H. Goldstine and J. Von-neumann, Blast wave calculation, Communications on Pure and Applied Mathematics, vol.8, issue.2, pp.327-354, 1955.
DOI : 10.1002/cpa.3160080207

H. Brode, Numerical Solutions of Spherical Blast Waves, Journal of Applied Physics, vol.26, issue.6, pp.766-775, 1955.
DOI : 10.1063/1.1722085

URL : http://www.dtic.mil/get-tr-doc/pdf?AD=ADA595878

R. Payne, A numerical method for a converging cylindrical shock, Journal of Fluid Mechanics, vol.18, issue.02, pp.185-200, 1957.
DOI : 10.1007/BF02036751

G. Sod, A numerical study of a converging cylindrical shock, Journal of Fluid Mechanics, vol.47, issue.04, pp.785-794, 1977.
DOI : 10.1016/0021-9991(71)90038-6

L. Sedov, Similarity Q6 and dimensional methods in mechanics, 1959.

A. Bagabir and D. Drikakis, Numerical experiments using high-resolution schemes for unsteady, inviscid, compressible flows, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.42-44, pp.42-444675, 2004.
DOI : 10.1016/j.cma.2004.03.012

T. Liu, B. Khoo, and K. Yeo, The numerical simulations of explosion and implosion in air: use of a modified Harten's TVD scheme, International Journal for Numerical Methods in Fluids, vol.2, issue.4, pp.661-680, 1999.
DOI : 10.1002/(SICI)1097-0363(19991030)31:4<661::AID-FLD866>3.0.CO;2-G

A. Harten, On the symmetric form of systems of conservation laws with entropy, Journal of Computational Physics, vol.49, issue.1, pp.151-164, 1983.
DOI : 10.1016/0021-9991(83)90118-3

S. Li, . Weno, . Schemes, S. Cylindrical, and . Geometry, Los Alamos National Laboratory LA-UR-03-8922, 2003.

S. Dutta, J. Glimm, J. Grove, D. Sharp, and Y. Zhang, Spherical Richtmyer-Meshkov instability for axisymmetric flow, Mathematics and Computers in Simulation, vol.65, issue.4-5, pp.4-5417, 2004.
DOI : 10.1016/j.matcom.2004.01.020

P. Maire, A high-order cell-centered Lagrangian scheme for compressible fluid flows in two-dimensional cylindrical geometry, Journal of Computational Physics, vol.228, issue.18, pp.6882-6915, 2009.
DOI : 10.1016/j.jcp.2009.06.018

URL : https://hal.archives-ouvertes.fr/inria-00372105

T. Illenseer and W. Duschl, Two-dimensional central-upwind schemes for curvilinear grids and application to gas dynamics with angular momentum, Computer Physics Communications, vol.180, issue.11, pp.2283-2302, 2009.
DOI : 10.1016/j.cpc.2009.07.016

URL : http://arxiv.org/abs/0804.2979

S. Clain, R. D. Touzani, and R. , A multislope MUSCL method on unstructured meshes applied to compressible Euler equations for axisymmetric swirling flows, Journal of Computational Physics, vol.229, issue.13, pp.4884-4906, 2010.
DOI : 10.1016/j.jcp.2010.03.004

URL : https://hal.archives-ouvertes.fr/hal-00484221

J. Cheng and C. Shu, A cell-centered Lagrangian scheme with the preservation of symmetry and conservation properties for compressible fluid flows in two-dimensional cylindrical geometry, Journal of Computational Physics, vol.229, issue.19, pp.7191-7206, 2010.
DOI : 10.1016/j.jcp.2010.06.007

R. Loubère, P. Maire, and M. Shashkov, ReALE: A Reconnection Arbitrary-Lagrangian???Eulerian method in cylindrical geometry, Computers & Fluids, vol.46, issue.1, pp.59-69, 2011.
DOI : 10.1016/j.compfluid.2010.08.024

L. Fezoui and B. Stoufflet, A class of implicit upwind schemes for Euler simulations with unstructured meshes, Journal of Computational Physics, vol.84, issue.1, pp.174-206, 1989.
DOI : 10.1016/0021-9991(89)90187-3

URL : https://hal.archives-ouvertes.fr/inria-00076037

V. Selmin, The node-centred finite volume approach: Bridge between finite differences and finite elements, Computer Methods in Applied Mechanics and Engineering, vol.102, issue.1, pp.107-138, 1993.
DOI : 10.1016/0045-7825(93)90143-L

V. Selmin and L. Formaggia, Unified construction of finite element and finite volume discretizations for compressible flows, Computer Methods in Applied Mechanics and Engineering, vol.39, issue.1, pp.1-32, 1996.

A. Guardone and L. Vigevano, Finite element/volume solution to axisymmetric conservation laws, Journal of Computational Physics, vol.224, issue.2, pp.489-518, 2007.
DOI : 10.1016/j.jcp.2006.08.018

G. Persico and S. Rebay, A penalty formulation for the throughflow modeling of turbomachinery, Computers & Fluids, vol.60, pp.86-98, 2012.
DOI : 10.1016/j.compfluid.2012.03.001

A. Guardone, D. Santis, D. Geraci, G. Pasta, and M. , On the relation between finite element and finite volume schemes for compressible flows with cylindrical and spherical symmetry, Journal of Computational Physics, vol.230, issue.3, pp.680-694, 2011.
DOI : 10.1016/j.jcp.2010.10.012

E. Toro, Riemann solvers and numerical methods for fluid mechanics, 1997.

A. Quarteroni and A. Valli, Numerical approximation of partial differential equations. No. 23 in Springer series in computational mathematics, 1994.

J. Donea and A. Huerta, Finite element methods for flow problems, 2002.
DOI : 10.1002/0470013826

A. Ern and J. Guermond, Theory and Practice of Finite Elements, Applied Mathematical Science, vol.159, 2004.
DOI : 10.1007/978-1-4757-4355-5

R. Leveque, Finite volume methods for conservation laws and hyperbolic systems, 2002.

P. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, Journal of Computational Physics, vol.43, issue.2, pp.357-372, 1981.
DOI : 10.1016/0021-9991(81)90128-5

A. Guardone and L. Vigevano, Roe Linearization for the van der Waals Gas, Journal of Computational Physics, vol.175, issue.1, pp.50-78, 2002.
DOI : 10.1006/jcph.2001.6915

B. Van-leer, Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme, Journal of Computational Physics, vol.14, issue.4, pp.361-370, 1974.
DOI : 10.1016/0021-9991(74)90019-9

A. Jameson, Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings. 10th AIAA Computational Fluid Dynamics Conference, pp.1-13, 1991.

Y. Saad and . Sparsekit, A Basic Toll Kit for Sparse Matrix Computations, 1994.

S. Rebay, Efficient Unstructured Mesh Generation by Means of Delaunay Triangulation and Bowyer-Watson Algorithm, Journal of Computational Physics, vol.106, issue.1, pp.125-138, 1993.
DOI : 10.1006/jcph.1993.1097

G. Guderley, Powerful spherical and cylindrical compression shocks in the neighbourhood of the centre and of the cylinder axis, Luftfahrtforschung, vol.19, pp.302-312, 1942.

N. Ponchaut, H. Hornung, D. Pullin, and C. Mouton, On imploding Q7 cylindrical and spherical shock waves in a perfect gas, Journal of Fluid Mechanics, vol.560, issue.103, 2006.

W. Rider, Revisiting Wall Heating, Journal of Computational Physics, vol.162, issue.2, pp.395-410, 2000.
DOI : 10.1006/jcph.2000.6544

K. Takayama, H. Kleine, and H. Grönig, An experimental investigation of the stability of converging cylindrical shock waves in air, Experiments in Fluids, vol.33, issue.5, pp.315-322, 1987.
DOI : 10.1007/BF00277710

M. Watanabe and K. Takayama, Stability of converging cylindrical shock waves, Shock Waves, vol.35, issue.2, pp.149-160, 1991.
DOI : 10.1007/BF01414910

J. Breil, S. Galera, and P. Maire, Multi-material ALE computation in inertial confinement fusion code CHIC, Computers & Fluids, vol.46, issue.1, pp.161-167, 2011.
DOI : 10.1016/j.compfluid.2010.06.017

V. Eliasson, N. Apazidis, N. Tillmark, and M. Lesser, Focusing of Strong Shocks in an Annular Shock Tube, Shock Waves, vol.89, issue.3-4, pp.3-4205, 2006.
DOI : 10.1007/s00193-006-0035-0

V. Eliasson, N. Apazidis, and N. Tillmark, Controlling the form of strong converging shocks by means of disturbances, Shock Waves, vol.5, issue.1-2, pp.29-42, 2007.
DOI : 10.1007/s00193-007-0087-9

V. Eliasson, W. Henshaw, and D. Appelö, On cylindrically converging shock waves shaped by obstacles, Physica D: Nonlinear Phenomena, vol.237, issue.14-17, pp.14-172203, 2008.
DOI : 10.1016/j.physd.2007.11.021

H. Shi and K. Yamamura, The interaction between shock waves and solid spheres arrays in a shock tube, Acta Mechanica Sinica, vol.20, issue.3, pp.219-227, 2004.