. Council (VideoWorld project). Jian Sun was partially
The parameters of cosegmentation model in Eq. (10) are sesupported by the 973 program (2013CB329404), NSFC
as . =1; s = 0:25 We utilize intersection-over-union  projects (61003144, 11131006) and NCET-12-0442.
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