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Abstract: We present a second-order A-calculus with coercion constraints that generalizes a
previous extension of System F with parametric coercion abstractions |Cretin and Rémy(2012)| by
allowing multiple but simultaneous type and coercion abstractions, as well as recursive coercions
and equi-recursive types. This allows to present in a uniform way several type system features
that had previously been studied separately: type containment, bounded and instance-bounded
polymorphism, which are already encodable with parametric coercion abstraction, and ML-style
subtyping constraints. Our framework allows for a clear separation of language constructs with
and without computational content. We also distinguish coherent coercions that are fully erasable
from potentially incoherent coercions that suspend the evaluation—and enable the encoding of
GADTs.

Technically, type coercions that witness subtyping relations between types are replaced by a more
expressive notion of typing coercions that witness subsumption relations between typings, e.g.
pairs composed of a typing environment and a type. Our calculus is equipped with a strong
notion of reduction that allows reduction under abstractions—but we also introduce a form of
weak reduction as reduction cannot proceed under incoherent type abstractions. Type soundness
is proved by adapting the step-indexed semantics technique to strong reduction strategies, moving
indices inside terms so as to control the reduction steps internally.

Key-words: Type, System F, F-eta, Polymorphism, Coercion, Conversion, Retyping functions,
Type containment, Subtyping, Bounded Polymorphism. Type-indexed Recursive types
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Systéme F avec des contraintes de coercion

Résumé : Nous présentons un A-calcul de second ordre avec des contraintes de coercions
qui généralisent une extension précédente du Systéme F avec des abstractions de coercions
paramétriques [Cretin and Rémy(2012)] en permettant des abstractions multiples mais simul-
tanées sur les types et les coercions, ainsi que des coercions récursives et des types équi-récursifs.
Cela permet de présenter de fagon uniforme plusieurs fonctionnalités des systémes de types au-
paravant étudiées séparément: le confinement de types, le polymorphisme bornée et bornée par
instance, qui sont déja codables avec I'abstraction de coercions paramétrique, et les contraintes
de sous-typage a la ML. Notre cadre permet une séparation claire entre les constructions du lan-
gage avec et sans contenu calculatoire. Nous distinguons également les coercions cohérentes qui
sont entiérement effagables des coercions incohérentes qui suspendent ’évaluation, et permettent
le codage des GADTs.

Techniquement, les coercions de type, témoins d’une relation de sous-typage entre les types,
sont remplacées par une notion plus expressive de coercions de typages, témoins d’une relation
d’inclusion entre les typages, e.g. des paires composées d'un environnement de typage et d’un
type. Le calcul est équipé d’une relation de réduction forte permettant la réduction sous les
abstractions—mais nous introduisons également une forme de réduction faible car la réduction
ne peut pas étre poursuivie sous les abstractions de types incohérentes. La siireté du typage
est prouvée en adaptant une technique sémantique de types indexés aux stratégies de réduction
forte, en placant les indices & l'intérieur des termes afin de controler les étapes de réduction de
fagon interne.

Mots-clés : Types, Systéme F, Polymorphisme, Coercion, Conversion, Fonction de retypage,
Type containment, Sous-typage, Bounded Polymorphism
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1 Introduction

Type systems are syntactical languages to express properties and invariants of programs. Their
objects are usually types, typing contexts, and typing derivations. These can be interpreted as
mathematical objects or proofs. Typically, a typing judgment I' - a : 7 can be interpreted as
a proof that the term a is well-behaved and that its computational behavior is approximated
by the type 7 when the approximations of the behaviors of its free variables are given by the
typing context I'. The simply-typed A-calculus extended with constants such as pairs or integers
to model the core of a real programming language is the simplest of all type systems. It is
also somewhat canonical: it just contains one type construct for each related construct of the
language: arrow types 7 — o to classify functions, 7 x ¢ to classify pairs, etc. and nothing else.
Each type construct has a counter-part in terms and we may call them computational types.

Simply-typed A-calculus is however too restrictive and type systems are usually extended
with some form of polymorphism that allows an expression to have several types, or rather a
type that stands for a whole collection of other types. Parametric polymorphism, whose System
F is the reference introduces polymorphic types Ya 7. A typing judgment I" F a : Va7 means
that the program a has also type 7[a < o] (i.e. 7 where a has been replaced by o) for all types
.

This operation, called type instantiation is in fact independent of the program a and can be
captured as an auxiliary instantiation judgment Va7 < 7[a  o]. This means that any term that
has type Va7 also has type 7[a + o]. Type instantiation is only a very specific form of some more
general concept called type containment introduced by Mitchell [Mitchell(1988)]. Mitchell showed
that adding type containment to System F is equivalent to closing System F by n-expansion (hence
the name F,, for the resulting system). Type containment allows instantiation to be performed
deeper inside terms (by contrast with System F where it remains superficial), following the
structure of types covariantly, or contravariantly on the left of arrow types. Type containment
contains the germs of subtyping, which usually refers to a restriction of type containment that
does not include type instantiation as part of the subtyping relation, but instead injects primitive
subtyping relations between constants such as int < float or a primitive bottom and top types.
F<. [Cardelli et al.(1994)Cardelli, Martini, Mitchell, and Scedrov] is the system of reference for
combining subtyping with polymorphism. Surprisingly, the languages F,, and F.. share the same
underlying concepts but have in fact quite different flavors and are incomparable (no one is strictly
more general then the other). For example, F.. has bounded quantification V(a < 7) o that allows
to abstract over all type a that are a subtype of 7, a concept not present in F,. Although quite
powerful, bounded quantification seems bridled and somewhat ad hoc as it allows for a unique
and upper bound.

The language MLF |Le Botlan and Rémy(2009)] is another variant of System F that has been
introduced for performing partial type inference while retaining principal types. It has similarities
with both F.. and F,, but introduces yet another notion, instance bounded quantification—or
unique lower bounds.

In |Cretin and Rémy(2012)|, we introduced FP, a language of type coercions with the ability
to abstract over coercions, that can express F, type containment, F.. upper bounded polymor-
phism, and MLF instance-bounded polymorphism, uniformly. Following a general and system-
atic approach to coercions lead to an expressive and modular design. However, FP still comes
with a severe restriction: abstract coercions must be parametric in either their domain or their
codomain, so that abstract coercions are coherent, i.e. their types are always inhabited by con-
crete coercions. This limitation is disappointing from both theoretical and practical view points.
In practice, FP fails to give an account of subtyping constraints that are used for type inference
with subtyping in ML. While in theory, subtyping constraints and second-order polymorphism
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are orthogonal concepts that should be easy to combine.

Summary of our contributions In this work, we solve this problem and present a language
Fec that generalizes FP (and thus subsumes F,, F.., and MLF) to also model subtyping con-
straints. Besides, F.. includes a general form of recursive coercions, from which we can recover
powerful subtyping rules between equi-recursive types. As in our previous work, the language
is equipped with a strong reduction strategy, which also models reduction on open terms and
provides stronger properties. We still permit a form of weak reduction on demand to model
incoherent abstractions when needed, e.g. to encode GADTs.

We also generalize type coercions to typing coercions which enables a much clearer separation
between computational types and erasable types that are all treated as coercions. In particular,
type abstraction becomes a coercion and distributivity rules become derivable. Another side
contribution of our work is an adaption of step-indexed semantics to strong reduction strategies,
moving indices inside terms.

Plan The rest of the paper is organized as follows. We discuss a few important issues underlying
the design of F.. in §2 We present F.. formally in §3] We introduce our variant of step-indexed
denotational semantics in §4 and apply it to prove the soundness of our calculus in Section §5}
We discuss the expressivity of F.. in §6| and differences with our previous work and other related
works as well as future works in §7}

The language F.. and its soundness and normalization proofs have been formalized and me-
chanically verified in CoqE|

2 The design of F..

The language F is designed around the notion of erasable coercions. Strictly speaking erasable
coercions should leave no trace in terms and not change the semantics of the underlying untyped
A-term. When coercions are explicit and kept during reduction, as in FP, one should show a
bisimulation property between the calculus with explicit coercions and terms of A-calculus after
erasure of all coercions. However, since coercions do not have computational content, they may
also be left implicit, as is the case in F..

Some languages also use coercions with computational content. These are necessarily explicit
and cannot be erased at runtime. They are of quite a different nature, so we restrict our study
to erasable coercions.

Still, erasability is subtle in the presence of coercion abstraction, because one could easily ab-
stract over nonsensical coercions, e.g. that could coerce any type into any other type. By default,
these situations should be detected and rejected of course. We say that coercion abstraction is
coherent when the coercion type is inhabited and incoherent when it may be uninhabited. No-
tice that type abstraction in System F, bounded polymorphism in F.., and instance bounded
polymorphism in MLF are all coherent.

Coherent abstraction ensures that the body of the abstraction is meaningful—whenever well-
typed. Hence, it makes sense to reduce the body of the abstraction before having a concrete
value for the coercion— or equivalently to reduce open terms that contain coherent abstract
coercions.

Conversely, incoherent abstraction must freeze the evaluation of the body until it is special-
ized with a concrete coercion that provides inhabitation evidence. Therefore, abstraction over
incoherent coercions cannot be erased, even though coercions themselves carry no information

1 Scripts are available at http://gallium.inria.fr/~remy/coercions/,
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and can be represented as the unit type value, as in FC—the internal language of Haskell whose
coercion abstractions are (potentially) incoherent.

Choosing a weak evaluation strategy as is eventually done in all programming languages does
not solve the problem, but just sweeps it under the carpet: while type-soundness will hold, static
type errors will be delayed until applications and library functions that will never be applicable
may still be written.

Conversely, a strong reduction strategy better exercises the typing rules: that is, type sound-
ness for a strong reduction strategy provides stronger guarantees. In our view, type systems
should be designed to be sound for strong reduction strategies even if their reduction is even-
tually restricted to weak strategies for efficiency reasons. This is how programming languages
based on System F or F.. have been conceived, indeed.

Therefore, F.. is equipped with strong reduction as the default and this is a key aspect of our
design which could otherwise have been much simpler but also less useful.

However, we also permit abstraction over (potentially) incoherent coercions on demand, as
this is needed to encode some form of dynamic typing, as can be found in programming languages
with GADTs, for example. Indeed, GADTs allow to define parametric functions that are partial
and whose body may only make sense for some but not all type instances. When accepting a value
of a GADT as argument, the function may gain evidence that some type equality holds and that
the value is indeed in the domain of the function. We claim that incoherent abstraction should
be used exactly when needed and no more. In particular, one should not make all abstractions
incoherent just because some of them must be.

From explicit to implicit coercions Coherence is ensured in F? by the parametricity restric-
tion that limits abstraction to have a unique upper or lower bound. This also prevents abstract
coercions from appearing in between the destructor and the constructor of a redex, a pattern of
the form (¢(Mx : 7') M) N) (where ¢(-) is the application of a coercion) called a wedge, which
could typically block the reduction of explicitly typed terms—therefore loosing the bisimulation
with reduction of untyped terms. While the coherence of the abstract coercion ¢ should make it
safe to break it apart into two pieces, one attached to the argument N, the other one attached
to the body M, this would require new forms of coercions, new reduction rules and quite sophis-
ticated typing rules to keep track of the relation between the residual of wedges after they have
been split apart. Even though it should be feasible in principle, this approach seemed far too
complicated in the general case to be of any practical use.

Therefore our solution is to give up explicit coercions and leave them implicit. While this
removes the problem of wedges at once, it also prevents us from doing a syntactic proof of type
soundness. Instead, type soundness in F. is proved semantically by interpreting types as sets of
terms and coercions as proofs of inclusion between types.

Simultaneous coercion abstractions In order to relax the parametricity restriction of FP
and allow coercions whose domain and range are simultaneously structured types, while pre-
serving coherence, we permit multiple type abstractions to be introduced simultaneously with
all coercion abstractions that constraint them. Since coherence does not come by construction
anymore, coherence proofs must be provided explicitly for each block of abstraction as witnesses
that the types of coercions are inhabited, i.e. that they can be at least instantiated once in the
current environment.

Grouping related abstractions allows to provide coherence proofs independently for every
group of abstractions, and simultaneously for every coercion in the same group.
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Recursive coercions Recursive types are another interesting new feature of F... They are
essential in practice and also very useful in theory, as they model several advanced features of
programming languages, such as objects or closures. Recursive types are technically challenging
however. Thus, they are often presented with some restrictions, for instance, restricting to
positive recursion or to the folding-unfolding rules, which are easier to formalize. However,
general recursive types are already needed in OCaml or in ML with subtyping constraints. We
therefore follow a general approach to recursive types to cover these useful cases. The introduction
of recursive coercions is then natural to operate on expressions with recursive types. Quite
interestingly, this brings an induction principle for reasoning on recursive types from which
the most general subtyping rules for recursive types |[Amadio and Cardelli(1993)| are admissible

($3).

From type coercions to typing coercions A type coercion 7 > ¢ is a proof that all programs
of type 7 have also type ¢ in some environment I". Pushing the idea of coercions further, typings
(the pair of an environment and a type, written I' F 7) are themselves approximations of program
behaviors, which are also naturally ordered. Thus, we may consider syntactical objects, which
we call typing coercions, to be interpreted as proofs of inclusions between the interpretation of
typings. By analogy with type coercions that witness a subtyping relation between types, typing
coercions witness a relation between typings. This idea, which was already translucent in our
previous work [Cretin and Rémy(2012)], is now internalized.

Interestingly, type generalization can be expressed as a typing coercion—but not as a type
coercion: it turns a typing I',a - 7 into the typing I' - Va7. This allows to replace what is
usually a term typing rule by a coercion typing rule, with two benefits: superficially, it allows
for a clearer separation of term constructs that are about computation from coercion constructs
that do not have computational content (type abstraction and instantiation, subtyping, etc.);
more importantly, it makes type generalization automatically available anywhere a coercion can
be used and, in particular, as parts of bigger coercions. An illustration of this benefit is that the
distributivity rules (e.g. as found in F,,) are now derivable by composing type generalization, type
instantiation, and n-expansion (generalization of the subtyping rule for computational types).

The advantage of using typing coercions is particularly striking in the fact that all erasable
type system features studied in this paper can be expressed as coercions, so that computation
and typing features are perfectly separated.

3 Language definition

3.1 The syntax and semantics of terms

The syntax of the language is given in Figure 2] Because our calculus is implicitly typed, its
syntax is in essence that of the A-calculus extended with pairs. Terms contain variables x,
abstractions Ar a, applications (ab), pairs (a, b), and projections m; a for 7 in {1, 2}.

Terms also contain two new constructs 0 a and a<> called incoherent abstraction and in-
coherent application, respectively. The incoherent abstraction 0 a can be seen as a marker on
the term a that freezes its evaluation, while the incoherent application a <> allows evaluation of
the frozen term a to be resumed. These two constructs enforce a form of weak reduction in a
calculus with strong reduction by default. They are required to model GADTs, but removing
them consistently everywhere preserves all the properties of F... Hence, one can always ignore
them in a first reading of the paper.

The reduction rules are given on Figure We write a[z < b] for the capture avoiding
substitution of the term b for the variable x in the term a, defined as usual. Head reduction
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WrKPRroD WrKREs
WrKSTAR WrKONE TIF K1 TIF Ko TIFk F, (a . I<L) - P WFrPTRUE
I'iFx re1 LT
Ik k1 X Ko F'kF{a:x|P}
WrPAND WrPCoER WFrPEXx1 WrPFoRr
| AT o TIF Py r'ex | DN o Fko:x Llk& D,(a:k)IFP
I'lFPy APy FFEFM)>o FrF3ak FFY(a: k)P
WrGTYPE WrGTERM WFY ConsA
WrGNiL rFr I,V IFk P I,V F7:x WEYNIL rre TIFP
ko y ko
LT, (a: k) DT, (x:7) r-e,p
WrYConsB
rr-e rkEp
I'lFe,pf
Figure 1: Well-formedness of kinds and propositions
a, B Type variables
z,Yy Term variables
a,b == x| al(aa)|{a,a)|mal|daladd Terms
ko= x|1|exk|{a:k]|P} Kinds
7,0 i= a|ToT7|TXT|Va:ik)T Types
| D(a: k)7 |paT | L|T
| O 1 {r7) [mir
Pu=T|PAP|EF71)>T Propositions

| 3k |V(a: k)P
O == o|6,P|6,Pf
I' =@ | (a:k)| T, (x:7)

X = ne|wf

Coinduction environments
Environments

Recursive tokens

Figure 2: Syntax

is described by the B-reduction rule REDAPP, the projection rule REpProJs, and RepIArp for
unfreezing frozen computations. Reduction can be used under any evaluation context as described
by Rule REpCtx. Evaluation contexts, written E, are defined on Figure [3] Since we choose a
strong reduction relation, all possible contexts are allowed—except reduction under incoherent
abstractions. The notation Q/{T is to emphasize that 0[] is not an evaluation context.) Notice
that evaluation contexts contain a single node, since the context rule REDCTX can be applied
recursively.

The terms we are interested in are the sound ones, i.e. whose evaluation never produces an
error. We write  for the set of errors, which is the subset of syntactically well-formed terms that
“we don’t want to see” neither in source programs nor during their evaluation: an error is either
immediate or occurring in an arbitrary context E (Figure |3); immediate errors are potential
redexes D[h] (the application of a destructor D to a constructor h) that are not valid redexes
(the left-hand side of a head-reduction rule). Conversely, values are the irreducible terms that we
expect as results of evaluation: they are either constructors applied to values or prevalues which
are themselves either variables or destructors applied to prevalues. Notice that the definition
of errors is independent of the reduction strategy while the definition of values is not. This is
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¥ =08 (a:k) Erasable environments
p = x| (pv)|mp|pod Prevalues
v ou=pliv]|(v,v)|da Values
h == Xral{a,a)|0a Constructors
D == (la) |m ][] Destructors
E =l (o) ] @) [210¢ Contexts
| (0 a) [ (e, []) [ i ]
Figure 3: Notations
REDS”Z; b REDAPP REDPROJ REDIAPP
Flal < B0 (M a)b) ~ alz + b] mi (a1, a2) ~ a; (0a)d ~a

Figure 4: Reduction relation

why we prefer to state soundness as the fact that reduction never produces errors, avoiding the
reference to the more fragile definition of values.

3.2 Types, kinds, propositions, and coercions

We use types to approximate the behavior of terms, but types are themselves classified by kinds.
So let us present kinds first. Although we do not have type functions, we need to manipulate
tuples of types because several type variables and coercion constraints sometimes need to be
introduced altogether. For sake of simplicity and a slight increase in flexibility, we mix types,
type sequences, and constrained types into the same syntactical class of types which are then
classified by kinds. Kinds are written x. The star kind * classifies sets of terms, as usual. The
unit kind 1 and the product kind x x k are used to classify the unit object and pairs of types,
which combined together, may encode type sequences: for example, a type variable of kind
K1 X ko may stand for a pair of variables of kinds k1 and ko. The constrained kind {« : | P}
restricts the set k to the elements « satisfying the proposition P. For instance, {a: x| a> 7} is
the set of types o that can be coerced to (e.g. are a subtype of) 7—assuming that « is not free
in 7.

Instead of having only proofs of inclusion between sets of terms, which we call coercions,
we define a general notion of propositions, written P. Propositions contain the true proposition
T, conjunctions P A P, coercions (¥ F 7) > 7, coherence propositions 3k, and polymorphic
propositions V(« : k) P. The proposition (X F 7) > o in a context I' means the existence of
a coercion from the typing I',; ¥ F 7 to the typing I' - . When ¥ is @, we write 7 > ¢ for
(g F 7) > o and recover the usual notation for type coercions. For example, o > 7 means that
a can be coerced to 7 (e.g. « is a subtype of 7). The coherence proposition of the constrained
kind {«: k| P}, namely 3{« : x | P}, gives the usual existential proposition, because coherence
corresponds to inhabitation and a type 7 is in the constrained kind {« : & | P} if it is in x and
satisfies P.

Types are described on Figure 2] They are written 7 or 0. They contain type variables a,
arrow types 7 — o, product types 7 X o, coherent polymorphic types V(« : k)7, incoherent
polymorphic types II(« : k) 7, recursive types pa 7, the top type T, and the bottom type L.

Types also contain the unit object (), pairs of types (7, 7), and projections 7; 7 to construct
and project type sequences. We define the projections of pairs 7 (71, 72) to be equal to the
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TERMVAR TERMLAM TERMAPP
(x:7)el k7% D(z:7)Fa:o F'ta:7—o0 F-b:r
Pkha:T 'FXxa:7—0 'k (ab):0o
TERMPAIR ) TERMPROJ TERMCOER
(Fl—ai:n)le‘{l’Q} T'ha:m X7 I''Yra:7 r-Xkr)ro
'k {a1,a2) : 71 X T2 I'Fmia:T I'ta:o
TeErMBLOCK TERMUNBLOCK
Tk I(a:k)Fa:T I'to:k Fta:T(a: k)T
'Foa:M(a: k)T 'kad:7[a+ o]

Figure 5: Term typing rules

corresponding components 7;. Type equality is then closed by reflexivity, symmetry, transitivity,
and congruence for all syntactical constructs. This defines equality judgments on types (11 = 72),
kinds (k1 = k2), and propositions (P; = Ps), which are used in typing rules below. Notice that
equality is never applied implicitly.

We use environments to approximate the behavior of variables. The syntax of environments,
written I', is described on Figure Environments are lists of type binders (« : k) and term
binders (x : 7). We write ¥ for environments that do not contain term bindings. We also use lists
of propositions, written ©, called coinduction environments, to keep track of which propositions
can be used coinductively.

Let ¢t be a type, a kind, a proposition, a typing environment, a sequence, or a set of such
objects. We write fv(t) the set of free variables of ¢, defined in the obvious way, and t[a + 7]
for the capture avoiding substitution of 7 for the variable « in ¢t. All objects t are taken up to
a-conversion of their bound variables.

We assume that environments are well-scoped. That is, I', (x : 7) can only be formed when
z ¢ dom(T") and fv(7) C dom(T); and T, (v : k) can only be formed when o ¢ dom(T") and
fv(k) € dom(T"). Similarly, I'; © requires fv(©) C dom(T").

3.3 Typing judgments

Types, kinds, and propositions are recursively defined and so are their typing judgments. We
actually have the following judgments all recursively defined:

I'k  kind coherence

I'T  environment coherence and well-formedness
I'F x  kind well-formedness

I'FP prop. well-formedness

F'Fa:7 term
IeFP prop.
'F7:x type

We assume that judgments are always well-scoped: free variables of objects appearing on the
right of the turnstile must be bound in the typing environment I'.

Auxiliary judgments The main two judgments are for terms and coercions. Others are
auxiliary judgments and we describe them first.

The kind judgment I' - k states that the kind x is coherent relative to the environment x.
This judgment is actually equivalent to the proposition judgment I' - 3k that will be explained
below. The environment coherence and well-formedness judgment I'" - I checks that every kind
appearing in IV is coherent in the environment that precedes it and that every type has kind
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TYPEEQ TYPEVAR TYPEARR
'tr:x  k=r TIFK (a:k) €T F'kr:x  Tho:x
Lk7:x I'Fa:k 't —o0o:%x
TypPEPROD TyprPeEFOR TypPEPI
k7% F'ko:x T'likk Di(a:k) 7% IiFk Di(a:k) 7%
FFTxo:x PEY(a:k)T:*x PHEI(a: k)T %
TyPEPAIR TypPEPROJ
TypPEBoT TypeToP TypEUNIT FFTl C Ky FFTQIHQ FFTZFLl X Ko
PEL:% FET:% (-1
TF(r,7) : K1 X K2 w7k
TypPEMU TypPEPACK
a— 7 wf D(a:%)F7:% I'(a:k)IFP 'kr:k I'F Pla «+ 7]
I'Fpor:x F'tr:{a:x|P}
TyPEUNPACK
'k7r:{a:x|P}
I'k7r:k

Figure 6: Type judgment relation

star. It is defined by the three rules:

e I,V ks TFTY T, k7%

'-o
T, (a: k) T, (z:7)

Kind and proposition well-formedness are recursively scanning their subexpressions for all oc-
currences of coercion propositions (X F 7) > o to ensure that X, 7, and o are well-typed, as
described by the following rule:

r'-% IYkF7:% I'o:x
r-XXkFr)ro

Well-formedness rules are defined in Figure

The type judgment I' - 7 : k is defined in Figure [f] Rule TypePack is used to turn a
type 7 of kind & satisfying a proposition P into a type of the constrained kind {« : k | P}.
Conversely, TypeUNPack turns back a type of the constrained kind {« : k | P} into one of
kind k, unconditionally. TypeEMu allows to build the recursive type pa 7, which can be formed
whenever 7 is productive as stated by the judgment o — 7 : wf. Other rules are straightforward.

Term typing rules Following the tradition, we write I' - @ : 7 to mean that in environment
T" the term a has type 7. However, we would also like to write this a : I' - 7 too and say that
the term a has the typing I' - 7, that is, a is approximated by the type 7 whenever its free
variables are in the approximations described by I'. We will keep the standard notation to avoid
confusion, but we will read the judgment as above when helpful. The judgment I' - a : 7 implies
that 7 has kind x under I' whenever I' is well-formed, as stated below by the extraction lemma
(Lemma [21]).

Term typing rules are given on Figure [f] Observe that the first five rules are exactly the
typing rules of the simply-typed A-calculus.

The last two rules are for incoherent abstraction and application (they could be skip at first):
Rule TeErMBLOCK says that the program 0 a whose evaluation is frozen may be typed with the
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PROPEQ ProrVar PROPANDPAIR'
r;erp P=P TP Pfeo ;‘éTFT (T;© F p,)ieit2)
F;@}—P/ Irerp ' I'OrFPy APy
PropForELIM
ProPANDPROJ ProPFORINTRO 'E7:k ProPRES
I0FP; AP,y L'k I'(a:k);OFP IrieoFva: k)P 'kr:{a:x|P}
IOFP; IrekFva: k)P ;0 F Pla + 7] ;0 F Pla + 7]
ProrFix
ProrEx1 re=p
F'kFr:k rie,P-P
rerdk r,e+pP

Figure 7: Proposition judgment relation

incoherent polymorphic type I(« : k) 7 if a can be typed with 7 in an extended context that
assigns a well-formed kind x to a. Notice that I' IF &, as opposed to I' I k, does not imply that
the kind is coherent, but well-formed. Rule TErRMUNBLCK is the counterpart of TErRmMBLock. If
we have a term a of an incoherent polymorphic type II(a : k) 7, i.e. whose evaluation has been
frozen and a type o of kind k, we know that the kind « is inhabited by o. Therefore, we may
safely unfreeze a and give it the type 7[a < o].

Rule TErMCOER is at the heart of our approach which delegates most of the logic of typing
to the existence of appropriate typing coercions. The rule reads as follows: if a term a admits
the typing I', ¥ 7 and there exists a coercion from 7 to ¢ introducing ¥ under I', which we
write ' F (X F 7) > o, then the term a also admits the typing T' F 0. The presence of ¥
allows the coercion to manipulate the typing context as well as the type, which is the reason for
our generalization from type coercions to typing coercions. When 3 is @, the rule looks more
familiar and resembles the usual subtyping rule: if a term a has type 7 under I" and there exists
a coercion from the type 7 to the type o under I' (which is written I' - 7 > o), then the term a
has also type o under T

This factorization of all rules but those of the simply-typed A-calculus under one unique rule,
namely TERMCOER, emphasizes that coercions are only decorations for terms. Rule TErMCoOER
annotates the term a to change its typing without changing its computational content, as the
resulting term is a itself. This is only made possible by using typing coercions instead of type
coercions.

Propositions typing judgment The judgment I' - (X F 7) > o is in fact an abbreviation for
;o F (2 F 7)o, which is itself a special case of the more general judgment I'; © - P when ©
is@and Pis (X F 7) > o. Indeed, (X F 7) > o a particular proposition P stating the existence of
a typing coercion from 7 to ¢ introducing 3. The proposition environment © contains additional
hypotheses that can be used coinductively when proving that a coercion holds.

The proposition judgment is split into two figures, with rules for general propositions in
Figure [7] and rules specific to coercion propositions in Figure [§] We first explain typing rules for
general propositions.

Rule Propeq allows the use of type equality. Rule ProrVar allows the use of a coinductive
hypothesis P in ©. This is written P’ € © because propositions that are guarded are marked T
in © and only those are safe to use coinductively.

In particular, rule ProrFix which we do not usually find in type systems allows to prove a
proposition by coinduction: if P is true assuming P in the unguarded coinduction environment,
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then P is true without this additional hypothesis. Coinductive propositions are introduced as
unguarded so that they cannot be used directly, which would be ill-founded. Only some of
the coercion rules (described below) allow coinduction to be guarded. The usual rules about
recursive types that can be found in other type systems are derivable from this general rule (see
Section .

Rules PROPTRUE, PROPANDPAIR, and PROPANDPROJ are uninteresting. Rule PROPFORINTRO
and ProrForELIM are unsurprising. Rule ProrEx1 allows to embed the coherence of a kind &,
i.e. the existence of a type inhabitant of kind x as the proposition 3 k. Rule ProrREs allows to
extract a proposition from a type 7 of a constrained kind {« : x | P}, replacing the variable « of
kind k by the witness 7 of kind k.

Coercions We now explain typing rules for coercion propositions. We may ignore the environ-
ment © in most cases, as it is just unused or transferred to the premises unchanged, except for
the three n-expansion rules that mark the environment as guarded ©F in their premises, therefore
allowing coinductive uses of propositions © via Rule ProrFix. These are the rules that decom-
pose computational types that have a counterpart in terms, namely CoErRARR, COERPROD, and
CoErP1.

We now explain coercion rules ignoring ©. Intuitively, the judgment I' - (¥ F 7) > o implies
that any term that admits the typing I', X F 7 also admits the typing I' F o. (The converse
is not true: the fact that any term that admits the typing I';¥ F 7 also admits the typing
I I o does not imply that the judgment I' F (X F 7) > o is derivable; therefore, the coercion
typing judgment is semantically incomplete.) One could expect this judgment to be of the form
X F7)> (I'F o), or even (I'y F 71) > (I's F 72). However, in our notation, ¥ describes
environment actions under I' in a compositional manner and eventually permits to go from I'y
to FQ.

The coercion typing rules can be understood under the light of Rule TERMCoER. The first
two rules, CoerRREFL and CoerRTRANS, close the coercion relation by reflexivity and transitivity.
To understand CorerTRrANs let’s take a term a with typing I',¥5,%; F 71. Applying Rule
TerMCoER with the second premise of Rule TErMTRANS ensures that the term a admits the
typing I', 3o F 75. Applying Rule TErMCoER again with the first premise of Rule TERMTRANS,
ensures that a admits the typing I' - 73 as if we have applied Rule TErRMCOER to the original
typing of a with the conclusion of Rule CoERTRANS.

The Rule CoerWEAK implements a form of weakening. It tells that if any term of typing
I''Y F 7 can be seen as I' F o, then any term of typing I' F 7 can also be seen as I' F o.
Since weakening holds for term judgments, we can do the following reasoning to justify this
rule. Assume that the premise I', ¥ - 7 holds; we argue that the conclusion should also hold.
Indeed, a term that admits the typing I' - 7 also have typing I', ¥ - 7 by weakening; therefore,
by the premise of Rule CoerWEAK, it must also have typing I' - 0. However, this reasoning
is mathematical and based on our interpretation of coercions: Rule CoERWEAK is required as
it is would not be derivable from other rules—not even admissible—if we removed it from the
definition. Notice that this is the only rule that removes binders.

The rules CoerBot and CoerTor close the coercion relation with extrema. For any typing
I' - 7, there is a smaller typing, namely I' - 1, and a bigger typing, namely I' - T.

The rules CoerProp, CoerRARR, and CoEeRPI close the coercion relation by n-expansion,
which is the main feature of subtyping. Here, n-expansion is generalized to typing coercions
instead of type coercions. The n-expansion rules describe how the coercion relation goes under
computational type constructors, i.e. those of the simply-typed A-calculus. Interestingly, the n-
expansion rules for erasable type constructors can be derived as their introduction and elimination
rules are already coercions.
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Intuitively, n-expansion rules can be understood by decorating the n-expansion context with
coercions at their respective type constructor. These coercions are erasable because the 7-
expansion of a term has the same computational behavior as the term itself.

For example, consider the n-expansion context for the arrow type Az (([]z)). Placing a term
with typing T, F 7/ — ¢’ in the hole, we may give M (([]z)) the typing I' - 7 — o provided
a coercion of type I', ¥ = 7> 7/ is applied around x. The result of the application has typing
I', ¥ F ¢’ which can in turn be coerced to I' F o if there exists a coercion of type I' - (X F o’) > 0.
Thus, the n-expansion has typing I' = 7 — 0. While the coercion applied to the result of the
application may bind variables ¥ for the hole (and the argument), the coercion applied to the
variable x needs not bind variables, since the variable x could not use them anyway.

Rules CoerGEN and CorrInsT, implement the main feature of the language, namely simul-
taneous coherent coercion abstractions. Intuitively, Rule CoERGEN combines several type and
coercion abstractions. This is however transparent in rule CoERGEN since the simultaneous ab-
stractions are grouped in the kind . Hence, this rule looks like a standard generalization rule.
The only key here is the left premise that requires the coercion to be coherent. Rule CorrINsT is
the counter part of CoerGEN: it instantiates the abstraction by a type of the right kind. Notice
that CoERGEN is the only rule using typing coercions in a crucial way and that could not be
presented as a coercion if we just had type coercions.

Rule CoerP1 is an n-expansion rule and should be understood by typing the n-expansion of
the incoherent polymorphic type 9 ([] ), inserting a coercion around the incoherent application.
Placing a term with typing I',3 F II(o/ : k') 7’ in the hole, we may first apply weakening to
get a typing of the form T',(a : k), F TI(¢/ : ') 7'. By instantiation (Rule TErMINST), we
get a typing T, (a : k), X F 7/[o < o] provided T, (« : ),2 F o’ : k. Applying a coercion
(X F 7'[e + ¢']) > 7 (Rule TERMCOER), we obtain the typing ', (« : k) F 7, which we may
generalized (Rule TERMGEN) to obtain the typing I' F II(a : k)7 of 9 ([] ¢). Notice that, as
Rule CoerGEN, we do not require coherence for the kind k, just its well-formedness. However,
we require the coherence of the type environment extension ¥ under I'. This is a very important
premise because we do not want the incoherence of k to leak in ¥ and thus under the coercion,
because 7-expansions are coercions and thus erasable.

Rules CoerFoLp and CorrUNroLD are the usual folding and unfolding of recursive types,
which give the equivalence between pa 7 and 7[a + pa7]. Interestingly, the usual rules for
reasoning on recursive types [Amadio and Cardelli(1993)] are admissible using PRoPFIx (we write
TS for T P T ATy > T):

CoerPERIOD

a0 wf . CoerETAMU
Ior (Ti<1>0'[01%7'i])l€{1’2} L (o, B,a>8);0F1>0
Ok Ok pare ubo

Interestingly, the proof for CorrPERIOD requires reinforcement of the coinduction hypothesis
since we need 1; < 75 and not just 7 > 75 in the coinduction hypothesis.

Finally, the well-foundedness judgment, written o — 7 : x, means that a — 7 is well-founded
when x is wf or non-expansive when x is ne. The rules are unsurprising. The most interesting
rules are RECARR, REcCPrRoOD, and ReEcP1 which ensure well-foundedness provided the components
are themselves non-expansive. Conversely, rules REcFor and REcMu just transfer both well-
foundedness and non-expansiveness from their components. For polymorphic types the abstract
variable should not appear in its bound to ensure well-foundedness or non-expansiveness. Of
course, recursive types can only be well-formed if they are well founded (left premise of REcMu).
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CoOERREFL CoERTRANS CoERWEAK
7% r,Y;:oerCk7r)o7r o+ o Xkr)po
rieFror r,oFX,SkF7r)e7" riekFroo
CoerTop CoerBor COERARR
Dh7:x* k7% 0,20 k7o T;0TFEF)bo
rierFr>T erler oFXErFT o )pr—0
CoErPROD

I;0TF (k1) b oy)i €t
IOF (k71 X 1) >og X oo

CoERP1
ks TFEY T,(a:k),2Fd:x T (a:k);0F(EFTd +o])>T

DOF(EHI( k)T e (k)T

CoERGEN CoERINST
'k Di(a:k) 7% Di(a:k) 7% Pto:k
[0k (a:kbE7)pV(a: k)T [0FY(a: k)T [+ o]

CoErRUNFOLD CoEerFoLD

a7 wf Di(a:*x)F71:x a7 wf Di(a:*x) 7%
;0 F pat > 7o+ poT] IO F 7la + pat] > pat

Figure 8: Coercion judgment relation

RECARR ) RecProD ] REcFor
RECVAR (o> 7; : ne)t€il2} (o 7; : ne)P€il 2} a ¢ fv(k) Q= T:iX
Q> «a:ne
a1 — oy wf a1 X oy wf a—=Y(B:r)T:x
REcCP1 RecMu RECwF RECNE
a ¢ fv(k) o T:ne BT :wf a— T a ¢ fv(r) a7 :wf
a—T(8: k)7 :wf av— uBTix a7 wf Q> T:ne

Figure 9: Well-foundedness judgment relation

4 Semantics

A term is sound if none of its reductions lead to an error. To avoid the negation, it is easier to
reason with valid terms defined as the complement of €2, i.e. terms that are not errors, which
we write U. Hence, a term is sound if all its reduction paths lead to valid terms. Since this
construction appears repeatedly, we define the expansion of a set of terms R, which we write
(~*R), the set of terms a such that any reduction path starting with a leads to a term in R.
The set S of sound terms is the expansion (~*U) of valid terms.

Head normal forms A are terms whose root node is a constructor, i.e. abstractions, pairs,
and incoherent abstractions, while neutral terms V are variables, applications, projections, and
incoherent application. Notice that A and V are complement of one another, i.e. terms are the
disjoint union of A and V.

Progress is a way to double-check the definition of the semantics, by defining values syn-
tactically and checking that semantic values (irreducible valid terms) are syntactic values (and
neutral values are prevalues):

Lemma 1 (Progress). If a € U and a &, then a is of the form v.
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&), = b L<€1[€2k>kjj = <|—21J\_j7j|.62jj>kj
acl; = Mz le], e T
el 1]y [0%e); = 0% Le);

(e "5 = (Lel; LF])" leOF]) = [e]; OF

Figure 10: Lower function

The converse is also true, i.e. values do not contain errors. However, this won’t remain true when
we restrict the strategy, e.g. to call-by-value. In this case, redefining the grammar of values,
progress will still hold, but some grammatically well-formed values may contain “inaccessible”
errors, such as errors occurring under an abstraction.

Type soundness states that well-typed terms are sound. We prove this by interpreting syntac-
tic types as semantic types which are themselves sets of terms. However, since we allow general
recursive types the evaluation of terms may not terminate. This is not a problem, since type
soundness is not about termination, but ruling out unsound terms, which if they reach an error
do so in a finite number of steps.

The idea of step-indexed techniques is to stop the reduction after a certain number of steps,
as if some initially available fuel (the number of allowed reduction steps) has all been consumed.
Since errors are necessarily reached after a finite number of steps, we may always detect errors
with some finite but arbitrary large number of reduction steps.

However, there is a difficulty applying this technique with strong reduction strategies, which
we solve by including the fuel inside terms, called indexed terms, and block the reduction inter-
nally when terms do not have enough fuel, rather than control the number of reduction steps
externally.

4.1 The indexed calculus

Terms of the indexed calculus are terms of the A-calculus where each node is annotated with a
natural number called the index (or fuel) of this node. They are written with letter f or e and
formally defined on Figure indexed terms are variables ¥, abstractions Xz e, applications
(e f)*, pairs (e, f)¥, projections 7;* e, incoherent abstractions d* e, and incoherent applications
e OF. We consistently label one hole contexts and errors. We write E* for one-hole context with
index k.

Intuitively, indices indicate the maximum number of reduction steps allowed under the given
node. Since redexes usually involve several nodes, we must take the minimum of indices of the
redex nodes. We use an auxiliary lowering function on indexed terms to keep track of such
constraints by lowering the indices in a subterm. It is written |e|; and defined on Figure
We use concatenation of indices to denote the minimum of their values. This is not ambiguous
since we never use multiplication of indices. Lowering simply changes all indices in the term e
with their minimum with j.

The capture avoiding substitution e[z + f] of term f for variable z in the term e replaces
in e all free occurrences 7 of x by |f|;. The definition is generalized in the obvious way
to simultaneous substitutions. We use letter v to range over substitutions. The lowering of
substituted occurrences is necessary to make substitution commute with the lowering function:

Lemma 2. |e[z < f]]r = le|w[z < f] = lelelz < [f]x]

In particular, renaming commutes with the lowering function.
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e, f u= 2P | Xae|(ee)* | (e,e)* | mFe|dbe|edF
E* = Xz [ ([e)* ] (eDF [, | e, IV | m* [ 25171 [ 0F

Figure 11: Syntax of indexed terms

FREDCeTi/> f FREDAPP FREDPROJ
j+1 k+1 ) k+1 Jj+1 o
E*e] ~ E*[f] (W ae) /)~ Lelz < [k Mt {en el o ek
FREDIAPP

(@77 e) O~ ek

Figure 12: Indexed calculus reduction relation

The reduction rules of the indexed calculus mimic those of the A-calculus, but with some
index manipulation, as described on Figure Reduction can only proceed when the index on
the nodes involved in the reduction are strictly positive; the indices are lowered after reduction
by the minimum of the involved indices decremented by one. As a corollary, reduction cannot
occur at or under a node with a null index. This applies both to head reduction rules (FREDAPP,
FREDPROJ, and FREDIAPP) and to reduction in an evaluation context (Rule FREDCTx). That
is, a head reduction can only be applied along a path of the form Ef'[... ES” [e]] when indices
k;’s are all strictly positive; they are all decremented after the reduction.

For example, here is a decorated reduction of apply (the A-term Az \y (xy)) applied to two
terms a and b: ] o

((()\k3+1.’L‘ Nty (l’j?’ y34)12) a)kz-‘rl b)k1+1
~ (VR y ([ a] jmgn, y?2h2Re) 2 R2ks) b)Ms

Since the reduction happens under the external application, it must have some fuel k1 + 1, which
is decreased by one in the result. Then, for the redex to fire, the application must have some fuel
ko + 1 as well as the abstraction k3 + 1, which are both decreased by 1 and combined as kok3 to
lower the result of the reduction. Before that, the term @, which has been substituted for 273 has
been lowered to j3 in the result. The important feature is that b has not been lowered, which
is an important difference with what would happen with the traditional step-indexed approach
when indices are outside terms.

Strong normalization By design, the indexed calculus is strongly normalizing, i.e. all re-
duction paths of all terms are finite. In particular, they are bounded by the index of their root
node.

4.2 Bisimulation

To show that reduction between undecorated terms and decorated terms coincides, we define
le] the erasure of an indexed term e obtained by dropping all indices. We lift this function to
sets of terms: |R] is the set {|e| | e € R}. By construction, dropping is stronger than lowering,
i.e. dropping after lowering is the same as dropping, or in math, ||e],;] = |e]. As for lowering,
dropping commutes with substitution: |e[z < f]| = |e|[z + | f]].

We overload the notations Q and V for the sets of errors and neutral terms for indexed terms.
This overloading is not a problem since it is always clear from context which version of terms we
mean. Moreover, the definitions coincide with |Q], and | V], so it could also be seen as leaving
the dropping implicit.
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P(X¥ze)=P(m*e)=PkAPe
Pz* =Pk P(0Fe)=P(eOF)=PkAPe
P(eleg)k:P<61,62>k:Pk/\P€1/\P62

Figure 13: Lifting integer predicates to indexed terms

xak = jxk
NeexXNaof = mdexmFf = jxkANexf
FexOf = eI+ fOF = jxknexf

(e1 62)? *(f1 fz)k}
(e1,e2)7 % (f1, f2)F

Figure 14: Lifting of a binary predicate x on indices to terms

= j*k/\@l*fl/\eg*fg

We also overload the notation S for the set of sound indexed terms. Although it is defined
as for A-terms as (~*U), the meaning is different since the reduction is now bridled by indices.

The calculus on indexed terms is just an instrumentation of the A-calculus that behaves the
same up to the consumption of all the fuel. Formally, we show that they can simulate one
another, up to some condition on the indices.

Indexed terms can be simulated by A-terms. That is, if an indexed term can reduce, then the
same reduction step can be performed after dropping indices.

Lemma 3 (forward simulation). If e~ f, then |e] ~ | f].

In order to make the other direction concise, we lift predicates on integers to predicates
on indexed terms by requiring the predicate to hold for all indices occurring in the term. For
instance, e < k means that the indices in e are smaller or equal to k. This is formally defined on
Figure [13]

Indexed terms can simulate A-terms, provided they have enough fuel. This means that if an
indexed term has strictly positive indices and can be reduced after dropping its indices, then the
same reduction step can be performed on the indexed term.

Lemma 4 (backward simulation). If e > 0 and |e| ~ @', then there exists €' such that e ~ €
and |€'] =d.

4.3 Semantic types

To define semantic types concisely, it is convenient to have a few helper operations on sets of
indexed terms. We first lift binary properties on indices to indexed terms. This is done by
asking the two terms to share the same skeleton (they drop to the same A-term) and the indices
of corresponding nodes to be related by the property on indices. A formal definition is given in
Figure

The interior of a set R is the set R] containing all terms smaller than a term in R, i.e.
{f|3e €R, f <e}. The contraction of a set R is the set (R~) of all terms obtained by one-step
reduction of a term in R, s.e. {f|3Je € R,e~ f}.

A pretype is a set of sound terms that contains both its interior and its contraction. We write
P the set of pretypes.

Definition 5 (Pretypes). P = {R C S |R| U (R~) C R}
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Notice that the empty set and S are pretypes. Pretypes only contain sound terms since types
will be pretypes and types will be sets of sound terms. The closure of pretypes by interior is just
technical. The main property of pretypes is to be closed by reduction. Types are pretypes that
are also closed by a form of expansion. As a first approximation, sound terms that reduce to a
term in a type R should also be in R. However, a type R should still not contain unsound terms
even if these reduce to some term in R. Moreover, the meaning of a set of terms R is in essence
determined by its set of head normal forms, which we call the kernel of R. We use concatenation
for intersection of sets of terms. Hence, the kernel of R is AR. A type R need not contain every
head normal form that reduces to some term in R. Consider for example the term ey equal to
Az z and one of its expansion is the term e; equal to Az ((A\yx) (zx)). The sets {eg} and {eg,e1}
have quite different meanings. Notice that by definition, the kernel is an idempotent operation:
A(AR) = AR.

The expansion-closure of a set of terms R, written R, is the set (~*(VU W AR)), which
contains terms of which every reduction path leads to either a valid neutral term or a head
normal form of R. By definition, the expansion closure is monotonic: if R C S, then $ R C ' S;
it is also idempotent: & (O R) = O R.

Finally, semantic types are pretypes that are stable by expansion closure:

Definition 6 (Semantic types). T = {R e P | $R C R}.

The kernel of a type is a pretype—but not a type. Conversely, the expansion-closure of a pretype
is a type. Actually expansion-closure and kernel are almost inverses of one another: if R is a
type, then  (AR) =R.

The smallest type, called the bottom type and written L, is equal to <> {}, that is (~*(VU)).
The largest type, TA', called the top type is the set S of sound terms.
4.4 Simple types

We can now define the semantics of functions and products as semantic type operators.

Definition 7 (Arrow, product, and incoherent operators).
Zo{NaeeS|k>0=Vf, | fli-1 ER= lefz  f]|r-1 €S}

R5SE
RxSEO{(e,e) €S| k>0= [e)p1 €RA|e|r1 €S}

def

MFE Q{0 e|k>0=Vielle|p, € Fi}
The arrow, product, and incoherent operators preserve types.
Lemma 8. IfR and S are types, then so are RS and R x S.
Lemma 9. If F; is type for all i € |, then so is ILF.
The proof uses the following easy properties on indices:

o [le)jln = lelw;

o If k' <k ande <e,then |¢]p < |e]s.

o If ¢! <eand f' < f, then e[z + f'] <elx + f].
And this less easy one:

Lemma 10. If e~ f holds, then |e|p11~ f' and | f|r < [’ for some [’
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Proof. We only detail the proof for the arrow operator, which uses indexed terms in a crucial
way. The proof for the product operator is similar, but easier. Since the arrow operator is defined
by expansion-closure, it is a type if its kernel is a pretype. Its kernel contains only sound terms
by definition. So it remains to show that the definition contains its interior and contraction.

Let ¥Xoe' < Nxe (1), ¥ze € S (2), and k > 0= Vf, [ f]r-1 € R= |e[r + f]|x_1 €5 (3),
and show that ¥ze’' € S (4) and j > 0= V[, |f|;—1 € R= |¢/[x + f]|;—1 € S (5). The first
assertion (4) comes easily with (1) and (2) since S contains its interior. To show (5), let j > 0
and | f|;—1 € R (6) and show |€'[z < f]];—1 € S (7). By (1) we have j <k, so k > 0. We also
have || f]j—1]k—1 = |f];—1 which is in R by (6). So from (3) we have |e[z < | f];—1]]x—1 € S.
Since S is a type, it contains its interior so |€'[x < | f];—1]]j—1 € S. Since the substitution and
the lowering function commute, we conclude (7).

Let Xze~s ey (8), ¥ze €S (9), and k > 0= Vf,|flr_1 € R= |e[x + f]|x—1 €S (10).
By inversion of the reduction relation we have k = k' + 1 and e; = N2 ¢ for some k' and ¢’
such that e ~» ¢/ (11). We now have to show that ¥z ¢/ € S (12) and k' > 0 = Vf, | f]r_1 €
R= |e[z < f]lw-1 €S (13). We show (12) with (8) and (9) since S contains its contraction.
To show (13), let &' > 0 and [f|w—1 € R (14) and show |e/[z + f]|w—1 € S (15). We have
[[f]k=1]k—1 = | f]&—1 which is in R by (14). So from (10) we have |e[x + |f]x—1]]x—1 € S.
Since S is a type, it contains its contraction and interior so |e'[x < |f|r—1]/r—1 € S by
Lemma Since the substitution and the lowering function commute, we conclude (15). O

4.5 Intersection types
The intersection [

R; of a nonempty family of types (R;)*¢ is a type. (As a particular case,

i€l
the bottom type L is also the intersection of all types.)

4.6 Recursive types

This section follows the usual description of recursive types using approximations as done in [Appel and McAllester(20(
This addition of recursive types is the main reason for using a step-indexed semantics. However,
while they require the need for step-indexed semantics, they do not raise any difficulty once the
semantics has been correctly set up.
The k-approximation of a set R, written (R) is the subset {e € R | e < k} of element of R
that are smaller than &
The following properties of approximations immediately follow from the definition. (R)q is the
empty set; a sequence of approximations is the approximation by the minimum of the sequence:
((R);)x = (R)j&; Two sets of terms that are equal at all approximations are equal: If (R); = (S)
holds for all k, then R =S.

Definition 11 (Well-foundness). A function F on sets of terms is well-founded (resp. non-
expansive) if for any set of terms R, the approzimations of FR and F (R)y are equal at rank k+1

(resp. k), ie. <F R>k+1 = <F<R>;€>k+1 (resp. <F R>k = <F <R>k>k:)

Intuitively, well-foundedness (resp. non-expansiveness) ensures that F builds terms smaller
than k + 1 (resp. k) by only looking at terms smaller than & in its argument.

The iteration of a well-founded function F does not look at its argument for terms of small
indices: (F¥R), is independent of R; in particular, it is equal to (F¥ 1);. Therefore, (F/ R)x; and
(FFR); are equal.

Definition 12 (Recursive operator). Given a well-founded function F on sets of terms, we define
fiF as the set of terms |J;~q (F* L)
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The recursive operator preserves semantic types:

Lemma 13. If F is well-founded and maps semantic types to semantic types, then o F is a
semantic type.

Moreover, recursive types can be unfolded or folded as expected: if F is well-founded, then
fiF = F (i F). This is proved by showing that (/i F)x is equal to both (F¥ 1), and (F (iF)) for
every k.

The following Lemma, which although in a different settings, is stated exactly as with tradi-
tional step-indexed semantics [Appel and McAllester(2001)]:

Lemma 14. We have the following properties:
o FEvery well-founded function is non-expansive.
o X — X is non-expansive.
e X — R where X is unused in R (R is constant) is well-founded.
e The composition of non-expansive functors is non-expansive.

e The composition of a non-expansive functor with a well-founded functor (in either order)
is well-founded.

o IfF and G are non-expansive, then X — FX 2 GX and X — FX x GX are well-founded.
o If (F,)'€! is a family of non-expansive functors, then X — ﬂieI(Fi X) is well-founded.

o If (F,)¥€! is a family of non-expansive (resp. well-founded) functors, then X Nicr(Fi X)
is non-expansive (resp. well-founded).

o If X — FXY is non-expansive (resp. well-founded) for every Y and F X is well founded for
every X, then X — [i (FX) is non-expansive (resp. well-founded).

Just for illustration X — X = S is well-founded since X — X is non-expansive and X — S is
constant, thus well-founded, and therefore non-expansive.

4.7 Semantic judgment

A binding is a pair (z : R) of a variable and a semantic type. A context is a set of bindings
(z : R), defining a finite mapping from term variables to types. We say that a substitution ~ is
compatible with a context G and we write « : G if dom(y) and dom(G) coincide and for all (z : R)
in G, the term vz is in R.

We define the semantic judgment G |= S as the set of terms e such that ye is in S for any
substitution v “compatible” with G.

Definition 15 (Semantic judgment).
v:G ¥ V(z:R) € G,yx €R
GES % {e|V7:GyeecS)

We may now present the semantic typing rules for the simply-typed A-calculus.

Lemma 16 (Variable). IfR is a type and (x : R) is in G, then z* is in G = R.
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Proof. Let v be compatible with G (1). We show that v z* is in R. Since (z : R) is in G, we have
~vz in R by (1), Being a type, R is closed by lowering. Hence, |y | is also in R. By definition
of substitution, this is equal to v 2*, which is thus also in R. O

Lemma 17 (Abstraction). If R and S are types and e is in G,(z : R) |= S, then Xxe is in
GER=S.

Proof. Let v be compatible with G (1). We show that v (Mze) is in R = S (2). Assume
v (X¥xe) ~* e;. Then e; is necessarily of the form Nz e’ where ye ~* ¢'.

We first show that ¥z e’ € S (3). Since 7 is compatible with G, v,z — = is compatible with
G, (z : R) as variables are in all types. Since e is in (G, (z : R) E S), we have (y,z — x)e, i.e.
~vein S. Since S is closed by reduction, we have ¢’ in S and a fortiori in §. This implies (3).

Assume j > 0 and | f]j—1 € R. Let 4/ be v,z — [f];—1. By construction 7' : G, (z : R).
Since e isin (G, (z : R) = S), we have 7/ e in S and, since S is closed by reduction, e[z < | f];_1]
is also in S. By decreasing index we have |e'[z « [f];j-1]];—1 € S, from which by Lemma
becomes |e'[x < f]|;—1 € S. This ends the proof of (2). O

Lemma 18 (Application). If R and S are types, e is in G|= RS, and f is in G E R, then
(ef)* isin GES for any k.

Proof. Let v be compatible with G. We show that v (e f)¥ € S. By hypotheses we have ye €
R=S and v f € R. We prove the more general result that for all k, e, and f, if e € R5>S
and f € R hold, then (e f)¥ € S also holds. This is proved is by induction over the strong
normalization of e and f using the closure expansion of S.

The term (e f)* is neutral. It is also valid since e and f are sound and, by construction of RS,
e is an abstraction when in normal form. If (e f)* reduces by a context rule, we use our induction
hypothesis. Otherwise, e must be of the form ¥z e’ for some j and ¢’ and k be of the form
k' 4+ 1 and the reduction is (e f)* ~ |e/[x < f]|jr. It remains to show |e/[x < f]|;» € S (1).
We have | f]; € R by stability under decreasing index. So, we have |€'[z < f]]; € S by definition
of the arrow operator. Then (1) follows by stability under decreasing index. O

Lemma 19 (Pairs). Let Ry and Ry be types. If e; is in G = R;, then {eq,es)* is in G = Ry x Ry.
Ife in G = Ry X Ry, then mi* e is in G E R;.

Lemma 20 (Incoherent). Let F; be types for alli € 1. If e is in G |= F; for all i € 1, then oFe
is in G = 1iF. If e in G |=1I|F, then e OF is in G = F; for alli € 1.

Note that when S is a type and R is a type for all (z : R) € G, then G =S is a pretype.

5 Soundness

In order to show the soundness property we need the extraction lemma (Lemma7 which uses
the usual weakening and substitution lemmas.

Lemma 21 (Extraction). If @ Ik T holds, then the following properties hold:
o IfT'F k holds, then I IF k holds.
o If ' 7 :k holds then ' IF k holds.
o IfI0FP and ' IF © hold then I' IF P holds.
o IfT'Fa:7 holds then ' - 7 : x holds.
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The soundness proof is not direct. We will translate the F.. type system from the A-calculus
to a temporary type system on the indexed calculus. We will prove soundness for the indexed
calculus type system and migrate the result to the A-calculus type system. The relation between
both type systems will be that if a A-term is well-typed then all indexed terms that drop to this
A-term are well-typed too. And reciprocally, if an indexed term is well-typed, then its dropped
A-term is well-typed too. Both directions preserve the typing (the pair of the environment and
type). Notice that only the term judgment needs to be changed since it is the only one talking
about terms.

Syntactically, the indexed term judgment e : I' - 7 contains the exact same rules as those of
the A-term judgment. However index annotations now appear on the term node we are typing.
This annotation has no constraint, which gives us that if a term is typed with annotations it can
be typed without and reciprocally if a term is typed without annotations it can be typed with
any annotations.

Lemma 22. The following assertions hold:
e Ife:TF 1 holds, then |e| : T'F 7 holds.
e Ifa:TF 7 holds, then e : T - 7 holds for all e such that |e] = a.

To state and prove the soundness of the indexed type system we interpret (syntactic) kinds,
types, propositions, and typing environments.

We interpret kinds as sets of mathematical objects, which are either sets of terms, the unit
object, or pairs of objects. The kind star is interpreted as the set of sets of terms. The unit kind
is interpreted as the singleton containing the unit object. The product kind is interpreted as the
cartesian product of the interpretation of its components. The constrained kind is interpretated
as the subset of the interpretation of its kind satisfying its proposition.

Definition 23 (Kind interpretation). The interpretation of a kind  under n, written ||, is the
mathematical object recursively defined as:

e [x], = setsof terms

1], = {0}

‘I{l X KJQ|,’7 = {<I1,SC2> | xr1 € |I€31|17 Nxoy € |I£2|17}

[{a:n | PY, = {z € Ixl, | VK [Pl o0}

N,

The interpretation of a syntactic type is a semantic type, but it is parametrized over a
mapping from type variables to semantic types written 7. The interpretation of a type variable
is its value in the mapping. If it is not present in the mapping, the unit semantic type is
returned. The interpretation of arrow, product, and incoherent polymorphic types simply use
the arrow, product, and incoherent operators defined in §4.4] The interpretation of the coherent
polymorphic type ¥(a : k) 7 under 7 is the intersection of all interpretations of 7 under n, o — x
where = ranges in the interpretation of k¥ under 7. The interpretation of the recursive type pat
under 7 is the infinite iteration of the functor mapping X to the interpretation of 7 under the
extension of 77 mapping a to X—which corresponds to the infinite unfolding of the recursive type.
Top and bottom are mapped to their semantic equivalent. Finally, the unit type, pairs of types,
and projections of types, are interpretated to their mathematical equivalent.

Definition 24 (Type interpretation). The interpretation of a type T under n, written |’7’|n is the
set of terms recursively defined as:
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e |af, =n(a)

[r = ol, = Irl, = lol,,

I x al, =, x o},

o T(: R)T\n = H|K|" (x — |T|n7w_m)

‘V(Oé : K/)T"’I = ﬂ‘ﬁ‘n(x = |T‘n,ou—>:r)

° ‘,LLClen = ﬂ(x — |T‘n,o¢>—>X)
o L], =1
.WM:f

e [0, =0

(7,00, = (I7lyy s o)

o [mirl, =milrl,

We define the interpretation of environments, written |T'| e the pair of a term substitution
(a mapping from term variables to indexed terms) and a semantic type mapping (from type
variables to semantic types). The interpretation is parametrized by initial mappings v and 7.
The empty environment is interpreted by the singleton set containing the initial mappings. The
interpretation of an environment I' extended with a term binding (x : 7) extends the term
mappings in the interpretation of I' with = bound to a term in the interpretation of 7 under the
associated type mapping. The interpretation of an environment I' extended with a type binding
(o : k) extends the type mapping with an element of the interpretation of .

We define the interpretation of proposition indexed by a type mapping 7 and an index k. The
true and conjonction proposition are interpretated to their mathematical analogs. The coercion
proposition is interpretated to the inclusion of VX 7 in ¢ for terms smaller than k. The coherence
proposition is interpretated as the inhabitation of the kind. And the polymorphic proposition is
interpretated as quantified assertion.

Definition 25 (Proposition interpretation). The interpretation of a proposition P under n with
k, written |P|S is the mathematical assertion recursively defined as:

. |T\f} = True

|P1 A P2|Z = |P1|z N |P2|Z

(ZF7)> O'|S =Ve <k (Vn €|X|, e€|r|,)=ec]|r|,

|3 H|I:] =3Jz € |x|,

o V(a: n)P|§ =Vz € [x], |P|"

0,0

The coinduction environment interpretation |@|§ is a conjonction of mathematical assertions
for each proposition: when the proposition is not guarded, it holds for all indices smaller than
k; when it is guarded, it also holds for k£ and is thus accessible.
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Definition 26 (Coinduction environment semantics). We define |®|f] as follows:
. \@\i = True
e |0,PF =10/ AVj<Ek [P
»n 7 7
k k ) '
o |@,PT|n =[0[, \Vj<k \P|f]

We write |I'| to stand for |I'|,,. And we write |I'[, the second projection of |I'|g,, which does
not depend on G, since the type mapping does not depend on the term mapping.

Definition 27 (Environment semantics). We define [I'|¢, as follows:
i ‘g‘cn = {Gn}
o [T (z:7)lg, = {(G, (@ : |7l )n" | G € [Tlg,}
o I (a:k)lg, ={G (', a ) | G € [Tlg, A € [kl,)}

We have the following lemmas. If 7 is non-expansive (resp. well-founded) with respect to a,
then its interpretation as a functor is also non-expansive (resp. well-founded). If a concatenated
environment is well-formed then the interpretation of the second one under the first is nonempty.
If a kind is coherent, then it is inhabited. If a type is well-kinded, then its interpretations under
all type mappings in the interpretation of its environment is in the interpretation of its kind. If a
proposition P is proved under O, then for all mappings and indices the interpretation of P holds
if the interpretation of © does too. The interpretation of a coherent type environment is not
empty and only contains semantic types. Finally, a well-typed term is in the semantic judgment
of the interpretation of its typing.

Lemma 28. The following assertions hold.

e If a — 7 :ne holds, then (X — |7| is mon-expansive.

77,00—>X)

o If a— 7 :wf holds, then (X — || is well-founded.

narx)
o IfI'k K holds, then ¥ € || |k|, # @ holds.

o IfI'k 7k holds, then Vn € |U| ||, € ||, holds.

e IfT;0 - P holds, then Vn € |T| Vk ||} = |P|\ holds.

o IfT' 1" holds, then Vn € |U'| |[I'|, # @ holds.

o IfT'= 1" holds, then Vn € |I'| V(z : R) € [I"|,, R €T holds.
e IfT'ke: 7 holds, then VGn € || e € G |= [7],, holds.

The filling of A-term a at rank £ is the indexed-term obtained by annotating each node of a
with index k (Figure . By construction, we have |[a]¥| = a.

Theorem 29 (Soundness). If @+ T and 't a: 7 hold, then a is sound.
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o]t = ot Mar, )] = ([ar]*, [as]
(7 a]* = 7% [a]*

Ic)k [0 Cﬂk =0k MV
[a O1F = [a]* OF

Figure 15: Fill function

Termination in the absence of recursive types Although evaluation may not terminate
because of the presence of recursive types, it remains interesting to show that recursive types are
the only source of non-termination. We already know this in System F. We show that coercions
do not themselves introduce non-termination, as long as all types remain non-recursive. The
proof is based on reducibility candidates as for System F and does not raise any difficulties. We
thus omit the details.

Theorem 30 (Termination). If ¥+ T and T'F a : 7 hold in the sublanguage without recursive
types and coinduction, then a strongly normalizes.

Subject reduction While by definition, there is subject reduction on semantic types (as they
are closed by reduction), we do not have subject reduction syntactically. This just means that
the type system is too rough an approximation to still capture the invariant of programs after
they have been reduced.

Confluence Because we have mixed strong and block reduction, we have lost confluence. This
is a known problem with a known fix. One solution is to extend the language with a restricted
form of explicit subsitutions so that substitution may be held at the frontier of block terms until
these terms would be unblock. We have not done the instrumentation to avoid complicating the
language. Besides, if we remove incoherent abstraction and application, then the language is the
A-calculus and confluence holds again.

Coq development We have a Coq development of the soundness proof for F... This Coq
development also contains a proof of equivalence between 2 versions of the typing rules: a version
with minimum redundancy, and a more redundant version used to prove soundness. This version
is necessary for the induction hypothesis to hold even for extracted judgments and not only the
direct premises.

The development differs from the paper by using de-Bruijn indices and using two homogeneous
environments (one for types and one for terms) instead of a heterogeneous dependent one. The
development can be found onlineﬂ

6 Expressivity

The language F.. is more expressive than FP: apart from the change of presentation, moving
from type coercions to typing coercions and from explicit coercions to implicit coercions, the
only significant change is for type and coercion abstraction: the new construct of F.. which by
design generalizes the two forms of coercion abstraction in FP. Indeed, we can choose L (resp. T)
to witness coercions that are parametric in their domain (resp. range). Therefore the languages
F<., MLF, and F, which are subsumed by F? can also be seen as sublanguages of Fe.

2ht‘tp ://gallium.inria.fr/~remy/coercions/
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6.1 Encoding subtyping constraints

We claim that languages with ML-like subtyping constraints [Odersky et al.(1999)Odersky, Sulzmann, and Wehr]|
can be simulated in F... With subtyping constrains, term judgments may be written AFe: 7| C

where A is the environment, e the expression, 7 its type, and C' is a sequence of subtyping con-

straints, e.g. as in [Pottier(1996)|.

To ease the embedding of subtyping constraints in F.., we slightly abuse of notations. First, we
see let-bindings as the usual syntactic sugar for redexes. We write @ for a sequence of variables
Q1 ...q, where n is left implicit. Given a sequence of variables @, we see o; as «.i, the ¢’th
projection of a. We write (& | P) as a shorthand for the type binding (o : {« : ™ | P}) where n
is the size of @. Finally, we see constraint type schemes Va.C' = 7 as the coherent polymorphic
type V(a | C) T.

A term judgment A F e: 7 | C can then be seen as the .. judgment (& | C), At e: 7 where
@ are free variables of A, C', and 7. Notice that the environment in the translation of judgments
is always of the form (@ | C), A composed of a single abstraction block (@ | C) followed by term
bindings A.

Type systems with subtyping constraints use two notions, solvability and consistency, that
coincide in ML. Solvability means that one can find a ground instance for type variables that
solves the constraints. Consistency means that transitive and congruence closure of the set of
constraints does not contain inconsistencies.

We claim that solvability of a set of constraints C' implies the consistency of the translation
of C, since it amounts to exhibit type witnesses such that the constraints hold. These witnesses
lie in a syntax with simple types and recursive types. Moreover, since solvability is equivalent to
consistency, we conclude that consistency is equivalent to coherence.

The two interesting typing judgments for subtyping constraints are for let-binding and sub-
sumption. These are as follows and are derivable in F:

ate abCl[B«a (a|0),l,(z:Y(B,C))Fb:p (a,8|C),Tta:T
(@|C),TF((Mb)a):p

(@|C),Tta:7 (@|CYFCAT>O
(@|C)Tkra:o

However, there remain two differences with the way subtyping constraints are usually handled.
A judgment A F e : 7 | C is valid when C is consistent while our corresponding judgment
(fv(A,C,7) | C), At e: 7 is valid when C is solvable, i.e. F (fv(C) | C), which must exhibit a
substitution @ of domain fv(C) such that &+ Cf. While consistency and solvability coincide in
ML with subtyping constraints, this need not be the case. Consistency is a semantic property
while solvability is a syntactic property. Using consistency instead of solvability, we only have to
verify a property of the constraints without having to exhibit a concrete solution. Consistency
is more flexible than solvability. In practice, it can also be checked more modularly.

We already have some flexibility to reason about coherence in F.. using propositions and
assumptions in the typing context. However, constraint entailment differs in both systems. In
particular, we cannot express the decomposition of typing constrains, e.g. deduce the consistency
of o > ¢’ from the consistency of 7 — o > 7 — ¢, as is the case with subtyping constraints.

The reason is that subtyping constraints are syntactic and taken in a closed-world view:
subtyping relations that cannot be expressed syntactically do not hold, which can be used to
reinforce constraint entailment. Our approach in F.. is semantic and syntactic coercions must be
interpreted in the semantics. Since our semantics has more types and coercions than the syntax
allows to build, some reasoning principles that would be true from a purely syntactic point of

RR n° 8456



System F with Coercion Constraints 28

view will not hold in our semantics and thus cannot be added in the syntax. We are bound to
an open-world view. Still, it would be interesting to see how our approach could be extended to
allow a form of closed world view and express some negative information.

6.2 Encoding GADTs

Incoherent polymorphism is necessary for features that contain some form of dynamic typing,
such as GADTs. It may also be a simplification for the programmer that does not have to provide
the witness type that proves the coherence—but at his own risk of delaying type errors.

In this subsection we show how GADTs can be encoded with incoherent polymorphism and
also how coherence and incoherent polymorphism can be interestingly mixed.

Incoherent polymorphism permits type abstraction for any well-formed kind: inhabited kinds,
potentially inhabited kinds, and empty kinds. In the polymorphic type II(« : k) 7, the coherence
of kind k¥ may depend over some type variable g of the type environment. Depending on how [
is instantiated, the kind x may or may not be inhabited.

Before we give a concrete example, let us first introduce existential types by their CPS
encoding. Because we have two notions of polymorphism, coherent and incoherent, we also have
two notions of existential types: we write 3(« : k) 7 for coherent existential types and X(« : k) T
for incoherent existential typesﬂ defined as follows.

coherent: F(a: k)T ‘gVﬂ Ma: k) (r—=0) =8
incoherent: Y(a: k)T d:dVB (M(a: k) (r—p)) =0

We define the pack and unpack term syntactic sugar for the coherent existential, and ipack
and iunpack for their incoherent version. Notice that the body of the iunpack sugar is hidden
under an incoherent type abstraction, and as such is allowed to be unsound because it cannot
be reduced.

packa‘g)\x(xa) unpackaasxinbg(a()\xb))
ipacka = Xz (2O a)  iunpackaaszinb = (a (8 Xxb))

Let’s assume we have type-level functions and sum types. We can now define the following
GADT, named Term, and with kind x — * (where 7 <> o stands for 7> 0 Ao > T as above):
Terma & S(B:xx*|aw (18— mA)) o
+ 3B Term (B8 — «) x Term 8

This GADT is the sum of an incoherent existential type and a coherent one. The incoherent
existential type requires a to be an arrow type and stores a term of such type; it also names 71 8
the argument type and ms [ its return type. The coherent existential type adds no constraint
on « but stores a pair such that its first component applied to its second component is of type
«; it names § the intermediate type. The Term GADT contains two constructors: one for the
left-hand side of the sum injecting functions and one for the right-hand side of the sum freezing
function applications. We can define its two constructors in the following manner:

def

Lamaz = inl(ipackz)
: Va¥Vp(a— B) = Term (a — 5)
Appyx = inr(pack (y,))

Ya Vg Term (o — 8) — Terma — Term 3

3% here is a binder and has of course no connection with ¥ used as typing environments.
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We can now define a recursive eval function taking a term of type Term o and returning a term
of type « for all type variable . Said otherwise, eval has type Vo (Terma — «). When the
argument is on the left-hand side of the sum, eval simply unpacks it and returns it. When the
argument is on the right-hand side of the sum, eval fist unpacks it as a pair and applies the
evaluation of the first component to the evaluation of the second component. We thus use the
incoherent version of unpacking on the left-hand side and the coherent version on the right-hand

side.
eval z = case x of

{inlz; — iunpackz; asyiny
| inrzo — unpackzg asyin (((eval ()71 y)) ((eval )m2 9)))}

Let’s now suppose that we call eval with a term of type Term (7 x o). This term is necessarily
from the right-hand side of the sum because 7 X ¢ cannot be equivalent to an arrow type by
consistency. However, in the first branch, in the body of the inconsistent unpack, we have access
to the proposition 7 X o <> m; 8 — w9 8 which is inconsistent. This sort of inconsistency in some
branches of case expressions is frequent with GADTs. Notice however, that we can reduce the
second branch because we used a coherent existential type since there is a witness for § for any
instantiation of a.

7 Discussion

We first compare F.. with our prior work and other related works; we then discuss language
extensions and future works.

7.1 Comparison with F?

The closest work is of course our previous work on FP of which F. is an extension. The main
improvement in F.. is the ability to abstract other arbitrary constrains, but as a serious drawback
one has to provide coercion witnesses to ensure the coherence.

Coherence is sufficient for type soundness, but in an explicit language of coercions it does not
suffice for subject reduction, which also requires that the language has a rich syntactic repre-
sentation to keep track during the reduction of invariants expressed by coercions. Our approach
in F. is to avoid the need for decomposing abstract coercions into smaller ones by presenting
an implicit version of the language. This also avoids introducing new coercion constructs in the
language and their associated typing rules—which we failed to prove to be sound by syntactic
means in an explicit language of coercions.

Therefore, moving from FP to F.. has a cost—the lost an explicit calculus of coercions with
subject reduction. Of course, one can still introduce explicit syntax for coercion typing rules in
the source so as to ease type checking, but terms with explicit coercions will not have reduction
rules in Fe.

An interesting question is whether there are interesting languages between FP and F.. that
would still have a (relatively simple) calculus of explicit coercions. If we restrict to certain forms
of coercions, instead of general coercions, the question of coherence may be much simpler. For
example, one could just consider equality coercions as in the language FC.

In F.., we simultaneously abstract over a group of type variables and coercions that constrain
those variables. The choice of grouping must be such that the group is coherence for all possible
instantiation of variables in the context.

We have also explored a syntactically more atomic version of F.. where type and coercion
abstraction are separate constructs as in F, |Cretin and Rémy(2012)|. Namely, the usual type
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abstraction Ya 7 and coercion abstraction (71 > 72) = o—a term of type o under the hypothesis
that 71 > 72 holds. For instance, this would permit to write a function of type Va (o — (71 >
T9) = o) and apply it to a type parameter, then to a value of type «, and finally to a coercion.
However, this additional flexibility is negligible, these are just n-expansion variants of terms in
Fec. Moreover, related type abstractions and coercions should still be checked simultaneously.
That is, even if the arguments are passed separately, the typing derivation must maintain a
notion of grouping underneath so as to check for coherence. The solution in F.. seems a better
compromise between simplicity and expressiveness.

7.2 Comparison with other works

To the best of our knowledge there is no previous work considering typing coercions. However,
the use of type coercions to study features of type system is not at all new. Coercions have also
been used in the context of subtyping, but without the notion of abstraction over coercions.

Subtyping have been popularized by object-oriented languages, even though inheritance
is somehow better modeled by matching [Bruce et al.(1997)Bruce, Petersen, and Fiech| or row
polymorphism |[Rémy and Vouillon(1998)]. In our view subtyping and polymorphism are both
treated as coercions. Moreover, row polymorphism is just polymorphism with a richer structure
of types and matching is a hidden form of row polymorphism.

The heavy use of coercions in FC, the core language of GHC, was one of our initial motivations
for studying coercions in a general setting. In FC  only toplevel coercion axioms coming from
type families and newtypes are checked for consistency. Local coercion abstractions are not.
This is safe because all coercion abstractions in FC freeze the evaluation. This simplifies the
meta-theory but at some significant cost, since the evaluation must be delayed to never reduce
in a potentially inconsistent context. Our inconsistent coercions largely coincide to—and was
inspired by coercions in FC. In return what F.. offers in addition is the ability to choose between
coherent and incoherent coercion abstractions so that coherent coercions could be expressed
as such and thus not freeze the evaluation and still bring more static guarantees to the user.
While F.. treats coercions in the general case, FC considers only a very specific case of equality
constraints—with additional restrictions—so that e.g. coherence of toplevel coercions axioms
can be checked automatically.

All language features without computational content are treated as coercions in F... However,
we have kept weakening implicit. Explicit weakening would exercise our general approach to typ-
ing inclusions which we have only used in a restricted form. Interestingly, explicit weakening
has already been used in combination with explicit substitution [David and Guillaume(2001)].
Moreover, a new form of reduction is introduced to break wedges creating a particular substi-
tution with the information about the weakening occurring in the wedge: ((k)Atu) — [0/u, klt.
(k) is a constructor to lift a term by k& de Bruijn indices and [j/u, k] is the explicit substitution
constructor: the j de Bruijn index is substituted by (j)u, indices smaller than j are not modified,
and those greater than j are incremented by k — 1.

Coercions have also been used to eliminate function call overhead from datatype constructors
in [Vanderwaart et al.(2003) Vanderwaart, Dreyer, Petersen, Crary, Harper, and Cheng]: the fold-
ing and unfolding of datatype definitions are done using erasable coercions, thus with no run-time
effect or hidden cost while preserving the semantics.

Recursive coercions have also been used to provide coercion iterators over recursive struc-
tures |[Crary(2000)|. However, the motivations are quite different and coercions are only used as
a tool to compile bounded quantification away into intersection types.
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7.3 Extensions and variations

Higher-order types We introduced F.. as an extension of System F, thus restricting ourselves
to second-order polymorphism. We have verified that our approach extends with higher-order
types as in F,,. The changes are not significant because we already have kinds and a (very simple)
form of reduction on types. However, the formalization in a proof assistant is significantly heavier.
The internal language FC of GHC already has higher-order kinds, but not full S-reduction at the
level of types.

Intersection types It should also be possible to add intersection types. (Our semantics al-
ready has them.). Following the work of Wells [Wells and Haack(2002)| on branching types, it
would then be interesting to have intersection types as branching typings, which would be trees
of typings where leaves are usual typings and nodes are chunks of typing environments.

Existential types We haven’t included existential types in F.. and just used their standard
CPS encoding into universal types. Adding primitive existential types would also be interest-
ing but not immediate. This is not so surprising as the combination of existential types with
strong reduction strategies is known to raise difficulties. The natural interpretation of existential
types is the infinite union of the interpretations when the hidden part varies over all possible
witnesses. The problem is already present and easier to explain with union types: the union of
two semantic types is not obviously a type, and more precisely closed by expansion, as is the
case for intersection. A term e in { (RUS) could a priori reduce to both e; in AR\ AS and ey
in AS\ AR and not be in RUS.

In the current setting, where the underlying language is the A-calculus, it seems that e should
be in RUS by a complex standardization argument |Riba(2007)] in the absence of indices and
may not be applicable in the case of indices—or force us to have a more involved definition of
indexing compatible with standardization, namely so that semantic types are closed by a form
of standardization. In any case, this argument cannot apply anymore if we add non-determinism
such as random choice to the calculus. In this case, existential types must be reduced to a
head normal form before unpacking, which is exactly what the CPS encoding of existential types
enforces! A solution we have started to investigate is to use a reduction strategy equivalent to
strong reduction but where only terms starting with a constructor are substituted. This relates to
existing calculi with explicit substitutions and generalizes call-by-need calculi to strong reduction.

Alternate indexing Nevertheless, this raises the question of whether our definition of index-
ing is the right one. There is a lot of room for variations in the definition of indexing, since
they are only a mean of abruptly stopping the reduction as long as other indexing of the same
term will always allow to proceed further. However, in this process we have lost some inter-
esting properties of the underlying A-calculus such as confluence and standardization. Finding
alternative—but probably more complex—indexing that would preserve those properties may
still be worth exploring.

Side effects We have studied a calculus of coercions in an ideal theoretical setting, but we do
not foresee any problem in applying this to a real programming language with impure features
such as side effects. We are not bound to a strong reduction strategy, but on the opposite have
all the freedom to choose weak reduction strategies for term abstractions. In the presence of
side-effects, we would have a form of value-restriction, allowing type and coercion abstractions
only on value forms. We do not expect this to raise new problems with coercions—nor do we
expect them to disappear!
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Other application of step-indexed semantics. Our semantics is a form of unary logical
relation, and we expect no difficulties when considering binary relations. Step-indexing is also
used in the presence of side effects to break the recursion in the store. Checking how indexed
terms would work in the presence of a store remains to be done.

From implicit to explicit non-reducible coercions When coercions are left implicit they
must be inferred—as well as coercion witnesses, which is obviously undecidable in the general
case. (Typechecking in F, or in the most expressive variant of F.. are already undecidable.) In
practice, the user should provide both of them explicitly—or at least provide sufficient infor-
mation so that they can be inferred. Hence, a surface language would probably have explicit
coercions—just for typing purposes—and coercions should be dropped after typechecking. In-
deed, we do not describe how coercions and, in particular, wedges can be reduced. In this setting,
our soundness result still applies—reduction will not introduce erroneous programs—but it does
not imply subject reduction: it may happen that after reduction there is no way to redecorate
the residual program with explicit coercions to make it well-typed. We believe that this is the
price to pay for the generality offered by our approach.

Conclusion

Generalizing the notion of type coercions to typing coercions, we have proposed a type sys-
tem where the distinction between the computation and the typing aspects of terms have been
completely separated. It subsumes many features of existing type systems including subtyping,
bounded quantification, instance bounded quantification, and subtyping constraints.

We have adapted the step-indexed semantics to work for calculi with strong reduction strate-
gies and used it to prove the soundness of our language in a general setting. The step-indexed
terms have been introduced just for our needs, but it would be worth exploring this approach
further.

As for coercions, several research directions remain to be explored. Hopefully, new type
system features such dependent types could still be added. A surface language with explicit
coercions annotations is a prerequisite for decidable type checking. Variations on constraints
allowing closed-world views as well as restrictions to recover subject reduction are worth further
investigation.
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