N

N

An Unknown Input HOSM Approach to Estimate Lean
and Steering Motorcycle Dynamics
Lamri Nehaoua, Dalil Ichalal, Hichem Arioui, Jorge Davila, Said Mammar,

Leonid Fridman

» To cite this version:

Lamri Nehaoua, Dalil Ichalal, Hichem Arioui, Jorge Davila, Said Mammar, et al.. An Unknown
Input HOSM Approach to Estimate Lean and Steering Motorcycle Dynamics. IEEE Transactions on
Vehicular Technology, 2014, 63 (7), pp.3116-3127. 10.1109/TVT.2014.2300633 . hal-00935371

HAL Id: hal-00935371
https://inria.hal.science/hal-00935371

Submitted on 23 Jan 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://inria.hal.science/hal-00935371
https://hal.archives-ouvertes.fr

An Unknown Input HOSM Approach to Estimate
Lean and Steering Motorcycle Dynamics

Lamri Nehaoua, Dalil Ichalal, Hichem Arioui, Jorge Davila,j&8ammar, and Leonid Fridman

Abstract—This paper deals with state estimation of Pow- separation filtering[[16] or extended Kalman filters, 1[17].
ered Singl_e-Track vehicl_e and robust reconst_ruction of related These techniques, performed under restrictive assungption
unknown inputs. For this purpose, we consider an unknown (dynamic steering is neglected, linear tire-road forces,)e

input high order sliding mode observer (UIHOSMO). First, a . - . L
motorcycle dynamic model is derived using Jourdain’s principle. suffer mainly from a relative robustness against the vianat

The strong observability of the obtained model is illustrated. Of the forward velocity.
Then, we consider both the observation of the PTW dynamic  The issue of the steering angle estimation, and not thesider

states and the reconstruction of the lean dynamics and the rides’ torque reconstruction, is not well covered in literaturettaes
torque applied on the handlebar. Finally, several simulation cases |ean angle estimation problem. Nonetheless, a recenttsesul
are provided to illustrate the efficiency of the observer. have been obtained if [18|=[21], where an LPV observer
Index Terms—Motorcycle, HOSM, Strong Observability. has been used to design control strategy for a semi-active
steering. The approach is a simple gain scheduling for an
LTI motorcycle model under three constant forward velesiti
Unfortunately, no guarantees for stability or convergesfdbe
Ecently, the use of powered single-track vehicles isroposed observer are given. [n[22].][23], approachesdbase
constantly growing, upsetting driving practices and roash Takagi-Sugeno fuzzy models are used in order to cover
traffic. Unfortunately, this expansion is also inflected by aa large operating range of the system which allows to take
important increase of motorcycle’s fatalities (20 timeghgr into account some inherent nonlinearities in the motoycl
when driving a car). Recent statistics confirm this obs@wat model. This aims to construct an observer able to estimate
and consider riders as the most vulnerable road users.tthe states in several situations where the nonlinear dyasami
2010, the French Agency of Road Safety made a findinrge excited (cornering situation, saturated contact fotire-
of around 1000 deaths (25% of traffic fatalities), while theoad,...). These last works give a new direction for normline
traffic proportion of motorcycles does not exceed 1%. Sévegbservation and constitute primary results in this topic.
research programs are launched to answer this issue and o the best authors’ knowledge, the simultaneous estima-
find solutions in term of preventive and / or active securityion of the lean and the steering dynamics have never been
systems,[[1],[12]. addressed. The present work proposes a robust UIHOSMO
The success, of the proposed security systems, depef&#, helping in states observation of motorcycle model ted
primarily on the knowledge of the dynamics of motorcycleeconstruction of rider's action under parameter uncetitzs.
and, the evolution of its states (to be observed) strongBfiding-mode observer (SMO) for system states estimation
involved by the rider’s action (to be reconstructed) andfe in the presence or absence of unknown inputs has been the
infrastructure features (slope, tilt, adherence, etcegaRding subject of several work. Nowadays, one can notice that ebser
the first point, several studies were carried out in order t@tion theory has matured and has succeed to deal with many
understand the motorcycle dynamics (see, for exanmple [3kehnical issues [25]/[26] where some restrictive condai
[€]), the stability analysis of powered two-wheeled (PTW)elated to the observability and the reconstruction of @mkm
optimal and safe trajectories|[7]./[8] and the proposal sk ri inputs were released even suppressed.
functions (see[[9],[[10],[[31]) to detect borderline casés o To avoid filtering, the discontinuous output injection is
control loss. These research are very few sustainable yf theplaced by a continuous super-twisting algorithm (ST2][2
are not propped by a system for estimating the dynamic stateshis new version, the relative degree of the system’sutstp
of the bike. with respect to the unknown inputs must be equal to the system
The real measurement, by sensors, of all the bike statesler. This restriction is resolved by the introduction bé t
is not conceivable. Thus, we propose to use observatibigh-order Sliding-mode observers (HOSMQ)I[24], based on
techniques to overcome measurement noise, expensiversensioe high-order robust exact Sliding-mode differentiaf@g][
etc. Within this context, including all methodologies, wéew where the notion of strong observability and strong detskta
studies exist[[11]+[13]. ity were presented. It remains at least that the outputsivela
The first work on the state estimation for motorcycledegree must exist which brings a novel restriction treated
date back to 2008_[14]. Researches sustain this topic hdme the development of the concept of weakly observable
commonly concerned the estimation of the lean dynamissbspaces detailed in_[30].
and considerably less the steering one. Several approachds this paper, we suggest to use HOSMO higher order slid-
have been experimented to estimate the roll angle: frequericg mode observers. Theoretically, the HOSMO provide finite

I. INTRODUCTION



time exact convergence for the system states and unknow:
inputs. Moreover, HOSMO ensure best possible accuracy with
respect to sampling steps and bounded disturbances withot
need ofa priori knowledge of the upper bound of disturbances
and the size of the sampling steép [27].

The paper contributions are the following:

« A motorcycle dynamic model is derived.

« Itis a first paper (for the authors best knowledge) when
the theory of strong observability/detectability are bl
to the problem of reconstruction for motorcycles steering
dynamics. Fig. 1. Geometrical representation of the motorcycle vehicle

« Torealize the reconstruction of the motorcycles states and
unknown inputs, UIHOSM observers were chosen. Due to The dynamic model of the motorcycle vehicle can be
non-minimum phase nature of the motorcycle dynamiexpressed in a compact form by:
model, the direct estimation of the lean angle as a state
variable is not possible. To overcome this problem, the MY =Q 1)

model is rearranged in order to consider the lean angle o . . .
as an unknown input to be reconstructed. The Strongwhere the mass matrixZ is symmetric and positive definite

observability property is then used. and Q is the vector of the generalized efforts.

« Various results for modeling and observation are dis-
cussed and validated by using a high-end motorcyd®: Linearized Model for Observer Synthesis

software simulator. The study of the dynamics of motorcycle vehicles highlights
This paper is organized as follows: sectidnk Il Itwo main modes of motion: in-plane mode representing the
are dedicated respectively to motorcycle modeling and thetorcycle movements in its plane of symmetry including
synthesis of the UIHOSMO. Simulation results are given ibe longitudinal motion and that of suspensions and the out-
sectionIV. The conclusion in secti®d V wrap up the paper.of-plane mode which describes the lateral dynamics when
cornering [3], [32]. The last mode involves the roll incliioan,
the yaw rotation, the steering and the lateral motions of the
I[I. MOTORCYCLEDYNAMICS bike. We consider here only the out-of-mode dynamics of the
PTW. The coupling between the two modes is materialized,
This section highlights some outlines for the PTW modw~hen necessary, by considering a variable longitudinalorsl
eling. Firstly, the model to be used for the validation stefhiat appears in the lateral dynamics.
(section V) is described . Next, for observer synthesis, aThe motorcycle dynamic modéll(1) is linearized around the
dedicated model is derived. straight-running trim trajectory and can be expressed ley th
following state-space:

A. Modeling Assumptions @y = Ayxy + ByT, )

In figure[d, the considered geometrical configuration of the Yy, = Cuzy ()
modeled vehicle is shown. The motorcycle is represented as
set of eight linked bodies: the main frand&. which includes
the chassis and engine, the front ba@y which represents
the steering assembly, the lower bo@y which includes the

Bere, z, = [vy, ), 0,8, 0,0, Fy s, Fyr]T denotes the state
vector. Fy; and Fy, represent respectively the tires sideslip
forces introduced in the state space representing the tire

lower suspension part and the front wheel hub, the swing-aF axatlon.AU IS a .t|me-va}ry|ng. ma’Frlx rglated o the for-
ward velocity v, while B, is a time-invariant vector where

body G, the front and rear wheek, the upper and the lower = - .
parts of the rider body~g. The rider is considered as to beA” =A 1E_ and, B, = A 1[0,0,0,1,0,0,0]". Matrices A
solidly attached to the main body,. and, its posture stays in and E' are given appendix.
the upright plan of the motorcycle symmetry plan.

The motion of the overall mechanical system is expressed
at point v, origin of the vehicle reference fram&,. The In this section, we aim to estimate the motorcycle states and
equation of motion, developed by using Jourdain’s prircipreconstruct both roll angle and rider’s torquer,. by using a
of dynamics [[38], allows to simulate 11 degrees of freedotdlHOSMO [24].

(DoF): the velocity vector of point (v, vy, v,) the yaw, In our case, we consider that the measured variables are
pitch and roll of the main framé&;,. (v, 6, ¢), the handlebar the steering angle by means of a digital encoder sensor and,
steer angle) with respect to the rider torque input applied angular velocities by using inertial unit where the forward
on the motorcycle’s handlebar, swing-arm motierand the velocity can be also deduced. Sensor measurement noises and
two wheels spin. effect vibration will be considered to be matched distudgan

IIl. STATES AND UNKNOWN INPUTSESTIMATION



At first, we recall some important definitions about strong Lemma 3.1:( [24]). Let the outputy of (4) have the vector
observability and strong detectability of linear systerfor ( relative degree = [rq,--- , 7] with respect to the unknown
proofs seel[34],[124]). input ¢. Then the vectorsCy, ...C1A™ !, ..., C,,,

Consider the following SISO system, whete= R”, ( € R C,, A" ! are linearly independent.
is the unknown input ang € R is the measured output:

& = Az + Bu+ DC (4) A. Case 1: estimation of the roll angle

y=Cx The motorcycle dynamics systefd (2) has- 8 states, one
output which corresponds to the steering anglmeasured by

a digital encoder sensor, and one unknown input correspgndi
to the rider’s torquer, applied on the motorcycle handlebar.
From definition [(31L), the tripletA,, D,,C,) has one un-
sI—A —-D ] stable invariant zero which makes the motorcycle dynamics

Definition 3.1: ( [34]). so € C is called an invariant zero of
the triplet(A, D, C) if rank{R(s9)} < n+rank{D}, where
R(s) is the Rosenbrock matrix of systel (4):

R(s) = [ to be a non-minimum phase. In addition, the system’s output
¢ 0 has relative degree = 2 < n with respect to the unknown
Let us recall ([[35]) that the relative degree of the output input ¢. It follows from proposition[(3.1) that the motorcycle
with respect to the unknown inpytis the scalar such that: dynamics systeni2 ) is neither observable nor detectabte, a
thus for allv, in the allowable velocities range.
i o In order to make the system observable, the motorcycle
CA'D=0 j=1L-,r=2, model [2 ) is rewritten in such way that the roll angl@ppears
CA™™'D +#0. as an unknown input rather than a state variable. In fact, the

L . unstable invariant zero is a direct consequence of the eount
Definition 3.2: ([34]). System[{#) is called strongly observ- q ©

able if for any initial stater(0) and any unknown inpuf()), steering phenomena generated by the motorcycle roll. b thi

y(t) = 0 for all ¢ > 0 implies that alsar = 0. Otherwise, [(¥) case, the new system equation are:
is called strongly detectable, if for agyt) andz(0), y(t) =0
for all ¢ > 0 implies thatz — 0 as ¢t — oo.

Proposition 3.1: ( [34], [24]). The following statements are Tp = Apzp + By + Dy, ®)
equivalent: yp =0 = Cpxy,
1) The system[{4) is strongly observable. ) .
2) The triplet(A, D, C) has no invariant zeros. wherez,, = [vy, ¥, $,4,0, Fy s, Fy,,]” denotes the state vector.
3) The outputy of system[(#) has relative degree= n The outputy, of system [(5) has a relative degree= 2
with respect to the unknown inpyt with respect to the unknown inpuyt. In addition, the triplet

Otherwise, the following statements are also equivalent: (Ap: Dp, Cp) has 5 stable invariant zeros for all in the

1) The system{4) is strongly detectable allowable velocities range. It results from propositignIij3

2) The relative degree of the system’s, output with that [B) is strongly detectable. Thi_s definition implies_ ttha
respect to the unknown input exists, and the triplet only r system’s states can be estimated exactly while the
(A,D,C) has a stable invariant ze;os (systdih (4) igbservation of the remaining states are asymptoticallgtexa
mir;im’um phase). To estimate the system’s state vectgy and the unknown

For the MIMO system case, the strong observability and d@_putgo, it is necessary to separate the clean states from those

tectability can be reformulated by reconsidering the dedini con.tammated by the unknown |r.1put. To achieve this, system
@ is transformed to a new coordinates systgm= T'x;, such

of the relative degree. For this, let be the systéin (4), whe i .
x € R, y € R™ is the output vector and € R™ is the t at the closed |_00p system dynamic;, — C, Ly, Dy, C;)
is expressed by:

unknown input vector.
The outputy is said to have the vector relative degnee-

[r1, -+, rm] With respect to the unknown inpdt( [34]), if :
§11 = &2 + bty (6)

1o = @&y + sy + aslyy + -+ arbys + biaTy + dyp
§o = A21§ + A&y + Bat,

Yp,new = 5117

CiA°D; =0 i,j=1,---,m, s=1,--,r;—2
C: A" 'D; #£0

and
c,A"'pD, ... c,A"'D,, WherEﬁ = [Eleg] € R" and¢] = [€11,€12) € R™ and
) ) i £2T = [€91, " ,&95] € R"". Since the system is strongly
det 1 1 3 70 detectable, the observer gdin can be chosen such thad f—
c.A"'D, ... C,A™ 'D,, L,C,) is Hurwitz. It follows that the state observer have the

form:



Zp = Apz + By + Ly(yp — Cp2)
Yo = Ag191 + At
&, =2z+T 9,

()

in which &, is the vector of the estimated statesc R™ and
¥ € R” is given by (recall thato = 7 andr = 2):

system¢,, = T'z,, such that the closed-loop system dynamics
(A, - C,, Ly, D,y Cy,) is expressed by:
511 =¢&12s (11)
512 = a11,11&11 + a11,12812 + a11,13513 + a12,11801+
w4 01214804 + di1p + dioTy,
€13 = a11,21§17 + a11,22810 + a11,23§ 13 + a12,21851+

o+ 01224804 + d210 + do2Tr,

¢, = A A
0 9, IR U1 §2T 21§; + A2,
- ,192 iRn—r b2 ypp,new = [ 611 513 } ’
9

Whereé,ﬂp = [£7,€5] € R™ and &y = [£),&19,&10] €R'T

in this equation, vecto® components are composed from th@nd£2 = [£,,,- -+ ,&04] € R*"T. Next, the state observer is
observer’s nonlinear injectiom € R"T**!, As reported in designed as:
[24], since the unknown inpup is bounded with an upper

bound |p| < ¢,..x and thek successive derivatives ap

are bounded by the same constasit, ., then by selecting

a sufficiently large\, v can be obtained by using(a+ k)-th

order differentiator as following (fok = 1):

zZ=Apz+ Lyp(y,, — Cppz)
Vo = Ao + At
&, =2z+T "9

12)

in which z,, is the vector of estimated states,c R™ and

b1 = —3\7 |v1 — yp + sz|% sign(vy — yp + Cpz) + v ¢ € R™ is given by (recall that = 7, r = [2,1] andry = 3):

Vg = —2/\% ‘1}2 — 1}1|% Sign(vg — ’Ul) + vs3 (8) V1,1
U3 = 715)\% |113 — Ug‘% Sigr‘(v3 — UQ) + vy 9 = "-91 iRrT V1,2
04 = —1.1Asign(vy — ¥3) 9y | TR V2,1

P

In addition, the reconstruction of the unknown input is
possible by using: Once againw; € R™*k+1 js the nonlinear part of the
observer wherei = 1,---,m and ry; = max(r;). Each
unknown input¢; is bounded with|¢;| < (; .., and the
(rar — 5 + k) successive derivatives gf are bounded by the
same constanf; .., consequently the auxiliary variabie

is a solution of the discontinuous vector differential etipra
by consideringk = 1 as:

1
Y= 4 (v4a — a1v1 — agugy — azts, — -+ —arls, — biaTy)
(%]
9)
B. Estimation of the Roll Angle and Rider's Torque

. 1 3 .
) ) _ 01,1 = =37 |11 — Yp, + Cp, 2|* sign(v11 — yp, + Cp, 2)
In this case study, the system equations are given by:

+ V1,2
1 . 2 . .
A D¢ (10) D12 = —2A3 |v12 — 01,1]® SigN(v1,2 — D11) + V13 (13)
€T, = T, + 1 1.
P rer e 01,3 = —1.5A\% [y 3 — 1')1,2|é sign(vi 3 — 91,2) + V14

= C'ppa:p, 1'1174 = —1.1)\Sigr(’l}1,4 — ’[}1,3)

1)
Ypp = 1/1
Dpp:[Dp Bp]a CT:[‘)O TT}'

From definition [(3.1), the outpuy,,, in (L0) has a relative
degree vector = [2,1] with respect to the unknown input
vector¢. In addition, the triplet( A,, D,,, C,,) has 4 stable
invariant zeros for alb,, in the allowable velocities range. It
results from Lemmd(3l1), thdi{110) is also strongly deteleta  Finally, the reconstruction of the unknown input vector is
This definition implies that onlyrr = r1 + 7o System’s possible by using:
states can be estimated exactly while the observation of the
remaining states are asymptotically exact. ( ¢ ] (l ] _ [ ,9)

Tr
dy2 ] (15)
d22

Vg1 = —2\3 2,1 — Yp, + sz\% sign(va,1 — Yp, + Cp, 2)
+ V2,2

—1.5\2 |v2,2 — V21 2 Sign(vz,2 = 02,1) + 2,3 (14)

Vg3 = —1.1AsigN(vg 3 — 22)

Ug g =

_ 1 V1,3 ai1,11 12,14
=D

As before, to estimate the system’s statg and the un-
known input vector¢, it is necessary to separate the clean [

V2,2 aii,21 12,24

dy1

states from those contaminated by the unknown inputs. T® = d
21

achieve this, systeni_(IL0) is transformed to a new coordinate



Remark 3.1:In the full relative degree case, all system’s « In our modeling approach, the aerodynamic effort and
states can be exactly estimated and the observability xmatri flexibilities of the steering mechanics are neglected. In
addition, the tire/road contact point is considered to be

roCc, static and do not move throughout the tire circumference.

Figure[2 shows the result of a first scenario consisting of

. double lane change maneuver with longitudinal velocity@d 1
c, A" ! km/h. Besides lateral velocities, all the other states amny v

) close. The small differences are due to the precedent hypoth
L : (16) esis assumed before. For example, the chattering phenomena
C,, we can observe on the steering dynamics is due to the lack of
the flexibilities in our model. The same scenario is perfatme
: for 50km/h (figure[B) for which the previous remarks also
C,, A" ! hold.

) ) A second scenario consists of a cornering maneuver with
a constant radius maneuver with time varying forward speed
in the interval [50,100] km/h (figurEl4). The both behaviors
are similar. Nevertheless, a small difference of°Oappears
between the two steering angles. This is due, mainly, to
the fact that the BikeSim simulator aims to compensates the
aerodynamic effort, which is not the case of our model.

can be chosen for the coordinates transformatibr=(P).
However, in the strongly detectable case, amlyn, system’s
states are exactly estimated wherg is the number of
invariant zeros (seé [30] for a deeper study of the problém).
possible choice of the transformation matffxcan be found
in [36].

IV. VALIDATION RESULTS

We recall here that the aim of our work is to addreds. Model linearization
the states and unknown inputs estimation in order to derive
efficient warning systems for riders. The context concerns,

mainly the urban situations (the linear and nonlinear dyinam jectories (roll angle close to zero). The dynamic behavior

are aImo;t identical) and Iesg sport moto.rcycles. Wh'Ch fid tire road dynamics are linearized separately. The quevi
characterized py a strong nonlinear dynamics. This isslle Wleenarios are simulated and presented below.
be addressed in future. - The double lane change scenario, under two different ve-
In order to proof the efficiency of the proposed observer f%cities (50 and 100 KhM), is presented on figufés 5 Bhd 6
motorcycle application, we shall respect the followingpste We can notice that the ber,lavior of the two cases are simila;.
« A comparison of our nonlinear model with one of theris is mainly due to the constant velocity characteristics
models using in B|keS|_m simulator. T_he comparson 1S s is not obvious with the second scenario (constant sadiu
achieved under two different scenarios. A diSCUSSIQQi, 4cceleration), where the differences are clear. Ofsau
is given to highlights the differences between the Wis scenario is far from our addressed context and urban
models. . L situation. The both models, under constant acceleration, d
« The second step concerns the linearization of our PrRot fit at all (figurel¥), because, among other reasons, of the

posed nonlinear model around trim trajectories. huge camber angle and tire forces (point contact hypothesis
« Based on the linear model, a high order sliding mode g g (P ypoth

observer is synthesized. To overcome the neglected non-
linearities, a robustness study is carried-out with respag. Observer design

to the forward speed time variations and parameter un- ) ) )
certainties. In this section, the UIHOSMO is constructed for the pre-

« Finally, the HOSM observer is applied to the nonlineaiénted motorcycle model. Some results and discussions are

model to estimates the rolpj and the steering dynamicsprovided to illustrate the effectiveness and the abilitytloé
(). UIHOSMO in estimating simultaneously the dynamic states

and both roll angle and the applied torque by the rider on
the handlebar. The observer is designed in such a way to
estimate all the dynamic states and unknown inputs from only

Despite some differences, both models shows a close g knowledge of steering anglét) and the yaw ratelj(t).

havior (by considering the same motorcycle parameters anfle parameters,, i = 1,2 of the differentiator, in equations
degrees of freedom). Differences can be explained by {I§ and[T#, are chosen as followings = X = 5000.
considered modeling assumptions summarized in the fallgwiThe Luenberger gairL,, in equation(IP is computed by
point: pole placement at the eigenvaluesi5, —30, —45, —60,

o The lateral velocities of both models are not identicak-150, —165, —180. With these parameters, the UIHOSMO is
In our model, the lateral speed is expressed at pointimplemented with initial condition$(0) = [0.1745 0.1745 —
(figure[1), whereas, in BikeSim simulator, the same spe6d491 — 0.0873 0.3491 50 50]. Finally, validations are
is calculated at the main frame center of gravity. carried-out by using the nonlinear model.

In order to synthesize the HOSM observer, the proposed
nlinear model is linearized with respect to the trim tra-

A. Assessment with BikeSim Simulator
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In the first scenario, we consider again the double laf#: 10. ~Double lane change at 100 km/h. Robustness with cedpe
. . parameter variations (+20% variation on the nominal mass antlanvalues).

change maneuver with forward speed at 100 km/h. In f'ﬁf blue, model results, in red estimation result by using nohyisaameter
ure [8, some estimated states and the two unknown inpeitg in black, estimation result by introducing uncertainty
are depicted. One can conclude that the observer provides
satisfactory results. Since the total relative degree isaeq In order to illustrate the performances of the proposed
to 3, the yaw rate{), the steering rated] and the steering observer in the presence of modeling uncertainties, the ob-
angle ¢) are exactly estimated with finite-time convergence a&erver is designed by using the linear motorcycle nominal
shown by small zoom onside each sub-figure. The remainingpdel. In the nonlinear model, all bodies’ mass and inertia
states, namely the lateral speed)( the roll rate {), the are considered with &0% variation with respect to their
tire lateral forces K¢, Fy,) and the two unknown inputs nominal values. As shown in figufel10, the observer ensures
are estimated in finite-time with a bounded estimation erran acceptable estimations for almost the state variablbthen
(figure[9). Moreover, it is possible to deal with the problemnknown inputs. Once again, Three of eight states are gxactl
of transient phase by tuning the observer’s parameters estimated despite uncertainty whereas, the remaininghlari
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are estimated in finite-time with an acceptable bounded esti

mation error.
As explained previously, the longitudinal velocity, is
considered constant, but in real situations, forward spsed

also subject to variations. The observer is constructed by

choosing a nominal value, = 100 km/h but in the simulated
system, al0% variation with respect to the nominal value is

assumed. Estimation results are depicted in figurés 11dnd 12

For exact estimation, the steering anglestimation is given

as an example where for bounded error estimation, the latera

speed estimation, is shown. However, the estimations of

the unknown inputs are visibly affected by the time varying

longitudinal speed, in particular, at the maximum values.

V. CONCLUSION

The present paper deals with the problem of observer design

for simultaneously estimating states and unknown inputsfo
complex system such that a motorcycle vehicle. For that pu

r_

pose, an Unknown Inputs High Order Sliding Mode observer

is proposed and validated.

Three main contributions are detailed. The first one con-
cerns the validation of the motorcycle nonlinear model with

professional simulator data and thus, by considering twim ma

scenarios: a double lane change at different forward speed
and a cornering along a constant radius with forward speed

variation. The second contribution concerns a full conguari

between the nonlinear and the linear models for the same
previous scenarios. Conclusion about the effect of the non-

linearities on the motorcycle driving behavior is discusse
Finally, the effectiveness of the observer is demonstrated
nonlinear model and with a different initial conditions.

It is shown that, by introducing some rearrangement, the
observability of a given model can be achieved, and the re-

sulting model representation fulfill the detectability diion.

Validation of the observer is proven despite the presence of

parameter uncertainties and/or forward speed variatiois |
shown that all measurable signals and their successiveaderi

tives are exactly estimated with a finite-time convergence.
This is guaranteed if the plant model can be transformed
to the normal form by using a suitable transformation. The

remaining states are estimated with a finite-time convergen
and a bounded error estimation. Nevertheless, a wide i@riat

of the forward speed can be seriously affect the observer

performance. This issue constitute our future work.

VI. APPENDIX

(a1 a2 a3 aa 0 0 O 0 7
a2 a2z a4 0 O O 0
azs a3 0 0O O O
A= ags 0 0 O 0
* 1 0 O 0
1 0 0
0 of O
L or |

(1]

(2]
(3]

(4]

10

motorcycle

Vg, Uy! longitudinal and lateral velocity

@, ¥, 0: roll, yaw and steer rotations

T rider torque

Fyp, Fyr: lateral force

M: motorcycle mass matrix

Q: motorcycle generalized effort vec-
tor

notations

T, T derivatives of a variabler w.r.t
time

Z: estimate of a variable

zT: transpose of vector or matrix

Ty, Tr denotes front and rear

motorcycle

mG,., MG, MG, ma,  165.13,9.99, 7.25, 8 [kg]

MGp, MGy mpg,, 43.52,25.84,0, 14.7 [kg]

mpg,.

TuG, TGy TG, 39, 65.07, 80.13, -25 [em]

TovG g

TvGRyr TvGpys x'URf!
TyR,

ZuG oy Zq)Gfr ZuGyr FvGg
ZvG Ryt AvGpyr *vRys
ZyR,

TGy TGy TRy

2Gy 2Gyr ZRy

Iccf- Izlr Izubr Izlb

gf, Iy Lory Loub, Ly

-23.04, 13.4, 95, -42 [cm]

53.2, 104.34, 60.27, 34 [cm]
80.01, 50.4, 29, 29 [cm]

10.2, 6.04, 6.9 [cm]

35.51, -10.88, -45.49 [cm]
1.341, 0, 0.9, 0.5 [Kg/?]
0.4125, 0, 14.982, 0.9, 0.5 [Kghh

z2r +» Cozub 3.691, 0.433 [Kg/rA]
Tyrfy Gyrr wheels spin inertia 0.484, 0.638
[kg.m?]
Pfr Pr wheels radius 29, 29 [cm]
n tire trail -4.89 [cm]
F.z front tire normal force 1543.5 [N]
Of, O tire’s relaxation [m]
€ castor angle -0.4189 [rad]
Cs handlebar  damping 12.6738
[N.m~—1.g]
g gravity force 9.81 [N]
Cr1, Cra front and rear tire’s sideslip stiff-
ness -22408, -17657 [N/rad]
Cya, Cra front and rear tire’s camber stiff-
ness -1056.3, -518.49 [N/rad]
r 0 b2 O 0 0 0 1 1 7
0 b2 b2z bas O 0  ®vr; Tur,
0 bzs2 0 baa bzs b3 0 0
B 0 baz baz Cs bys bass 7 0
"o o 1 0 0 O 0 0
0 0 0 1 0 0 0 0
b1 bro 0 bra  brs  brs —Ug 0
L bs1 bs2 O 0 bss O 0 —Vz |
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