]. M. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, Studies in Applied Mathematics. SIAM, issue.1, 2000.
DOI : 10.1137/1.9781611970883

A. Boutet-de-monvel, A. S. Fokas, and D. Shepelsky, Integrable Nonlinear Evolution Equations on a Finite Interval, Communications in Mathematical Physics, vol.263, issue.1, pp.133-172, 2006.
DOI : 10.1007/s00220-005-1495-2

K. Carlberg, C. Bou-mosleh, and C. Farhat, Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations, International Journal for Numerical Methods in Engineering, vol.35, issue.2, pp.155-181, 2011.
DOI : 10.1002/nme.3050

M. Cheng, T. Y. Hou, and Z. Zhang, A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations I: Derivation and algorithms, Journal of Computational Physics, vol.242, pp.843-868, 2013.
DOI : 10.1016/j.jcp.2013.02.033

M. Cheng, T. Y. Hou, and Z. Zhang, A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations II: Adaptivity and generalizations, Journal of Computational Physics, vol.242, pp.753-776, 2013.
DOI : 10.1016/j.jcp.2013.02.020

P. Deift and E. Trubowitz, Inverse scattering on the line, Communications on Pure and Applied Mathematics, vol.45, issue.2, pp.121-251, 1979.
DOI : 10.1002/cpa.3160320202

P. G. Drazin and R. S. Johnson, Solitons: an introduction. Cambridge texts in Applied Mathematics, 1996.

J. Gerbeau and D. Lombardi, Reduced-Order Modeling based on Approximated Lax Pairs, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00752810

J. Thomas, . Hughes, M. Gregory, and . Hulbert, Space-time finite element methods for elastodynamics: formulations and error estimates Computer methods in applied mechanics and engineering, pp.339-363, 1988.

M. T. Laleg, E. Crepeau, and M. Sorine, Separation of arterial pressure into a nonlinear superposition of solitary waves and a windkessel flow, Biomedical Signal Processing and Control, vol.2, issue.3, pp.163-170, 2007.
DOI : 10.1016/j.bspc.2007.05.004

T. M. Laleg, Analyse de signaux par quantification semi-classique. Application à l'analyse des signaux de pression artérielle, 2008.
URL : https://hal.archives-ouvertes.fr/tel-00357309

T. M. Laleg, C. Médigue, F. Cottin, and M. Sorine, Arterial blood pressure analysis based on scattering transform II, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.5330-5333, 2007.
DOI : 10.1109/IEMBS.2007.4353545

URL : https://hal.archives-ouvertes.fr/inria-00139529

T. M. Laleg-kirati, E. Crépeau, and M. Sorine, Semi-classical signal analysis, Mathematics of Control, Signals, and Systems, vol.7, issue.1, 2012.
DOI : 10.1007/s00498-012-0091-1

URL : https://hal.archives-ouvertes.fr/inria-00495965

T. M. Laleg-kirati, C. Médigue, Y. Papelier, F. Cottin, and A. Van-de-louw, Validation of a Semi-Classical Signal Analysis Method for Stroke Volume Variation Assessment: A Comparison with the PiCCO Technique, Annals of Biomedical Engineering, vol.74, issue.4, pp.383618-3629, 2010.
DOI : 10.1007/s10439-010-0118-z

URL : https://hal.archives-ouvertes.fr/inria-00527442

P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Communications on Pure and Applied Mathematics, vol.15, issue.5, pp.467-490, 1968.
DOI : 10.1002/cpa.3160210503

P. D. Lax and C. D. Levermore, The small dispersion limit of the Korteweg-de Vries equation. I, Communications on Pure and Applied Mathematics, vol.8, issue.3, pp.253-290, 1983.
DOI : 10.1002/cpa.3160360302

Y. Maday and E. M. Rønquist, A reduced-basis element method, Comptes Rendus Mathematique, vol.335, issue.2, pp.447-459, 2002.
DOI : 10.1016/S1631-073X(02)02427-5

URL : https://hal.archives-ouvertes.fr/hal-00112608

S. Petersen, C. Farhat, and R. Tezaur, A space-time discontinuous Galerkin method for the solution of the wave equation in the time domain, International Journal for Numerical Methods in Engineering, vol.29, issue.R2, pp.275-295, 2009.
DOI : 10.1002/nme.2485

G. Rozza, D. B. Huynh, and A. T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations, Archives of Computational Methods in Engineering, vol.40, issue.11, pp.1-47, 2007.
DOI : 10.1007/BF03024948

D. Ryckelynck, F. Vincent, and S. Cantournet, Multidimensional a priori hyper-reduction of mechanical models involving internal variables, Computer Methods in Applied Mechanics and Engineering, vol.225, issue.228, pp.28-43, 2012.
DOI : 10.1016/j.cma.2012.03.005

URL : https://hal.archives-ouvertes.fr/hal-00705783

T. P. Sapsis and P. F. Lermusiaux, Dynamically orthogonal field equations for continuous stochastic dynamical systems, Physica D: Nonlinear Phenomena, vol.238, issue.23-24, pp.2347-2360, 2009.
DOI : 10.1016/j.physd.2009.09.017

J. Shan, C. D. Levermore, and D. W. Mclaughlin, The semiclassical limit of the defocousing NLS hierarchy, Comm. Pure Appl. Math, vol.52, pp.613-654, 1999.

L. Sirovich, Low-dimensional description of complicated phenomena, Contemporary Mathematics, vol.99, pp.277-305, 1989.
DOI : 10.1090/conm/099/1034504

J. Van, D. Vegt, and H. Van-der-ven, Space?time discontinuous galerkin finite element method with dynamic grid motion for inviscid compressible flows: I. general formulation, Journal of Computational Physics, vol.182, issue.2, pp.546-585, 2002.