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Abstract— A lot of interest has recently arisen in the analysis
of multiple-choice “cuckoo hashing” schemes. In this context, a
main performance criterion is the load threshold under which
the hashing scheme is able to build a valid hashtable with high
probability in the limit of large systems; various techniques
have successfully been used to answer this question (differential
equations, combinatorics, cavity method) for increasing levels of
generality of the model. However, the hashing scheme analysed
so far is quite utopic in that it requires to generate a lot
of independent, fully random choices. Schemes with reduced
randomness exists, such as “double hashing”, which is expected
to provide similar asymptotic results as the ideal scheme, yet
they have been more resistant to analysis so far. In this paper,
we point out that the approach via the cavity method extends
quite naturally to the analysis of double hashing and allows
to compute the corresponding threshold. The path followed is
to show that the graph induced by the double hashing scheme
has the same local weak limit as the one obtained with full
randomness.

I. I NTRODUCTION

The hashing paradigm is as follows: we are givenn items
andm keys, and we want to assign a key to each item so
as to be able to retrieve the items efficiently. In the most
basic setting, we want to have exactly one key per item and
at most one item per key. Critical performance metrics for
such systems are the size of the hashtable (the number of
keys) needed to hold a given number of items, and the time
it takes to either retrieve or insert items. Themultiple-choice
hashing strategy is one that guaranties a constant look-up
time. It consists in pre-defining a set ofd ≤ m keys for each
item, which is then only allowed to pick a key within that
set. Of course, depending on the choices of the pre-defined
sets of keys, it may be impossible to handle simultaneously
some sets of items and inserting a new item may not be
easy. As for the second issue,cuckoo hashing [1] is a simple,
randomized way to search for a new valid assignement upon
arrival of a new item: one first checks whether one of the
keys pre-defined for the new item is available, in which case
it suffices to pick one of these; otherwise, one of the pre-
defined keys is chosen at random and re-allocated to the
new item. The same procedure is then used for the item
that has just been evicted (which is thus treated as a new
item). In a fully random context, multiple-choice hashing
has been shown to have good performance: if the set ofd
keys pre-defined for each item are chosen independently and
uniformly at random among all sets ofd keys, then there
exists a thresholdτ∗ such that, ifn = τm with τ < τ∗, in the
limit of m,n → ∞ cukoo hashing will yield a valid hashtable
with probability tending to1 (which we refer to as w.h.p.

for with high probability). Furthermore, the cuckoo hashing
update procedure is also quite efficient [2], [3], in that the
insertion time is polylogarithmic in the system size w.h.p.A
recent refinement [4] of the update algorithm also achieves
constant average insertion time w.h.p. when items are only
inserted. The focus here being on the space utilization rather
than on the insertion time, i.e. on the efficiency of multiple-
choice hashing rather than on that of cuckoo hashing, we do
not expand on this.

A major drawback of the fully random (multiple-choice)
hashing scheme described above is the amount of random-
ness involved: the standard approach requiresn independent,
uniform choices of sets ofd keys amongm. Phrased dif-
ferently, this means roughlyd logm independent random
bits per item. Generating unbiased, perfectly independent
random bits does not come for free [5], [6], therefore a lot of
effort has been put into reducing this amount of randomness
needed (see [7] and references therein for an account of
some directions investigated so far). A candidate alternative
is double hashing [8], [9], which seems to have similar
performances as the fully random one while requiring only
roughly 2 logm independent random bits per item: assume
m is a prime number and label them keys with the integers
from 1 to m; for each item, independently draw two random
numbersf ∈ {1, . . . ,m} and g ∈ {1, . . . , m−1

2 }; the pre-
defined set of keys associated with a couple(f, g) are the
keys labeledf+ig (modm), for i ∈ {0, . . . d−1}. Although
the reduced randomness of the double hashing scheme is
the very reason this method could be prefered over fully
random hashing, it also makes the theoretical analyzis of
its performance more difficult. In this paper, we show that
the load threshold under which double hashing succeeds
w.h.p. is essentially the thresholdτ∗ of standard fully random
multiple-choice hashing, thereby confirming the hypothesis
that double hashing has very similar performance to fully
random hashing. More specifically, we show that, ifn = τm
with τ < τ∗, in the limit of m,n → ∞ double hashing is
able to handle all buto(n) items w.h.p. In the case of fully
random hashing, one would be able to state a similar result
with o(1) instead ofo(n). It is very likely that we could
obtain the same result using an additional argument (as in
[10], [11]), however we believe the current result is sufficient
to demonstrate the efficiency of the approach and we do not
cross this last gap. It is also of interest to note that there
are many extensions of the basic setting considered in this
paper (one key per item and at most one item per key). The
approach used in this paper is also suited for the analysis of



those extensions. For the sake of clarity we do not address
them here, although the results go through with only minor
modifications.

The remainder of this paper is structured as follows: in the
next section, we point out some relevant previous work on
the subject. In section III, we define the graphs and random
graphs used to model the hashing techniques considered in
this paper; in section IV, we recall the concept of local weak
limit of random graphs, which is the basis of the cavity
method approach for computing the load thresholdτ∗. In
section V, we show that the local weak limit of the random
graphs induced by double hashing is identical to that of
the random graphs induced by fully random hashing, which
implies that the two methods have essentially the same load
threshold.

II. PREVIOUS WORK ON PERFORMANCE OFHASHING

SCHEMES FORLOAD BALANCING

The load thresholdτ∗ under which fully random hashing
works w.h.p. can be computed by various techniques [12],
[13], [14]. For d ≥ 3, it is given by

τ∗ =
ξ∗

d(1− e−ξ∗)d−1
,

whereξ∗ is the unique solution of the equation

d =
ξ(1 − e−ξ)

1− e−ξ − ξe−ξ
.

In the basic setting (one key per item and at most one item
per key) as well as in extensions (more items allowed per
key [15], [16], [17], more keys required per item [18], [10],
restrictions on the number of times a couple (item,key) is
used [11]), the load thresholdτ∗ is related to the emergence
of a certain core of the bipartite graph with a large density.
It can also be viewed as a problem of orientability of
hypergraphs. In all the cases, the expression of the load
thresholdτ∗ involves a solution of a fixed-point equation
which can be traced back ot the cavity method, as shown in
[19], [10], [11] as they are related to the fixed-point messages
of the belief propagation message passing algorithm.

More generally than hashing systems, this work is related
to load balancing. A common formulation for the load
balancing problem is that we havem bins, in which we are
going to thrown balls. If we throw each balls uniformly
at random independently of the previous ones, we end
up with the most loaded bin holding logn

log logn (1 + o(1))
balls. However, if before throwing each ball we checkd
bins at random and throw the ball in the least loaded bin,
then the most loaded bin will only holdlog logn

log d + O(1)
balls [20], which represents an exponential improvement. In
the same setup, where bins have no limit capacity, double
hashing achieves the same performances [21], [7] as fully
random choices. However, in order to guaranty a worst-case
constant look-up time, one cannot allow a key to refer to an
unbounded number of items, which motivates the hashing
setup presented in Section I.

III. H ASHING GRAPH AND RANDOM GRAPH MODELS

A multiple-choice hashing system can be represented as
a bipartite graphG = (L ∪ R,E) that we call thehashing
graph, where the left partL represents the items and the right
partR the keys; the edges of the graph indicate which keys
can be assigned to which items. In the case of fully random
hashing, thed edges adjacent to a left-vertex can be anything,
while for double hashing they are restricted to having a
certain structure. Given such a hashing graphG, it is possible
to build a valid hashtable if we can associate each left-vertex
(items) to a right-vertex (keys) without collision, i.e. ifthere
exists a left-perfect matching ofG. The items with which
the hashing system is presented are random and thus the
hashing graph is random, following a different distribution
whether we consider fully random or double hashing. Thus,
the goal is to determine whether the random graphs obtained
have a left-perfect matching w.h.p. Note that for fully random
hashing, the graphG is simply a uniform random graph with
fixed degreed on the left.

For our analysis of double hashing, it is convenient to
see its hashing graph as obtained in the following manner,
where we merge all the items which are given the same
choices of keys and keep track of the multiplicity of the
vertices: we start from the bipartite graph̃G = (L̃ ∪ R,E)
which contains all the information about the choices of keys
offered to every item that can potentially be inserted in the
hashtable. We have|R| = m and |L̃| =

(
m
2

)
, with a left-

vertex inG̃ for each different neighborhood (different choice
of keys) allowed by the local structure constraints of the
hashing technique. If we label the vertices inR with the
integers from1 to m and the vertices iñL with the couples
(f, g) with f ∈ {1, . . . ,m} andg ∈ {1, . . . , m−1

2 }, there is
an edge inG̃ between vertexr ∈ R and l = (f, g) ∈ L̃ if
there existsi ∈ {0, . . . , d−1} such thatr = f+ig (modm).
To build the hashing graph,f andg are drawn independently
at random for each of then items, which corresponds exactly
to a samplingwith replacement of n left-vertices inL̃. We
denote byL′ ⊂ L̃ the set of left-vertices obtained in this
way, and byZ ′

l ∼ Bin(n, 1/
(
m
2

)
) the multiplicity of the left-

verticesl. The induced graphG′ = G̃[L′ ∪R] is exactly the
graph obtained via double-hashing. This main result is stated
in Corollary 1.

As we are interested in the regimen = τm → ∞, it
is equivalent for our problem to supposen ∼ Poi(τm)
instead. Indeed, the Poi(τm) random variable is concentrated
aroundτm with only logarithmic fluctuations form → ∞,
therefore the existence and the value of a load thresholdτ∗

are identical in the two models. Thus, we consider instead
the setL obtained by takingZl ∼ Poi( 2τ

m−1 ) copies of

each vertex inL̃, independently for each vertex iñL, and
keeping inL only those vertices with at least one copy, as
we did before forL′. We will focus mainly on the random
graphG = G̃[L ∪ R]; we denote byGm a sample of this
random graph for a particular value ofm (τ being fixed and
n ∼ Poi(τm)).



IV. L OCAL WEAK CONVERGENCE AND THECAVITY

METHOD

As we mentioned earlier, we intend to show that the
approach via the cavity method for computing the value of
the load thresholdτ∗ can be extended to double hashing. We
will not explain here how or why the cavity method works;
the interested reader can refer to the vast literature on that
particular subject. However, we need to explain the notion
of local weak convergence of a sequence of graphs, which is
used in this paper and is at the basis of the cavity approach.
The framework used here is that of [22].

First, we recall that a sequence of probability measures
(ρm)m∈N on a certain metric spaceS converges weakly to
a probability measureρ, which we denote byρm  ρ, if
for every bounded continuous functionf : S → R,

∫
fdρm

converges to
∫
fdρ. We focus on locally finite rooted graphs

(or rooted networks, if we want to include marks on the
edges). A rooted graph(G, v) is a graphG together with a
distinguished vertexv of G which is called the root. A rooted
isomorphism of rooted graphs is a graph isomorphism which
sends the root of one to the root of the other, i.e. a one-to-
one mapping of the vertices of a graph to those of another
graph which preserves the root, the edges (and their marks).
We denote by[G, v] the isomorphism class of(G, v) and by
G∗ the set of rooted isomorphism classes of rooted locally
finite graphs. We endowG∗ with the following metric: let the
distance between[G, v] and[G′, v′] be1/(1+ δ), whereδ is
the supremum of thosek ∈ N such that there is some rooted
isomorphism of the balls of graph-distance radiusk around
the roots ofG andG′. With this metric onG∗, the definition
of weak convergence applies to probability measures onG∗.
Given a finite graphG, there is a natural way to form a
probability measure onG∗: we letU(G) be the distribution
over G∗ obtained by choosing a uniform random vertex of
G as a root. Then, we say a sequence(Gm)m∈N converges
locally weakly towards a measureρ onG∗ when the sequence
of distributions(U(Gm))m∈N

converges weakly towardsρ.
In the case of fully random hashing and withn = τm, the

hashing graph is a uniform random graph with fixed degreed
on the left. Asm → ∞, such a random graph, when rooted at
a random right-vertex, is known to converge locally weakly
to a two-step Galton-Watson tree with distributions Poi(τd)
and Deterministic(d). A sample of such a (potentially infi-
nite) tree is constructed as follows: the root (a key) has degree
Poi(τ); every vertex at odd distance from the root (items) has
exactly d − 1 children; every vertex at even distance from
the root (keys) has a Poi(τd) number of children.

We should now explain how this notion of local weak
convergence is used to obtain the load thresholdτ∗. We
noted previously that the existence of a valid hashtable is
equivalent to that of a left-perfect matching of the hashing
graph. Clearly, such a matching is of maximum size among
all matchings and its size is exactly equal ton. In [19], [10],
[11], the cavity method was used to compute the asymptotic
density of a maximum-size matching for any sequence of
random graphs converging in the local weak sense to a

Galton-Watson tree. It is then possible to determine the
thresholdτ̃∗ under which a maximum-sized matching has
size equivalent ton = τm asm → ∞. Having τ < τ̃∗ thus
guaranties the existence of a matching of sizen − o(n) as
m → ∞; therefore all but at mosto(n) items can be handled.
In a second shorter step, it was shown that the two thresholds
τ∗ and τ̃∗ are actually equal for fully random hashing.

The advantage of the approach presented in this section
is that the threshold̃τ∗ is already computed for all graphs
converging in the local weak sense towards two-step Galton-
Watson trees. Therefore, to compute the load threshold for
another hashing scheme, one only needs to perform two
smaller steps: (1) show the appropriate local weak conver-
gence of the hashing graphs, (2) check the equality of the
two thresholdτ̃∗ and τ∗ for the particular hashing scheme
used. In the next section, we stop before this second step and
show that the thresholds̃τ∗ are identical for the fully random
hashing and double hashing, as both random graph models
have the same two-step Galton-Watson tree as a local weak
limit.

V. L OCAL WEAK CONVERGENCE OFDOUBLE HASHING

GRAPH

A. Main Results and Overview of the Proof

The proof consists in similar steps as in [23], with the
difference that in our case the graphs are bipartite and have
a more constrained local structure.

Let us call Gm = (Lm ∪ Rm, Em) the random graph
obtained at finitem and let ρGm

be the distribution of
[Gm, r0], where r0 is a random root inRm; let ρm be
the average ofρGm

over the random graphGm. Let also
ρ be the law of a two-step Galton-Watson tree with laws
Poi(τd) and Deterministic(d), as defined in the previous
section. In a first step, we will show thatρm converges
weakly towardsρ as m → ∞. Then, we will show that
ρGm

is concentrated aroundρm so thatρGm
almost surely

converges weakly towardsρ. Explained differently, there are
two sources of randomness involved in the sampling of a
rooted graph[Gm, r0]: the first one is artificial and is due to
r0 being a random right-vertex. It has been introduced to turn
any fixed graph into a distribution over rooted graphs, which
then allows to consider weak convergence of a sequence
of such distributions. The second one is inherent to the
hashing scheme used: it comes from the fact the couple
(f, g) determining the choice of keys offered to each item is
chosen at random upon arrival of the item, and it turnsGm

itself into a random graph, in a way described in Section III.
We first show that the measureρm obtained by averaging
over both sources of randomness at the same time converges
weakly towards the lawρ of a two-step Galton-Watson,
before showing that the averaging over the random choices
offered to the items is not required for the convergence to
hold, which means we do not need to average over different
realization of a large hashtable for the results to hold.

We will thus show the following results: the first one is the
intermediate result where we show local weak convergence
with both types of averaging together.



Proposition 1: The average distributionρm of the double
hashing random rooted graph[Gm, r0] rooted at a random
vertex r0 ∈ Rm converges weakly towards the distribution
of a two-step Galton-Watson tree. In other words, we have

ρm  ρ.
The result above, together with some results on concentra-

tion of measure, leads to our main theorem, which is almost
sure local weak convergence of the hashing graph:

Theorem 1: The distributionρGm
of the double hashing

random graphGm almost surely converges weakly towards
the distribution of a two-step Galton-Watson tree. In other
words,

ρGm
 ρ a.s.

Finally, the announced result on the load threshold of
double hashing is contained in the following corollary, which
is a direct consequence of Theorem 1 and Theorem 2 from
[10] or equivalently Theorem 2.1 from [11].

Corollary 1: The load thresholdτ∗ under which all items
can be inserted in the hashtable for fully random hashing
w.h.p. is also the load threshold under which alln items but
o(n) can be inserted for double hashing w.h.p.

In the next subsection, we introduce a main tool for our
proofs: a two-step breadth-first search (BFS) exploration of
the hashing graphGm; and illustrate its analysis through
the simple example of upper-bounding the number of short
cycles inGm.

B. Breadth-First Search Exploration

When it is clear from the context, we simply writeG
instead ofGm. For anyk ∈ N

∗ and any graphG∗, we let
N k

G∗(v) denote thek-hop neighborhood of vertexv in the
graphG∗; to ease the notation, whenG∗ = G we simply
write N k(v), and whenk = 1 we writeNG∗(v).

We consider the breadth-first search (BFS) exploration of
the graphG, starting from a random right-vertexr0 ∈ R.
At each step, we select an active right-vertex and explore
all its left-neighbors as well as their own right-neighbors.
We define the setsCR

t andCL
t of connected right- and left-

vertices at timet, the list of active right-verticesAR
t , and

the sets of unexplored right- and left-verticesUR
t andUL

t .
We have

CR
0 = CL

0 = ∅,
AR

0 = (r0),
UR
0 = R \ {r0},

UL
0 = L̃.

At each stept, we proceed as follows:

• we let rt be the first element in the listAR
t (so that it

is the closest vertex tor0 in AR
t );

• if AR
t 6= ∅, we do the following updates:

CR
t+1 = CR

t ∪ {rt},
CL

t+1 = CL
t ∪N (rt),

AR
t+1 = (AR

t \ {rt},N 2(rt) ∩ UR
t ),

UR
t+1 = UR

t \ N 2(rt),
UL
t+1 = UL

t \ NG̃(rt).

We let XR
t be the number of vertices added toAR

t \ {rt}
at stept, i.e. XR

t = |N 2(rt) ∩ UR
t |, andXL

t (resp. X̃L
t )

be the number of left-vertices ofG (resp. G̃) explored at
step t, i.e. XL

t = |N (rt) ∩ UL
t | and X̃L

t = |NG̃(rt) ∩

UL
t |, where we identify the vertices inG and G̃ with the

same label. We also letθ = inf{t ≥ 1 : At 6= ∅}
be the time at which we complete the exploration of the
connected component ofrt in G; θ is a stopping time for
the filtrationFt = σ

( (
CR

i , CL
i , A

R
i , U

R
i , UL

i

)
0≤i≤t

)
. With

these definitions and for allt ≤ θ, it is clear that

|CR
t | = t,

|CL
t | =

∑t−1
i=0 X

L
i ,

|AR
t | = 1 +

∑t−1
i=0(X

R
i − 1)

≤ 1− t+ (d− 1)
∑t−1

i=0 X
L
i ,

|UR
t | = m− 1−

∑t−1
i=0 X

R
i ,

|UL
t | =

(
m
2

)
−

∑t−1
i=0 X̃

L
i ≥ m−1

2 (m− dt).

To get used to reasoning on this model of random bipartite
graphs with local structure constraints as well as to under-
stand why double hashing graphs converge to trees, we start
off by bounding the number of cycles of a given length in
G:

Lemma 1: Let Ck be the number of cycles of lengthk in
G. We have

E [C2k] ≤ d2kτk +O(1/m)

Proof: Let r1, . . . , rk ∈ R be distinct vertices ofR.
For r1, . . . , rk to be on a cycle of size2k of G in this order,
there must exist distinct verticesl1, . . . , lk ∈ L such that, for
all i, li connectsri−1 andri, wherer0 = rk. Fixing r andr′

distinct in R, the number of vertices connecting them iñG
is exactly

(
d
2

)
(as setting the set of indices{i, i′} such that

f + ig = r andf + i′g = r′ or f + i′g = r andf + ig = r′

leaves exactly one possibility for the couple(f, g) ∈ L̃).
Therefore, the probability thatr and r′ are connected by a
vertex inL is

P

(
r andr′ are connected by a vertex inL

)

= 1− e−
2τ

m−1 (
d

2)

=
(
d
2

)
2τ
m +O(1/m2).

Furthermore, it is clear that the probability of existence
of distinct verticesl1, . . . , lk in L such that, for eachi, li
connectsri−1 and ri, is no larger than the product of the
probabilities of existence of eachli independently of the
others:

P

(
∀i, ∃li ∈ L connectingri−1 andri; li 6= lj , ∀j 6= i

)

≤
∏

i P

(
∃li ∈ L connectingri−1 andri

)

≤
(

τd2

m

)k

+O(1/mk+1).

We conclude by summing over all them. . . (m−k+1) ≤ mk

possible choices ofr1, . . . , rk.



C. Proofs

We now return to the proof of the main theorem. Lemma 2
shows that the joint distribution of the numbers of children
of the left-vertices explored during the firstt steps of BFS
is asymptotically very close to that we would obtain in a
two-step Galton-Watson tree.

Lemma 2: On an enlarged probability space, there exists
a sequence(Y L

t )t≥0 of i.i.d. Poi(τd) variables such that

P

(
(XL

0 , . . . , X
L
(t−1)∧θ) 6= (Y L

0 , . . . , Y L
(t−1)∧θ)

)

≤ 1
m−1 (τd

2t2 + τ2dt+ 2τt).
We denote by dTV(p, q) the distance in total variation

between the two distributionsp andq. To ease the notation,
we will also use dTV for random variables, which will refer
to the distance between their distributions. The maximal
coupling inequality says that, over an enlarged probability
space, there exists a coupling ofX andY such thatP(X 6=
Y ) = dTV(X,Y ).

Proof: For any t ≤ θ, XL
t is a binomial random

variable of parameters|UL
t ∩ NG̃(rt)| and 1 − e−

2τ

m−1 .
We have that|NG̃(rt)| =

m−1
2 d and, as any two vertices

in R (and in particularri and rt for any i < t) are
connected by exactly

(
d
2

)
vertices inL̃, we obtain the bound

m−1
2 d −

(
d
2

)
t ≤ |UL

t ∩ NG̃(rt)| ≤ m−1
2 d. Furthermore,

2τ
m−1 − 2τ2

(m−1)2 ≤ 1− e−
2τ

m−1 ≤ 2τ
m−1 . It follows

P

(
(XL

0 , . . . , X
L
(t−1)∧θ) 6= (Y L

0 , . . . , Y L
(t−1)∧θ)

)

≤ E

[∑(t−1)
i=0 1(i ≤ θ)P(XL

i 6= Y L
i

∣∣Fi)
]

and

E

[
dTV(X

L
i , Y

L
i )|Fi

]

≤ P

(
Bin(

(
d
2

)
i, 1− e−

2τ

m−1 ) 6= 0
)

+dTV

(
Bin(m−1

2 d, 1− e−
2τ

m−1 ),Bin(m−1
2 d, 2τ

m−1 )
)

+dTV

(
Bin(m−1

2 d, 2τ
m−1 ),Poi(τd)

)

≤ 2τi
m−1

(
d
2

)
+ τ2d

m−1 + 2τ
m−1 .

We conclude by using the maximal coupling inequality and
then summing overi.

Next, Lemma 3 asserts that w.h.p. the graph explored in
the first t steps of BFS is a tree.

Lemma 3: For an integert ≤ θ, the portion of the graph
G explored until stept becomes a tree w.h.p. asm,n → ∞.
More precisely,

P

(
G[(CR

t ∪ AR
t ) ∪CL

t ] not a tree
)
≤

τ2d4t+ τ2d4t2

m− 1
.

Proof: Loops get formed in the portion of the graph
explored at stept when one of the following events occur:

• there exists a vertexr ∈ UR
t connected tort by at least

two distinct vertices inL;
• there exists a vertexl ∈ UL

t ∩L which connectsrt and
some vertexr ∈ AR

t .

Indeed, assumingG[(CR
t ∪AR

t )∪CL
t ] is a tree and none of

the two events above occur, it is easy to see thatG[(CR
t+1 ∪

AR
t+1) ∪ CL

t+1] is still a tree. At stept, if a loop is created,

it must contain a newly explored left-vertex (i.e. a vertex in
CL

t+1\C
L
t ), otherwise it would not involve any new vertex or

edge and hence would also be a loop inG[(CR
t ∪AR

t )∪CL
t ];

furthermore, we can always assume that loop containsrt. If
the second event does not occur, the newly added vertices
are connected to those in(CR

t ∪AR
t )∪CL

t only throughrt,
and thus any new loop must be contained inG[{rt}∪(AR

t+1\
AR

t )], which is prevented since the first event does not occur
either. Let us callEt andE′

t the two events considered.

P(Et) ≤ E

[∑
r∈UR

t

P(|N (r) ∩ N (rt)| ≥ 2
∣∣Ft)

]

≤ τ2d4

m−1 ,

P(E′
t) ≤ E

[ ∑
r∈AR

t
\{rt}

P(N (r) ∩ N (rt) 6= ∅
∣∣Ft)

]

≤ τd2

m−1 (E[|A
R
t |]− 1).

We can boundE[|AR
t |] as follows

E[|AR
t |]− 1 ≤ −t+ (d− 1)

t−1∑

i=0

E[XL
i ] ≤ τd2t.

Summing overt yields the desired result.
The hashing graphG obtained may be a tree, but remem-

ber that we merged all the items with the same choices of
keys into a single left-vertex ofG. Lemma 4 shows that
each left-vertex explored in the firstt steps of BFS actually
correspond to a single item, i.e. the items explored were
given different choices of keys, w.h.p.

Lemma 4: For an integert ≤ θ, no left-vertex explored
until step t has two copies or more (i.e.Zl ≤ 1 for all
l ∈ CL

t ) w.h.p. asm,n → ∞. We have

P

(
∃l ∈ CL

t : Zl ≥ 2
)
≤

4τ3dt

(m− 1)2
.

Proof: The result follows straightforwardly from the
union bound:

P

(
∃l ∈ CL

t : Zl ≥ 2
)

≤ E[|CL
t |](1 − P

(
Poi( 2τ

m−1 ) ≤ 1))
)

=
∑t−1

i=0 E[X
L
i ]
(
1− e−

2τ

m−1 − 2τ
m−1e

− 2τ

m−1

)

≤ τdt 4τ2

(m−1)2 .

We are now ready to show that the average distribution
ρm of the k-hop neighborhood of a random root-vertexr0
in a random graphGm tends to the distribution of a two-
step Galton-Watson tree cut at depthk, for any k ∈ N and
asm → ∞ (Proposition 1).

Proof: [Proof of Proposition 1] Letk ∈ N. For any
finite treeT of depth at mostk (or more generally for rooted
graphs of radius at mostk) and any collection of such trees
T , let AT = {[G] ∈ G∗, (G)k ≃ T }, where≃ refers to
rooted isomorphism, andAT = ∪T∈T AT . For everyǫ > 0
and any finitek, there exists a finite setT of trees of depths
at mostk in which every odd-depth vertex has degreed
and such thatρ(AT ) =

∑
T∈T ρ(AT ) ≥ 1 − ǫ. Let t be

the maximum size of the trees inT ; it means that, with
probability at least1 − ǫ, a BFS run duringt steps on a



two-step Galton-Watson tree sampled fromρ will explore at
least thek-hop neighborhood of the root.

Let r0 be a random right-vertex in the random graphGm.
According to Lemmas 3 and 4 and with probability at least
1 − τ2d4t+τ2d4t2

m−1 − 4τ3dt
(m−1)2 →

m→∞
1, the graph induced by

[Gm, r0] on the vertices explored during the firstt steps of
BFS is a tree, with all left-vertices having exactly one copy.
Hence, in particular the offspring of each left-vertex in this
tree is of sized−1. Furthermore, according to Lemma 2 and
with probability at least1 − τd2t2+τ2dt+2τt

m−1 →
m→∞

1, there
is a coupling between the numbers of newly explored left-
vertices in the graph[Gm, r0] during the firstt steps of BFS
and a sequence of i.i.d. Poi(τd) random variables. Therefore,
on an event of probability tending to1 asm → ∞, we can
couple the exploration during the firstt steps of BFS on
[Gm, r0] and on a two-step Galton-Watson tree sampled from
ρ. On the event that these two exploration can be coupled
and for anyT ∈ T such that the BFS exploration onT will
have explored at least thek-hop neighborhood of the root
within t steps, it follows the BFS exploration on[Gm, r0]
will also have explored at least thek-hop neighborhood of
r0. Then, for anyT ∈ T , we have

|P((Gm, r0)k ≃ T )− ρ(AT )|

≤ τ2d4t+τ2d4t2+τd2t2+τ2dt+2τt
m−1 + 4τ3dt

(m−1)2 .

Then, it follows lim
m→∞

ρm(AT ) = ρ(AT ) for anyT ∈ T .

For any bounded uniformly continuous functionf , there
existsk ∈ N such that|f((G)k)− f(G)| ≤ ǫ for all rooted
graphsG ∈ G∗. For thisk we can define a finite collection
of treesT as before, such thatρ(T ) ≥ 1 − ǫ. For m large
enough, we haveρm(T ) ≥ 1− 2ǫ, and
∣∣∣
∫
fdρm −

∫
fdρ

∣∣∣ ≤ ǫ(1 + 3||f ||∞)

+
∑

T∈T f(T )
∣∣ρm(AT )− ρ(AT )

∣∣.
Letting m → ∞ and thenǫ → 0 completes the proof.

We will now provealmost sure local weak convergence of
the random graphGm towards the two-step Galton-Watson
tree (Theorem 1). To that end, we use the Azuma-Hoeffding
measure-concentration inequality:

Proposition 2: LetM = (Mt)0≤t≤m be a martingale with
respect to a filtrationF = (Ft)0≤t≤m. Suppose there exists
constantsc1, . . . , cm such that, for all1 ≤ t ≤ m, the
following holds:

∣∣Mt −Mt−1

∣∣ ≤ ct.

Then, for allǫ > 0,

P

(∣∣Mm −M0

∣∣ ≥ ǫ
)
≤ 2e−2ǫ2/

∑
0≤t≤m

c2
m .

Proof: [Proof of Theorem 1] Letk ∈ N
∗ and H be

a rooted graph of radius at mostk. We defineAH as in
the proof of Proposition 1. We leth be the number of right-
vertices inH ; we focus onm large enough such thatlnm ≥
h. Recall thatρGm

(AH) = 1
m

∑
r0∈Rm

1 ((Gm, r0)k ≃ H).
For anyr ∈ Rm = {1, . . . ,m}, we define

ζr = (Zl : l ∈ NG̃(r) and l /∈ NG̃(r
′), ∀r′ < r)

and we letFt = σ
(
(ζr)1≤r≤t

)
. It is easy to obtain from

Chernoff’s bound that

P(|ζr| ≥ lnm) ≤ P(
∑

l∈N
G̃
(r)

Zl ≥ lnm) ≤
me−τd

mln lnm

τd

,

so that

P(∃r ∈ Rm such that|ζr | ≥ lnm) ≤
m2e−τd

mln lnm

τd

→
m→∞

0.

We say thatGm is valid if |ζr| < lnm for all r, and
that ζr is valid if |ζr| < lnm. We will sometimes write
Gm(ζ) and ρGm(ζ)(AH) to avoid confusion. We define
ρm(AH |Gm valid) as the expectation ofρGm

(AH) over the
random graphGm conditionally onGm valid.

Now, we letMt = E[ρGm
(AH)|Ft, Gm valid]. We have

E[Mt+1|Ft] = E[ρGm
(AH)|Ft, Gm valid] = Mt, thus

M is indeed a martingale with respect toF . Note that
M0 = ρm(AH |Gm valid) and, for Gm valid, Mm =
ρGm

(AH). Consider two sequencesζ = (ζr)1≤r≤m and
ζ′ = (ζ′r)1≤r≤m differing only in one value, sayζr 6= ζ′r.
There are at most(1+|ζr|(d−1))h right-verticesr0 in Gm(ζ)
such that(Gm(ζ), r0)k ≃ H and r has a 2-hop neighbor
in R ∩ (Gm(ζ), r0)k. Assuming ζr and ζ′r are valid, we
obtain |ρGm(ζ)(AH)− ρGm(ζ′)(AH)| ≤ 2dh lnm

m . Therefore,
assumingζt is valid for t < r, we have

|Mr −Mr−1|

≤ E

[
max
ζr ,ζ′

r

∣∣ρGm(ζ)(AH)− ρGm(ζ′)(AH)
∣∣
∣∣∣Fr−1, Gm valid

]

≤ 2dh lnm
m .

Then, the Azuma-Hoeffding inequality yields

P

(∣∣ρGm
(AH)− ρm(AH |Gm valid)

∣∣ ≥ ǫ
∣∣∣Gm valid

)

≤ 2e−mǫ2/(2h2d2 ln2 m).

Furthermore, it is easy to check that
∣∣ρm(AH)− ρm(AH |Gm valid)

∣∣ ≤ 2P(Gm not valid)

≤ 2m2e−τd

mln
lnm

τd

,

and it follows that

P

(∣∣ρGm
(AH)− ρm(AH)

∣∣ ≥ ǫ
)

≤ 2e−
mǫ

2

2h2d2 ln2 m

+ 2m2e−τd

mln
lnm

τd

.

The term on the right-hand side is the general term of a
convergent series, hence we can conclude using the Borel-
Cantelli lemma and then the same argument as for Proposi-
tion 1.

VI. CONCLUSION

We have shown that the approach via the cavity method
for computing load thresholds of multiple-choice hashing
extends naturally from fully random hashing to double
hashing. The interest of this approach is that the results
on the maximum size of matchings in random graphs can
be fully re-used once one proves that the hashing graphs
have the same local weak limit for the schemes considered,
which leaves only smaller, scheme-dependent steps to check.



The hashing graph of double hashing differs from that
of fully random hashing through its local structure, which
is constrained in a simple way. However, more complex
constraints on the local structure may perhaps be handled
via the same approach.
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