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Abstract

In this paper, we address the problem of learning dis-
criminative part detectors from image sets with category
labels. We propose a novel latent SVM model regularized
by group sparsity to learn these part detectors. Starting
from a large set of initial parts, the group sparsity regular-
izer forces the model to jointly select and optimize a set of
discriminative part detectors in a max-margin framework.
We propose a stochastic version of a proximal algorithm to
solve the corresponding optimization problem. We apply
the proposed method to image classi�cation and cosegmen-
tation, and quantitative experiments with standard bench-
marks show that it matches or improves upon the state of
the art.

1. Introduction

Part-based models have attracted much attention in com-
puter vision recently [2, 4, 11, 15, 24, 32]. They represent
objects or images by a set of important parts, and achieve
state-of-the-art results for object detection [4, 15], action
recognition [39], segmentation [2], etc.

Learning these models has, however, been a challenge.
An essential question is how to ef�ciently learn and select
object / image parts that are discriminative for the image
categories of interest. Deformable part model (DPM) [15]
represents objects by a set of discriminatively learned de-
formable parts. The positions and number of parts are
heuristically initialized given the object bounding box. In
poselet [4] and discriminative patch (DP) [11, 32] mod-
els, part detectors are separately learned by linear SVMs
from image patch clusters. Discriminative parts are then
selected by ranking the image parts and discarding unim-
portant ones.

In this work, we aim to learn class-speci�c discrimina-
tive part detectors from images of the same category (Fig-
ure 1). We propose a novel latent SVM model regularized
by group sparsity to jointly select and optimize a set of dis-
criminative part detectors in a single framework. We model
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Figure 1. We learn discriminative part detectors for an image set
with the same category label. The part detectors are applied to
image classi�cation and cosegmentation. (Best viewed in color.)

part detectors as part template / threshold pairs. Given a
large set of initial parts, the group sparsity regularizer forces
the model to automatically select and optimize a small set
of discriminative part detectors in a max-margin framework.
The proposed model tends to select the parts that more fre-
quently and strongly appear in positive training images than
in the negative ones.

We apply the learned part detectors to image classi�ca-
tion and cosegmentation. For classi�cation, we encode an
image by max-pooling over the responses of the learned part
detectors to the image. For cosegmentation, we propose a
novel model using the object cues provided by the learned
part detectors in a discriminative clustering framework [16].
We achieve competitive or state-of-the-art performances on
�ve classi�cation and cosegmentation databases.

1.1. Related Work

Traditional image representations are primarily based
on quantization of low-level features, e.g., bag-of-words
(BoWs) [9] or sparse coding [38]. The image is then rep-
resented by spatially pooling the codes globally on a coarse
grid (HOG [10]) or a spatial pyramid [20] for image clas-
si�cation. This approach achieves excellent results, but the
dictionary of low-level features is rarely related to category
semantics.

Object-bank [21] is an interesting attempt to represent
image by high-level semantics. It represents images by
pooling the responses of pre-trained object detectors to the
image. This idea is also applied to action recognition [29],



and achieves promising results, but it relies on a large set of
pre-trained detectors to fully represent the objects / actions
of interest.

Part-based models represent image by mid-level image
parts. The deformable part model (DPM) [15] represents
an object by a set of deformable parts learned from ob-
ject bounding boxes. Strongly-supervised DPM [3] fur-
ther incorporates human-annotated object parts to improve
the performance. In poselet [4], a large number of object
parts are learned from human-labelled keypoints in differ-
ent poses. Discriminative patches (DP) [32] learn distinc-
tive image parts using discriminative clustering. Both of
the poselet and DP methods separately learn a set of part
detectors using linear SVMs and select the distinctive ones
by heuristically ranking their importance.

Cosegmentation [19, 25, 34] is a challenging task in
computer vision, since it involves a weak form of super-
vision, i.e., images contain similar objects, to segment out
these objects. Its multi-class extensions [17, 18] try to seg-
ment out multiple classes of objects from images. Recently,
discriminative cosegmentation [8] has successfully been ap-
plied to image classi�cation.

In this paper, we propose to learn class-speci�c dis-
criminative part detectors based on category labels in a
weakly supervised fashion. Contrary to part-based mod-
els [4, 15, 32] which heuristically select part detectors, our
model is able to jointly select and optimize a set of discrim-
inative part detectors in a single framework thanks to group
sparsity regularization. This allows us to achieve state-of-
the-art results in image classi�cation and cosegmentation.

2. Learning Discriminative Part Detectors

In this section, we will propose a novel latent SVM
model with group sparsity regularization to learn a set of
discriminative part detectors for an image category.

2.1. Part Detector De�nition

Given an imageI , we �rst extract dense features at �xed
intervals over the image grid. Animage partis a box whose
top-left corner is positioned atz, and it is represented by
a feature vector�( I; z ) that concatenates all the feature
vectors within the box. We further de�ne apart detector
� k = ( � k ; � k ) (k = 1 ; � � � ; K ) as a pair ofpart template
� k / part threshold� k , and de�ne its response to image part
�( I; z ) as

r z (� k ; I ) = [ S(� k ; �( I; z )) � � k ]+ ; (1)

where[a]+ = max( a;0), andS(� k ; �( I; z )) is thematch-
ing scorebetween the part template and the image part.
In this work, we simply de�ne the matching score as
S(� k ; �( I; z )) = � T

k �( I; z ).
Based on Eq.(1), the part detector� k has non-zero re-

sponse to imageI at positionz only when the matching

scoreS(� k ; �( I; z )) is higher than� k . Furthermore, we
say that the part� k appears in an imageI when there ex-
ists at least one positionz that satis�esr z (� k ; I ) > 0. Fig-
ure 2 shows examples of part detectors. As shown in this
�gure, after thresholding the matching scores using Eq.(1),
irrelevant image parts are suppressed and only signi�cantly
similar image parts have non-zero responses.
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Figure 2. Examples of part detectors. With the learned part thresh-
olds, part detectors can produce clean responses to images. (Best
viewed in color.)

2.2. Learning Part Detectors by Group Sparsity

In this section, we aim to learn a set of image part detec-
tors that best discriminate the positive and negative training
examples for an image category. As shown in Figure 3, the
input of our approach is an image set composed of posi-
tive and negative training examples. First, we automatically
pick an initial set of candidate part detectors associated with
the image category. They frequently appear in the positive
training images but may not be discriminative. Then we use
a novel latent SVM model to select and optimize �nal part
detectors with group sparsity regularization.

2.3. Initialization of Part Detectors

To initialize the candidate part detectors for an image cat-
egory, we randomly crop a large number of image parts (ap-
proximately ten thousands) from the positive training im-
ages. Then we performk-means clustering (600 clusters in
our implementation) over these sampled image parts. This
is similar to the construction of a visual word dictionary in
BoWs. We only retain suf�ciently large clusters of size 10
or more. Assume that we haveK clusters of image parts,
then we initializeK part detectorsf � k gK

k=1 , and each part
detector� k = f � k ; � k g is de�ned as a pair of part template
� k and part threshold� k which are taken as thek-th cluster
center and zero value respectively.

2.4. Learning Discriminative Part Detectors

With the above initialization, we now learn a set of part
detectors that best discriminate the positive and negative
training images. We require that the learned part detectors
should appear more frequently and strongly in the positive
training images than in the negative ones.
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Figure 3. An illustration of our learning framework. Given a training set of positive and negative images for an image category, we �rst
initialize a set of part detectors as discussed in Section 2.3. Then we jointly select and optimize a set of part detectors, i.e., part template /
threshold pairs, by a novel latent SVM model regularized by group sparsity as discussed in Section 2.4.

Before introducing our learning method, let us �rst de-
�ne the con�dence of imageI belonging to the current cat-
egory given class-speci�c part detectors� = f � k gK

k=1 :

g(I; �) =
KX

k=1

[� T
k �( I; z k ) � � k ]+ ; (2)

wherezk is a latent variable indicating the image part posi-
tion with maximum response:

zk = argmax z2 
 I
� T

k �( I; z ); (3)

and
 I de�nes the set of all possible part positions inI . Ob-
serve from Eq.(2) thatg(I; �) � 0 is de�ned as sum of the
maximum responses of all the part detectors to imageI . Im-
ageI thus has higher con�dence belonging to this category
when more parts appear inI and have higher responses.

Next we learn part detectors using a latent SVM model
with group sparsity regularization. The basic idea is to
jointly select and optimize the part detectors by maximiz-
ing the margin of the con�dence valueg(I; �) on positive
and negative training images. Denote the training image set
asf I n ; yn gN

n =1 whereyn = 1 if I n belongs to the category
and otherwiseyn = � 1. The cost function is de�ned as:

E(� ; b) =
1
N

NX

n =1

L(g(I n ; �) ; yn ; b) + �R (B ); (4)

whereB = f � k gK
k=1 is the set of all part templates andL is

the squared hinge loss function:

L (g(I; �) ; y; b) = [1 � y(g(I; �) + b)]2
+ ; (5)

andbis the bias term of SVM. We have chosen this function
because it is differentiable w.r.t.g andb. We could have
used other differentiable losses, e.g., a logistic function.

R(B ) is a regularization term over the part templates.
We impose group sparsity [40] over part templates, where
each template is considered as a group. This regulariza-
tion forces the algorithm to automatically select a few dis-
criminative part detectors with non-zero templates from a
large set of candidate part detectors. Typical group spar-
sity terms includel1;2 and l1;1 regularizers [40]. We

choose thel1;2 structured sparsity norm in this paper, i.e.,
R(B ) =

P K
k=1 jj � k jj2; which is the sum ofl2 norm of part

templates, and is convex w.r.t.B . In summary, we learn the
discriminative part detectors by solving:

argmin
� ;b

(
1
N

NX

n =1

[1 � yn (g(I n ; �) + b)]2
+ + �

KX

k =1

jj � k jj 2

)

;

(6)
whereg(I n ; �) depends on latent variables in Eq.(3).

The above SVM model tries to enforce thatg(I; �)+ b �
1 if I is positive training image, andg(I; �)+ b � � 1 if I is
negative training image. This forces the learned part detec-
tors to have larger responses to positive training images than
to negative ones. It implies that the learned part detectors
should bediscriminative, i.e., more frequently and strongly
trigger in the positive training images than in the negative
ones. With group sparsity regularization, the optimization
procedure will automatically discard the less discriminative
part detectors among the initial ones.

Let us brie�y compare our model to the latent SVM
in [15]. First, our proposed latent SVM model is regular-
ized by group sparsity which is able to automatically select
discriminative part detectors from a large pool of initial de-
tectors. Second, our learned part detectors are pairs of part
template and part threshold. With the part thresholds, parts
are not required to appear in every image of the category,
which makes the detectors robust to intra-class variations
caused by poses, sub-categories, etc.

3. Optimization Algorithm

The latent SVM model of Eq.(6) is semi-convex [15]
w.r.t. the part detectors� , i.e., it is convex for the neg-
ative examples and non-convex for the positive examples.
This can be justi�ed by the following facts. First,g(I; �) is
convex w.r.t. � = f � k ; � k gK

k=1 . This can be easily shown
by noting thatg(I; �) =

P K
k=1 maxf ~� T

k
~�( I; z k ); 0g if de-

noting ~� k = [ � T
k ; � k ]T and ~�( I; z k ) = [� T (I; z k ); � 1]T ,

which is the maximum of linear functions. Second, the
cost function in Eq.(6) is convex and non-decreasing w.r.t.
g(I; �) if I is a negative example (i.e.,y = � 1). There-
fore the cost is convex w.r.t.� for the negative examples.
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Figure 4. Examples of learned part detectors, detected parts and total response maps of part detectors to images. The learned part detectors
have higher responses to the discriminative regions in each category. Response maps are shown as the original images masked by the
linearly normalized total response maps in range of [0, 1]. (Best viewed in color. More examples are shown in supplementary material.)

However, it is non-convex for the positive examples.

Following [15], we optimize Eq. (6) by iteratively per-
forming the following two steps. First, we update the la-
tent variables for all the positive examples based on Eq. (3).
Second, given the set of latent variables for all the posi-
tive examples (denoted asZp), we optimize part detectors
f � k ; � k gK

k=1 and bias termbby minimizing the convex cost
E(� ; b; Zp) which is the cost function in Eq.(6) with �xed
latent variables for positive examples. We stop the itera-
tion when a maximal number of iterations is reached or the
parameters do not change signi�cantly any more.

We now discuss how to minimizeE(� ; b; Zp) givenZp.
This cost function is smooth forb and piecewise-smooth
for � . Therefore, we utilize a gradient descent method
to optimizeb and a subgradient method to optimize� =
f � k ; � k gK

k=1 simultaneously. Due to the group sparsity reg-
ularization forf � k gK

k=1 , we utilize a proximal method [13]
to optimize� k . It is known to be an effective approach to
the optimization of convex loss functions with sparse regu-
larization, and the basic procedure is to update the param-
eters using a proximal operator which can be shown to be
Prox� (� k ) = 1

jj � k jj 2
� k [jj � k jj2 � � ]+ for l1;2 regularizer.

In summary, we minimize the energyE(� ; b; Zp) by it-
eratively updating the parameters:� k

t +1 = Prox �
 (� t
k �


 1
N

P N
n =1

@Ln
@�k t ), bt +1 = bt � 
 1

N

P N
n =1

@Ln
@bt , � k

t +1 =

� t
k � 
 1

N

P N
n =1

@Ln
@�k

, where
 is the step-size, andL n =
L(g(I n ; �) ; yn ; b). The involved gradient (w.r.t.b) and sub-

gradients (w.r.t.� k ; � k ) are computed as:

@Ln
@b

=
�

� � n yn if yn (g(I n ; �) + b) < 1
0 otherwise,

@Ln
@�k

=
�

� � n yn �( I n ; zn;k ) if C is satis�ed
0 otherwise,

@Ln
@�k

=
�

� n yn if C is satis�ed
0 otherwise,

(7)

where � n = 2(1 � yn (g(I n ; �) + b)) , zn;k is the k-
th latent variable for imageI n , C denotes the conditions
of � T

k �( I n ; zn;k ) > � k and yn (g(I n ; �) + b) < 1.
The optimization ofE(� ; b; Zp) is a large-scale and high-
dimensional convex optimization problem. To make it
tractable, we propose to use a stochastic algorithm in which
a subset (six random samples) of training images are sam-
pled to approximate the gradients / subgradients [13].

After optimization, non-discriminative part templates are
set to zero due to thel1;2 regularization. We discard these
part detectors with zero part templates and derive a set of
discriminative part detectors. To illustrate the learned part
detectors, we de�ne theresponse map of a part detector� k

to an imageI as the weighted sum of all the detected parts
appearing in the image pyramid, i.e.,

R(� k ; I ) =
X

s

X

z2 
 I s

r z (� k ; I s)M z (I s); (8)

whereI s is the image at scales, r z (� k ; I s) is the response
value de�ned in Eq.(1),M z (I s) is the binary mask ofI s



indicating the region occupied by image part located at po-
sition z. The part maskM z (I s) is re-scaled by1s , therefore
the response mapR(� k ; I ) has the same resolution asI . In
our implementation, we construct an image pyramid in �ve
scaling factors, i.e.,s 2 f 2� 1; 2� 1

2 ; 1; 2
1
2 ; 2g .

Figure 4 shows examples of learned part detectors and
detected parts. As shown in Figure 4(a), the learned detec-
tors are discriminative for the categories considered, e.g.,
wheelchairs, faces, buildings and cars. Figure 4(b) shows
total response mapsof part detectors by summingR(� k ; I )
over all the learned part detectors. It shows that the learned
part detectors have large responses to the salient regions
which are discriminative for the image category, and have
low responses to the cluttered backgrounds. It indicates that
our algorithm can effectively derive a set of discriminative
part detectors and discard the unimportant ones. Please see
supplementary materialfor more examples.

4. Applications

Discriminative part detectors provide a mid-level and
discriminative representation for an image category. We
now apply them to image classi�cation and cosegmentation.

4.1. Image Classi�cation

Given an image database, we learn class-speci�c part de-
tectors for each category using one-vs-all training. We de-
note all the learned part detectors from different categories
as� = f � k gK

k=1 , K is the total number of part detectors.
Based on our learning method for part detectors, an image
I can be naturally encoded by a vector of codesf ck gK

k=1 ,
and each codeck = [max

z2 
 I

� T
k �( I; z ) � � k ]+ , which is the

max-pooling over the responses of part detector� k to all
the image parts inI .

Following object-bank [21], we improve the above cod-
ing method by the following steps. We resize the image
resolution in �ve scaling factors (f 2� 1; 2� 1

2 ; 1; 2
1
2 ; 2g) to

capture image parts in different scales. Then for each image
in each scale, we use spatial pyramid matching (SPM) [20]
dividing the image region into spatial cells in three levels.
Finally, the imageI is coded by concatenating all the codes
computed over the image regions in each spatial cell and
each scale. This coding method will produce a feature vec-
tor with the length of5MK , whereM is the number of
cells in spatial pyramid. Given the image codes, we use a
linear SVM with squared hinge loss function to produce the
classi�cation results.

4.2. Image Cosegmentation

For cosegmentation, we aim to segment the common ob-
jects in an image set with the same category label. Given an
image setf I n gN

n =1 with the same category of objects, we
�rst learn discriminative part detectors� = f � k gK

k=1 from

a training set with the input images as positive examples
and a set of diverse background images as negative exam-
ples. As shown in Figure 4(b) and Figure 5(b), the discrimi-
native part detectors response more strongly and frequently
in the common objects of the image set, which provides a
high-level object cue for cosegmentation.

� � ������� ��� � ����

Figure 5. Cosegmentation example (the image comes from “sign”
category of MSRC database). (b) Total response map. (c) Initial
segmentation mask. (d) Final segmentation boundary.

Given imageI , we aim to assign labelsX = f x i g to pix-
els, andx i = 1 for foreground pixel andx i = 0 for back-
ground pixel. It can be considered as a weakly supervised
clustering problem. Discriminative clustering has achieved
state-of-the-art performance on cosegmentation [16, 17]. In
this work, we design a novel cosegmentation algorithm by
embedding the object cue provided by part detectors into
the discriminative clustering framework.

We denote image feature asvi for pixel i , and	( vi ) is
a mapping ofvi into a high-dimensional Hilbert spaceF .
Discriminative clustering [16] tries to jointly infer the seg-
ment labelsX and non-linear separating surfacef 2 F
based on kernel SVM by minimizing:

Ec(X; f; d jI ) =
1

j
 I j

X

i 2 
 I

[1 � x i (f
T 	( vi ) + d)]+ + � c jj f jj 2 ; (9)

whered is bias term, and� c is regularization parameter.
Discriminative clustering is an unsupervised method for

segmentation. In our approach, we incorporate the object
cue provided by part detectors and label smoothness into
the above formulation, then the optimization problem is:

min
X;f;d

E (X; f; d ) = Ec(X; f; d jI ) +
1

j
 I j

X

i 2 
 I

[Eo(x i j� ; I )

+ � s

X

j 2 N ( i )

Es(x i ; x j jI )]; (10)

whereN (i ) is the neighborhood ofi . Eo is de�ned based
on the common object cue shared by the image set:

Eo(x i j� ; I ) =
�

Ri (� k ; I ) � � if x i = 0
0 if x i = 1 ,

(11)

whereRi is the value of response map in Eq.(8) at pixel
i . Obviously, this model prefers to assign foreground la-
bel to pixel with

P
k Ri (� k ; I ) > � , and � is automat-

ically set for each image by enforcing that pixels above
this threshold occupy at most40% of the image area.Es



is the smoothness term de�ned asEs(x i ; x j jI ) = jx i �

x j j exp(�
jj v c

i � v c
j jj 2

2

2� ) [28] wherevc
i is color vector at pixel

i , and� is the mean of the squared distances between adja-
cent colors over the image.Es is submodular and encour-
ages the segmentation boundary to align with strong edges.

We optimize Eq.(10) by alternatively inferring the SVM
parametersf f; d g and the segmentation labelX . GivenX ,
f f; d g can be found by minimizingEc since it is the only
term that depends onf andd in Eq.(10). This can be done
by a standard kernel SVM algorithm. Givenf f; d g, the seg-
mentation labelX can be computed by minimizing Eq.(10)
with �xed f; d , which can be ef�ciently optimized by graph
cuts [7]. We initializeX by solving:

argminX f
X

i 2 
 I

[Eo(x i j� ; I ) + � s

X

j 2 N ( i )

Es(x i ; x j jI )]g;

(12)
which is based on the object cue and label smoothness.

In our implementation, feature vectorv is the concatena-
tion of HOG featurevh and color featurevc with length
of L h and L c respectively. Color values are scaled to
[0, 1]. In kernel SVM, we utilize kernelK (vi ; vj ) =
exp(� � c( 1

L h
jj vh

i � vh
j jj2

2 + 1
L c

jj vc
i � vc

j jj2
2)) with � c = 5 . It

is a valid kernel since it is multiplication of two radial basis
kernels. When we optimizeX using graph cuts, we utilize
superpixels [1] to de�ne the graph, in which per-pixel costs
Ec; Eo are averaged in each superpixel. Figure 5 shows an
example of initial and �nal cosegmentation results.

5. Experiments

To learn part detectors, we extract dense HOG features
at eight-pixel intervals, and each image part is represented
as concatenation of all HOG features in the corresponding
region. We utilize multiple sizes of part templates (8 � 8,
6 � 6, 4 � 4 feature cells) to capture features at different
scales. The discriminative part detectors are learned in one-
vs-all mode for each database. The regularization param-
eter� controls the sparsity of the solution. We have �xed
it to 0:005 in all experiments, which retains 10-15% of the
part detectors. Please see next section for a preliminary in-
vestigation of the effect of� on the number of parts and
classi�cation performance.

5.1. Image Classi�cation

We test our classi�cation method on four representative
image databases for scene categorization (15-Scenes [20],
MIT-indoor [27]), object recognition (Caltech-101 [14])
and event categorization (UIUC-Sports [22]). We use mean
average precision (mAP) to measure the accuracy.

Table 1 shows comparison results on 15-Scenes (100
training images per category). Our discriminative part de-
tectors perform signi�cantly better than the low-level visual
words in [20, 38] and high-level object detectors in [21].

Table 1. Comparison on 15-Scenes database.
Single feature Multiple features

Methods mAP Methods mAP
Sparse-coding [38] 80:3 � 0:9 Object-bank [21] 80.9

SPM [20] 81:4 � 0:5 BSPR [36] 88 :9 � 0:6
Graph-matching [12] 82:1 � 1:1 Su et al. [33] 87:8 � 0:5

DSS [31] 85 :5 � 0:6 Xiao et al. [35] 88.1
LPR [30] 85 :8

Ours 86 :0 � 0:8

Our algorithm performs well compared to the algorithms
using single feature. The state-of-the-art result on this
database is 88.9% in BSPR [36] which is based on multi-
ple features and dense sampling of pooling regions. Our
method can potentially be improved by incorporating com-
parable advanced pooling methods beyond SPM.

Table 2. Comparison on MIT-indoor 67 scenes categorization.
Methods mAP

DPM [26] 30.4
DPM + GIST + SPM [26] 43.1

Object-bank [21] 37.6
DiscPatches [32] 38.1
LPR-LIN [30] 44.8

Hybrid-parts [41] 39.8
Hybrid-parts + GIST + SPM [41] 47.2

Ours 51.4

Table 2 shows the comparison of our method with
state-of-the-art algorithms on the challenging MIT-indoor
database. For each category, we follow the same setting as
in [27] and use approximately 80 images for training and
20 images for testing. We learn a total of 4926 (12% of the
number of initial detectors) part detectors for 67 classes,
and achieve 51.43% in mAP using a single HOG feature.
Compared to discriminative patches learned by discrimina-
tive clustering [32] (14070 patches are learned), we perform
signi�cantly better, which shows the advantage of our learn-
ing method. Per-category accuracies are shown insupple-
mentary material.

Table 3. Comparison on UIUC-Sports database.
Methods mAP

Hybrid-parts [41] 84.5
Object-bank [21] 76.3

Sparse-coding [38] 82:7 � 1:74
LPR [30] 86.25
LSA[23] 82:3 � 1:84

Ours 86 :4 � 0:88

Table 4. Comparison on Caltech-101 database using single feature.
Methods mAP
SPM [20] 64:4 � 0:8

Macro-feature [5] 75:7 � 1:1
Sparse-coding [38] 73:2 � 0:5

Multi-way pooling[6] 77:1 � 0:7
Graph-matching[12] 80 :3 � 1:2

Ours 78:8 � 0:5

Tables 3 and 4 show comparison results on UIUC-Sports
and Caltech-101, in which 70 and 30 images per-category
are used for training respectively. Our algorithm achieves
state-of-the-art results on UIUC-Sports and competitive
results on Caltech-101 using a single feature1. Graph-

1The state-of-the-art result on Caltech-101 using multiple features is
84.3% achieved in [37] by multiple kernel learning.
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Figure 6. Examples of class-speci�c part detectors and their total response maps to images. (Best viewed in color.)

matching [12] performs better than ours on Caltech-101 us-
ing kernel method de�ned by dense matching. However it
achieves signi�cantly lower results on 15-Scenes in Table 1,
probably because objects in Caltech-101 are well aligned
and can be densely matched with higher accuracy.

Figure 6 shows examples of learned part detectors and
their total response maps. As shown in Figure 6(a,b), the
shoes and movie screens are effectively detected by our
learned part detectors for categories of “ShoeShops” and
“MovieTheater” in MIT-indoor database. Our learned part
detectors can effectively detect the discriminative image
parts and suppress the cluttered backgrounds.
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Figure 7. The effect of regularization parameter on the classi�ca-
tion performance (tested on 15-Scenes database).

Effect of regularization parameter� on performance: �
in Eq.(6) determines the number of selected part detectors.
Figure 7 shows the effect of� on the performance tested on
15-Scenes database. With the increase of� , we observe that
the number of learned part detectors decreases fast, and the
classi�cation accuracy increases then decreases, however, is
quite stable to� when0:002� � � 0:015.

5.2. Image Cosegmentation

We test our algorithm on MSRC database and compare
with the state of the art. This database is commonly used
for testing binary cosegmentation algorithms [16, 19, 25].
The parameters of cosegmentation model in Eq. (10) are set
as� c = 1 ; � s = 0 :25. We utilize intersection-over-union

score as in [17] to measure the segmentation accuracy. Ta-
ble 5 shows comparison results between our algorithm and
the state-of-the-art cosegmentation algorithms. The algo-
rithm of [25] fails to converge on four classes. Our initial
segmentation based on object cues alone already achieves
better results than the method in [19]. Our full algorithm
achieves the highest accuracy on this database. Figure 8
shows examples of our cosegmentation results.

Table 5. Comparison of the proposed cosegmentation method with
Joulin et al. [16, 17], Kim et al. [19], and Mukherjee et al. [25].
“Ours init” indicates the initial segmentation of our approach.

Datasets Images [16] [17] [19] [25] Ours init Ours
Bike 30 42.3 43.3 29.9 42.8 46.5 50.7
Bird 30 33.2 47.7 29.9 – 22.8 31.0
Car 30 59.0 59.7 37.1 52.5 55.0 61.5
Cat 24 30.1 31.9 24.4 5.6 36.5 48.0

Chair 30 37.6 39.6 28.7 39.4 39.4 48.9
Cow 30 45.0 52.7 33.5 26.1 38.2 45.6
Dog 26 41.3 41.8 33.0 – 32.4 46.6
Face 30 66.2 70.0 33.2 40.8 48.4 50.3

Flower 30 50.9 51.9 40.2 – 50.2 75.7
House 30 50.5 51.0 32.2 66.4 51.1 61.5
Plane 30 21.7 21.6 25.1 33.4 28.2 28.1
Sheep 30 60.4 66.3 60.8 45.7 47.8 65.2
Sign 30 55.2 58.9 43.2 – 50.9 69.9
Tree 30 60.0 67.0 61.2 55.9 55.8 70.1

Average 46.7 50.2 36.6 – 43.1 53.8

6. Conclusion

We have proposed a novel latent SVM model to learn
discriminative part detectors for image categories. It
achieves promising results for image classi�cation and
cosegmentation. We have shown that discriminative part
detectors provide mid-level cues to determine the position
of objects. In the future, we are interested in organizing
these part detectors in graph structure for object detection.
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Figure 8. Cosegmentation results on categories of “Tree”, “Face”, “Car”, “Bike”, “Sheep”, “Sign” in MSRC database.

References
[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk. Slic

superpixels compared to state-of-the-art superpixel methods.IEEE T. PAMI,
34(11):2274–2282, 2012.
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