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Abstract— A lot of interest has recently arisen in the analysis  for with high probability). Furthermore, the cuckoo haghin
of multiple-choice “cuckoo hashing” schemes. In this contet, a  ypdate procedure is also quite efficient [2], [3], in that the
main performance criterion is the load threshold under which insertion time is polylogarithmic in the system size w.Hp.

the hashing scheme is able to build a valid hashtable with hig t refi t 147 of th date aloorith | hi
probability in the limit of large systems; various techniques recent refinement [4] of the update algorithm also achieves

have successfully been used to answer this question (difeettial ~ constant average insertion time w.h.p. when items are only
equations, combinatorics, cavity method) for increasingdvels of  inserted. The focus here being on the space utilizatiorerath

generality of the model. However, the hashing scheme anaBd  than on the insertion time, i.e. on the efficiency of multiple

so far is quite utopic in that it requires to generate a lot — chgice hashing rather than on that of cuckoo hashing, we do
of independent, fully random choices. Schemes with reduced . !
not expand on this.

randomness exists, such as “double hashing”, which is exped - ) )
to provide similar asymptotic results as the ideal scheme, et A major drawback of the fully random (multiple-choice)
they have been more resistant to analysis so far. In this pape hashing scheme described above is the amount of random-

we point out that the approach via the cavity method extends npess involved: the standard approach requireslependent,
quite naturally to the analysis of double hashing and allows uniform choices of sets of keys amongn. Phrased dif-

to compute the corresponding threshold. The path followedsd . .
to show that the graph induced by the double hashing scheme ferently, this means roughlyllogm independent random

has the same local weak limit as the one obtained with full bits per item. Generating unbiased, perfectly independent
randomness. random bits does not come for free [5], [6], therefore a lot of

effort has been put into reducing this amount of randomness
needed (see [7] and references therein for an account of
The hashing paradigm is as follows: we are giveitems some directions investigated so far). A candidate altermat
and m keys, and we want to assign a key to each item sis double hashing [8], [9], which seems to have similar
as to be able to retrieve the items efficiently. In the mogterformances as the fully random one while requiring only
basic setting, we want to have exactly one key per item andughly 21log m independent random bits per item: assume
at most one item per key. Critical performance metrics fom is a prime number and label the keys with the integers
such systems are the size of the hashtable (the numberfadm 1 to m; for each item, independently draw two random
keys) needed to hold a given number of items, and the timumbersf € {1,...,m} andg € {1,..., %}; the pre-
it takes to either retrieve or insert items. Timaltiple-choice  defined set of keys associated with a couffeg) are the
hashing strategy is one that guaranties a constant look-keys labeledf +ig (modm), fori € {0,...d—1}. Although
time. It consists in pre-defining a set @< m keys for each the reduced randomness of the double hashing scheme is
item, which is then only allowed to pick a key within thatthe very reason this method could be prefered over fully
set. Of course, depending on the choices of the pre-definemhdom hashing, it also makes the theoretical analyzis of
sets of keys, it may be impossible to handle simultaneousits performance more difficult. In this paper, we show that
some sets of items and inserting a new item may not kbe load threshold under which double hashing succeeds
easy. As for the second issweeickoo hashing [1] is a simple, w.h.p. is essentially the threshatd of standard fully random
randomized way to search for a new valid assignement uponultiple-choice hashing, thereby confirming the hypothesi
arrival of a new item: one first checks whether one of théhat double hashing has very similar performance to fully
keys pre-defined for the new item is available, in which casendom hashing. More specifically, we show thay i 7m
it suffices to pick one of these; otherwise, one of the prewith 7 < 7*, in the limit of m,n — oo double hashing is
defined keys is chosen at random and re-allocated to thble to handle all bub(n) items w.h.p. In the case of fully
new item. The same procedure is then used for the iterandom hashing, one would be able to state a similar result
that has just been evicted (which is thus treated as a nemth o(1) instead ofo(n). It is very likely that we could
item). In a fully random context, multiple-choice hashingobtain the same result using an additional argument (as in
has been shown to have good performance: if the set of[10], [11]), however we believe the current result is suéfidi
keys pre-defined for each item are chosen independently attddemonstrate the efficiency of the approach and we do not
uniformly at random among all sets af keys, then there cross this last gap. It is also of interest to note that there
exists a threshold* such that, ifh = 7m with 7 < 7*, inthe are many extensions of the basic setting considered in this
limit of m,n — oo cukoo hashing will yield a valid hashtable paper (one key per item and at most one item per key). The
with probability tending tol (which we refer to as w.h.p. approach used in this paper is also suited for the analysis of

I. INTRODUCTION



those extensions. For the sake of clarity we do not addressll. HASHING GRAPH AND RANDOM GRAPH MODELS
them here, although the results go through with only minor

modifications. A multiple-choice hashing system can be represented as
The remainder of this paper is structured as follows: in thg bipartite grapha = (L U R, E) that we call thehashing
next section, we point out some relevant previous work ograph, where the left parL represents the items and the right
the subject. In section IlI, we define the graphs and randogart R the keys; the edges of the graph indicate which keys
graphs used to model the hashing techniques consideredcéin be assigned to which items. In the case of fully random
this paper; in section IV, we recall the concept of local weakashing, thel edges adjacent to a left-vertex can be anything,
limit of random graphs, which is the basis of the cavityhile for double hashing they are restricted to having a
method approach for computing the load threshstd In  certain structure. Given such a hashing gréplit is possible
section V, we show that the local weak limit of the randomo build a valid hashtable if we can associate each lefexert
graphs induced by double hashing is identical to that qftems) to a right-vertex (keys) without collision, i.e.tHere
the random graphs induced by fully random hashing, whichxists a left-perfect matching af. The items with which
implies that the two methods have essentially the same lo@ge hashing system is presented are random and thus the
threshold. hashing graph is random, following a different distribatio
whether we consider fully random or double hashing. Thus,
Il. PREVIOUS WORK ON PERFORMANCE OFHASHING the goal is to determine whether the random graphs obtained
SCHEMES FORLOAD BALANCING have a left-perfect matching w.h.p. Note that for fully rand

The load threshold* under which fully random hashing Nashing, the grap& is simply a uniform random graph with
works w.h.p. can be computed by various techniques [12§x€d degreel on the left.

[13], [14]. Ford > 3, it is given by For our analysis of double hashing, it is convenient to
. see its hashing graph as obtained in the following manner,
= § where we merge all the items which are given the same

d(l — =€)t choices of keys and keep track of the multiplicity of the

vertices: we start from the bipartite gragh= (L U R, E)
which contains all the information about the choices of keys
(- e %) offered to every item that can potentially be inserted in the
Tl f—¢e € hashtable. We havgR| = m and |L| = (), with a left-

yvertex inG for each different neighborhood (different choice

In the basic setting (one key per item and at most one ite .
9 (. yp . o keys) allowed by the local structure constraints of the
per key) as well as in extensions (more items allowed pehr

) . ashing technique. If we label the vertices ihwith the
key [15], [16], [17], more keys required per item [18], [10]’.integerg froml ?o m and the vertices it with the couples

restrictions on the number of times a couple (item,key) Iff, g) with f € {1,....m} andg € {1,..., mT_l}' there is

used [11]), the load threshofd is related to the emergence dae inc b q if
of a certain core of the bipartite graph with a large densit)?n edge inG between vertex € R and! = (f,9) € L

It can also be viewed as a problem of orientability othere exists € {0,...,d—1} such that = f-+ig (modm).
hypergraphs. In all the cases, the expression of the lod§ build the hashing grap!f, andg are drawn independently
thresholdr* involves a solution of a fixed-point equation at random for egch of the items, which corrgspor_\d§exactly
which can be traced back ot the cavity method, as shown iq 2 sampllr)gvvlth replacement of n Ieflt-vertlces. nL. .We .
[19], [10], [11] as they are related to the fixed-point megsag enote byL ,C L .the set Sf Ieft-vemcgs_qbtamed in this
of the belief propagation message passing algorithm. Way_, and byz; ~ Bin(n, 1/(2)) theNmuIt|pI|C|.ty of the left-
More generally than hashing systems, this work is relate¥gticesl. The induced grapli’ = G[L'U R] is exactly the
to load balancing. A common formulation for the loaddraph obtained via double-hashing. This main result iedtat

balancing problem is that we have bins, in which we are " Corollary 1.

going to thrown balls. If we throw each balls uniformly ~As we are interested in the regime = tm — oo, it
at random independently of the previous ones, we erid €quivalent for our problem to suppose ~ Poi(7m)
up with the most loaded bin homm%u + o(1)) instead. Indeed, the Reim) random variable is concentrated
balls. However, if before throwing each ball we che¢k aroundrm with only logarithmic fluctuations forn — oo,
bins at random and throw the ball in the least loaded biriherefore the existence and the value of a load threshold

then the most loaded bin will only h0|é01g()1% + O(1) are identical in the two models. Thus, we consider instead
balls [20], which represents an exponential improvement. ithe set L obtained by takingZ; ~ Poi(;275) copies of
the same setup, where bins have no limit capacity, doubdach vertex inL, independently for each vertex ih, and
hashing achieves the same performances [21], [7] as fulkeeping inL only those vertices with at least one copy, as
random choices. However, in order to guaranty a worst-casee did before forL’. We will focus mainly on the random
constant look-up time, one cannot allow a key to refer to agraphG = G[L U R]; we denote byG,, a sample of this
unbounded number of items, which motivates the hashimandom graph for a particular value of (7 being fixed and

setup presented in Section I. n ~ Poi(tm)).

where&* is the unique solution of the equation
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IV. LocAL WEAK CONVERGENCE AND THECAVITY Galton-Watson tree. It is then possible to determine the
METHOD threshold7 under which a maximum-sized matching has
size equivalent tw = 7m asm — oco. Having T < 7* thus
As we mentioned earlier, we intend to show that the,,aranties the existence of a matching of size o(n) as
approach via the cavity method for computing the value of, _, ~: therefore all but at most(n) items can be handled.
the load threshold* can be extended to double hashing. We, a second shorter step, it was shown that the two thresholds
will not explain here how or why the cavity method works; -« gnd+* are actually equal for fully random hashing.
the interested reader can refer to the vast literature on tha The advantage of the approach presented in this section
particular subject. However, we need to explain the notiog that the threshold* is already computed for all graphs
of local weak convergence of a sequence of graphs, whichdgnyverging in the local weak sense towards two-step Galton-
used in this paper and is at the basis of the cavity approadfyatson trees. Therefore, to compute the load threshold for
The framework used here is that of [22]. another hashing scheme, one only needs to perform two
First, we recall that a sequence of probability measuregmaller steps: (1) show the appropriate local weak conver-
(pm)men ON a certain metric spacg converges weakly to gence of the hashing graphs, (2) check the equality of the
a probability measure, which we denote by,, ~ p, if  two threshold?* and r* for the particular hashing scheme
for every bounded continuous functigh: S — R, [ fdpm  used. In the next section, we stop before this second step and
converges tg fdp. We focus on locally finite rooted graphs show that the thresholds are identical for the fully random
(or rooted networks, if we want to include marks on thenashing and double hashing, as both random graph models

edges). A rooted graplz,v) is a graphG together with a have the same two-step Galton-Watson tree as a local weak
distinguished vertex of GG which is called the root. A rooted |imit.

isomorphism of rooted graphs is a graph isomorphism which

sends the root of one to the root of the other, i.e. a one-to?-
one mapping of the vertices of a graph to those of another
graph which preserves the root, the edges (and their mark4). Main Results and Overview of the Proof

We denote by, v] the isomorphism class df,v) and by The proof consists in similar steps as in [23], with the
g. the set of rooted isomorphism classes of rooted locallyifference that in our case the graphs are bipartite and have
finite graphs. We endo@.. with the following metric: let the 3 more constrained local structure.
distance betweeft7, v] and[G’,v'] be1/(1+4), whered is Let us call Gy, = (Lm U R, Ey) the random graph
the supremum of those € N such that there is some rootedgbtained at finitern and let po,, be the distribution of
isomorphism of the balls of graph-distance radiuaround (G, 70], Whererq is a random root inR,,; let 7,, be
the roots ofG andG’. With this metric onG., the definition the average OfOGm over the random graph’,‘m_ Let also
of weak convergence applies to probability measureg.on , pe the law of a two-step Galton-Watson tree with laws
Given a finite graphG, there is a natural way to form a poj(rd) and Deterministiel), as defined in the previous
probability measure og.: we letU(G) be the distribution  section. In a first step, we will show that, converges
over G, obtained by choosing a uniform random vertex ofyeakly towardsp as m — co. Then, we will show that
G as a root. Then, we say a sequeti€g,)men CONVerges ,. is concentrated aroung,, so thatpg, almost surely
locally weakly towards a measupeon .. when the sequence converges weakly towards Explained differently, there are
of distributions(U (G ),y converges weakly towards  two sources of randomness involved in the sampling of a
In the case of fully random hashing and with= 7m, the  rooted grapHG,,,, ro|: the first one is artificial and is due to
hashing graph is a uniform random graph with fixed degreer, being a random right-vertex. It has been introduced to turn
on the left. Asm — oo, such a random graph, when rooted atny fixed graph into a distribution over rooted graphs, which
a random right-vertex, is known to converge locally weaklyhen allows to consider weak convergence of a sequence
to a two-step Galton-Watson tree with distributions(Pd)  of such distributions. The second one is inherent to the
and Deterministiad). A sample of such a (potentially infi- hashing scheme used: it comes from the fact the couple
nite) tree is constructed as follows: the root (a key) haseteg ( f, g) determining the choice of keys offered to each item is
Poi(7); every vertex at odd distance from the root (items) hashosen at random upon arrival of the item, and it tuths
exactly d — 1 children; every vertex at even distance fromitself into a random graph, in a way described in Section Il
the root (keys) has a Poid) number of children. We first show that the measuys, obtained by averaging
We should now explain how this notion of local weakover both sources of randomness at the same time converges
convergence is used to obtain the load threshold We weakly towards the lawp of a two-step Galton-Watson,
noted previously that the existence of a valid hashtable kefore showing that the averaging over the random choices
equivalent to that of a left-perfect matching of the hashingffered to the items is not required for the convergence to
graph. Clearly, such a matching is of maximum size amonigold, which means we do not need to average over different
all matchings and its size is exactly equaltoln [19], [10], realization of a large hashtable for the results to hold.
[11], the cavity method was used to compute the asymptotic We will thus show the following results: the first one is the
density of a maximum-size matching for any sequence afitermediate result where we show local weak convergence
random graphs converging in the local weak sense to with both types of averaging together.

LocAL WEAK CONVERGENCE OFDOUBLE HASHING
GRAPH



Proposition 1: The average distributiop,,, of the double We let X/ be the number of vertices added #F* \ {r}
hashing random rooted gragtv,,,, o] rooted at a random at stept, i.e. X/* = [N2(r,) N Uf|, and X} (resp. X}")
vertexry € R,, converges weakly towards the distributionbe the number of left-vertices ai (resp.G) explored at
of a two-step Galton-Watson tree. In other words, we havetep ¢, i.e. XX = |N(r,) N UL| and XL = Nz (re) N

_ UE|, where we identify the vertices ity and G with the
P~ - same label. We also lef = inf{t > 1 : A, # @}

The result above, together with some results on concentigs w o time at which we complete the exploration of the

tion of measure, leads to our main theorem, which is almoﬁ[)nnected component of in G: 0 is a stopping time for
sure local weak convergence of the hashing graph: S R AL AR 1R 7oL .
_ AT . the filtration F;, = a((C- ,CE AR URUF) _. ) With
Theorem 1. The distributionp¢,, of the double hashing h definiti o ¢ aill e | i OhSzgt
random graph,, almost surely converges weakly towardd"€S€ definitions and for all < ¢, it is clear that

the distribution of a two-step Galton-Watson tree. In other CR| .
words, A
PG ~ P BS Gl = Do X
iy A 143X = 1)

Finally, the announced result on the load threshold of
double hashing is contained in the following corollary, ahi R
is a direct consequence of Theorem 1 and Theorem 2 from U
[10] or equivalently Theorem 2.1 from [11]. U]

Corollary 1: The load threshola* under which all items ] ] o
can be inserted in the hashtable for fully random hashing TO get used to reasoning on this model of random bipartite

w.h.p. is also the load threshold under whichraitems but 9raphs with local structure constraints as well as to under-
o(n) can be inserted for double hashing w.h.p. stand why double hashing graphs converge to trees, we start

In the next subsection, we introduce a main tool for ouPff by bounding the number of cycles of a given length in

proofs:; a two-step breadth-first search (BFS) exploratibn & _
the hashing grapht,,; and illustrate its analysis through Lemma 1: Let Cj be the number of cycles of lengthin
the simple example of upper-bounding the number of shoft- We have

1—t+(d-1)X"2 xF

t—1
m—1-— ;i:QXiR, )
(%) = i X[ > 5 (m — db).

[IA

cycles inG,,.
E[Co] < d** 7% + O(1/m)
B. Breadth-First Search Exploration Proof: Let r,...,7, € R be distinct vertices ofR.
When it is clear from the context, we simply writg Forry, ..., to be on a cycle of sizek of G in this order,

instead of(,,. For anyk € N* and any graphG*, we let there must exist distinct verticés, . . ., I, € L such that, for

N (v) denote thek-hop neighborhood of vertex in the @l %, i connects:;_, andr;, wherero = ry. Fixing r andr’
graphG*; to ease the notation, whef* = G we simply distinct in i, the number of vertices connecting themdh

write A% (v), and whenk = 1 we write N« (v). is exactly (g) (as setting the set of indices, i’} such that
We consider the breadth-first search (BFS) exploration df T 29 =7 and f +i'g =r"or f +i'g =rand f +ig = r’

the graphG, starting from a random right-vertex, ¢ R. |€aves exactly one possibility for the coupll¢,g) € L).

At each step, we select an active right-vertex and explorgerefore, the probability that and " are connected by a

all its left-neighbors as well as their own right-neighborsVerex inL is

We define the set€'? andC} of connected right- and left-

vertices at timet, the list of active right-verticest?, and P(r andr” are connected by a vertex E‘)

the sets of unexplored right- and left-verticeg and UF. S )
We have _ (dy2r 2
= ()= +0(1 .
R _
A% = (ro); Furthermore, it is clear that the probability of existence
Up' = 13“\ {ro}, of distinct verticesiy,...,l; in L such that, for each, I;
vt = L. :
0 connectsr;_; andr;, is no larger than the product of the
At each stept, we proceed as follows: p:ﬁbabilities of existence of each independently of the
others:

« we letr; be the first element in the list? (so that it
is the closest vertex te, in AfF); ( — N 7 )
o if AR # &, we do the following updates: IP(Vi, 3l; € L connectingr; 1 andry; I; # 1, Vi # i

< Hi]P’(EIlZ- € L connectingr;_; and 7’1-)

Cﬁkl = Cﬁ U {rt}v k

Ch, = CFUN(r), < (2£) +o(/mt).

Aﬁ&—l = (Afb \ {rt}vj\/?(rt) N UtR)7

Ut};ﬁ—l = Uf\N?(ry), We conclude by summing over all the. .. (m—k-+1) < m*

Ulh = UL\ Ng(r). possible choices ofy, ..., . ]



C. Proofs it must contain a newly explored left-vertex (i.e. a vertex i

We now return to the proof of the main theorem. Lemma £'#+1 \C{), otherwise it would not involve any new vertex or
shows that the joint distribution of the numbers of childrerfdge and hence would also be a loogif{C{* U A UCY];
of the left-vertices explored during the firststeps of BFS furthermore, we can always assume that loop containg
is asymptotically very close to that we would obtain in dhe second event does not occur, the newly added vertices
two-step Galton-Watson tree. are connected to those (@[t U A) uC} only throughr,
Lemma 2: On an enlarged probability space, there exist@nd thus any new loop must be containedifr: } U(Af ; \

a sequencéY;L),> of i.i.d. Poi(rd) variables such that A )], which is prevented since the first event does not occur

either. Let us callE, and E] the two events considered.
P((XE o XE 1 00) # (Vi YE )
< Lo (rd?t? + r2dt + 271).

We denote by €,(p,q) the distance in total variation —

between the two distributionsandg. To ease the notation,  p(pr) E S PWN() NN () # ®|ft):|

we will also use gy for random variables, which will refer reAR\{r,}

to the distance between their distributions. The maximal nzizl (E[|AR[] — 1).

coupling inequality says that, over an enlarged probabilit

space, there exists a coupling &fandY” such thatP(X # We can boundi[|Af]] as follows

P(B) < E|X,conPING) NN ()| 2 2 7))

T2d4

ININIA

IN

Y) = div(X,Y). -1
Proof: For anyt < 6, X} is a binomial rar;dom E[|AF|| - 1< —t+ (d— 1)Z]E[Xf] < rd%t.
variable of parametersU/ N N(r)| and 1 — e~ e, i—0

We have thatN5(r)| = 2-1d and, as any two vertices
in R (and in particularr; and r; _for any i < t) are

connected by exactl(/g) vertices inL, we obtain the bound
m-lq - (3)215 < |UF NNa(r)| < m—14. Furthermore,

Summing ovett yields the desired result. ]

The hashing grapli’ obtained may be a tree, but remem-
ber that we merged all the items with the same choices of
keys into a single left-vertex of7. Lemma 4 shows that

2T (nf,;l)z <l-—e mi< 27 It follows each left-vertex explored in the firststeps of BFS actually
L L L L correspond to a single item, i.e. the items explored were
P((Xo ’e -aX(tq)Ae) 7 (Yo ""’Yv(tfl)/\e)) given different choices of keys, w.h.p.
< E[th:—ol) 1( < O)P(XE # Y;L‘]:i)] Lemma 4: For an integert < 0, no Ie_ft-vertex explored
until stept¢ has two copies or more (i.eZ; < 1 for all
and I € CF) w.h.p. asm,n — co. We have
E[dTV(Xf,K-L)lE] A3 dt

P(alecf: lez)gm.

< . d\ - -
- P(Bln((Q)Z’l c Proof: The result follows straightforwardly from the

) £ 0)

vy (Bin(25Ld, 1 - 777, Bin(5kd, 127,) ) union bound:
+dry (Bin(*54d, nfil),Poi(Td)) ]P’(Ell ect: z,>2
. 2 4 T
< 2T () + st < E[CY1)(1 — P(Pol(zZy) < 1))
We conclude by using the maximal coupling inequality and =2i-0 EZ)[XiL](l —e w1 — MeTmoT)
then summing ovef. ] < Tdt(m{;l)g.

Next, Lemma 3 asserts that w.h.p. the graph explored in

the firstt steps of BFS is a tree -
Lemma 3: For an integert < 6, the portion of the graph _ We are now ready to show that the average distribution

. P, Of the k-hop neighborhood of a random root-vertax
E/I:oer)épé)orreec?s:?;" step becomes a tree w.n.p. as n — oo. in a random graplG,, tends to the distribution of a two-

step Galton-Watson tree cut at degthfor any £ € N and
T2dit 4+ T2d*? asm — oo (Proposition 1).
i m—1 ' Proof: [Proof of Proposition 1] Lett € N. For any
Proof: Loops get formed in the portion of the graphfinite treeT of depth at most: (or more generally for rooted

explored at step when one of the following events occur: graphs of radius at mo#f) and any collection of such trees
« there exists a vertex € U/* connected to, by atleast T, let Ay = {[G] € G., (G)r ~ T}, where~ refers to

]P’(G[(CtR UAfYyu k] nota treé <

two distinct vertices inZ; _ rooted isomorphism, andy = Urc7Ar. For everye > 0
« there exists a verteke U N L which connects; and  and any finitek, there exists a finite sét of trees of depths
some vertex- € Af. at mostk in which every odd-depth vertex has degrée

Indeed, assuming'[(C* U Aff) UC{] is a tree and none of and such thap(Ar) = > .7 p(Ar) > 1 —c. Lett be
the two events above occur, it is easy to see @C/%, U  the maximum size of the trees ii; it means that, with

AﬁH) U CtL+1] is still a tree. At step, if a loop is created, probability at leastl — ¢, a BFS run during steps on a



two-step Galton-Watson tree sampled frpnwill explore at  and we letF = o (Cr)lgrgt). It is easy to obtain from

least thek-hop neighborhood of the root. Chernoff’s bound that

Let rq be a random right-vertex in the random gra@},. me—Td
According to Lemmas 3 and 4 and with probability at least  P(|¢,| > Inm) < IP( Y Zizlm)< T
1 - ditrdt (:fl[f;z — 1, the graph induced by IENG(r) meer
[Gn, 0] ON the vertices exwﬁlo?éd during the fitssteps of so that
BFS is a tree, with all left-vertices having exactly one copy m2e—Td
Hence, in particular the offspring of each left-vertex iisth  P(3r € R,, such thatl(,| > Inm) < 0

4 Mm—0o0

tree is of sizel— 1. Furthermore, according to Lemma 2 and
with probability at leastl — Tt di2rt 1 there We say thatG,, is valid if |(;[ < Inm for all r, and

m—1 . Lo . . .
is a coupling between the numbers of newly explored lefthat ¢ is valid if |¢.| < Inm. We will sometimes write

vertices in the grapfG,,, ro] during the first steps of BFS Gm(¢) and g, ¢)(Ar) to avoid confusion. We define
and a sequence of i.i.d. Rotl) random variables. Therefore, Pm (Ar|Gm valid) as the expectation ofc,, (Ar) over the
on an event of probability tending tbasm — oo, we can andom grapt;, conditionally onG,, valid.

couple the exploration during the firststeps of BFS on  Now, we letM; = Elpc,, (Am)|F¢, Gy valid]. We have
(G, 7] and on a two-step Galton-Watson tree sampled fromi[Me+117:] = Elpg,, (Am)[F:, G valid] = M, thus
p. On the event that these two exploration can be coupld IS indeed a martingale with respect . Note that
and for anyT € T such that the BFS exploration aawill Mo = Pm(Au|Gr valid) and, for G, valid, M, =
have explored at least thiehop neighborhood of the root #Gn (Aflf)' Consider two sequences = ((;)i<r<m ar,‘d
within ¢ steps, it follows the BFS exploration d,.,ry] & = (G)i<r<m differing only in one value, say, # ;.
will also have explored at least thehop neighborhood of TNere are at mosti+|¢.[(d—1))h right-vertices o in Gy, (C)

ro. Then, for anyT’ € T, we have §uch that(G,,,(¢),r0)r ~ H _andr has a 2-hop n_eighbor
in RN (G (¢),r0)k. Assuming(¢, and ¢/ are valid, we

|P((gza7°gl)ilitf 7;2; pgiﬂzl e obtain |pe, ) (An) = pa,. ) (An)| < 2448, Therefore,
< et P a4 S assuming(; is valid for t < r, we have
Then, it follows lim 7,,(Ar) = p(Ar) foranyT € T. | My — M,
For any bounded uniformly continuous functigin there < E[ICH%X PG, ) (Ar) = pe,. ) (Ar)||Fr-1,Gm valid}

existsk € N such that| f((G)x) — f(G)| < e for all rooted  _ 24ninm
graphsG € G.. For thisk we can define a finite collection — ™ o o
of treesT as before, such that(7) > 1 — e. Form large Then, the Azuma-Hoeffding inequality yields

_ >1_ . .
enough, we havg,,(7) > 1 — 2¢, and ]p(’pcm (Ag) = (A |G vahd)\ > e|Gm valld)
|J 15— [ fdo| < e(1+3]1f1) < et /(2N m),
+2rer f(T)‘ﬁm(AT) - P(AT)" Furthermore, it is easy to check that

Letting m — oo and thene — 0 completes the proof. = ]ﬁm(AH) — 7, (As |G valid)] < 2P(G,, not valid)
We will now provealmost sure local weak convergence of < 2m?e7d

the random grapldr,,, towards the two-step Galton-Watson m

tree (Theorem 1). To that end, we use the Azuma-Hoeffdingnd it follows that

measure-concentration inequality: e
Proposition 2: Let M = (M;)o<:<m be a martingale with ]P’(‘PGm (Am) — ﬁm(AH)‘ z 6) < 2e aZdTmEe

respect to a filtrationF = (F%)o<i<m. Suppose there exists 4 2m7e

constantscy, ..., c, such that, for alll < ¢ < m, the m
following holds: The term on the right-hand side is the general term of a

convergent series, hence we can conclude using the Borel-
|My = My | < ct. Cantelli lemma and then the same argument as for Proposi-
tion 1. [ |

Then, for alle > 0,

]P’(‘Mm — Mo| > 6) < 2¢72¢/ Zogecm VI. CONCLUSION
Proof. [Proof of Theorem 1] Leti € N* and H be We have shown that the approach via the cavity method

for computing load thresholds of multiple-choice hashing

the proof of Proposition 1. We lét be the number of right- extends naturally from fully random hashing to double
vertices inH: we focus onm large enough such that m > hashing. The interest of this approach is that the results

_ the maximum size of matchings in random graphs can
h. Recall thapg,, (Ar) = £ 3, cp 1((Gyro)i = H). 0" !
For anyr € Ry, = {1,....m}, we define be fully re-used once one proves that the hashing graphs

have the same local weak limit for the schemes considered,
Gr=(Z: le Ng(r) andl ¢ Ng(r"),vr' <) which leaves only smaller, scheme-dependent steps to check

a rooted graph of radius at most We defineAg as in



The hashing graph of double hashing differs from thatio] C. Bordenave, M. Lelarge, and J. Salez, “Matchings ofinite
of fully random hashing through its local structure, whic
is constrained in a simple way. However, more comple

constraints on the local structure may perhaps be handlgx]

via the same approach.
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