E. C. Holland, Progenitor cells and glioma formation, Current Opinion in Neurology, vol.14, issue.6, pp.683-688, 2001.
DOI : 10.1097/00019052-200112000-00002

H. Ohgaki and P. Kleihues, Population-Based Studies on Incidence, Survival Rates, and Genetic Alterations in Astrocytic and Oligodendroglial Gliomas, Journal of Neuropathology & Experimental Neurology, vol.64, issue.6, pp.479-489, 2005.
DOI : 10.1093/jnen/64.6.479

D. H. Louis, H. Ohgaki, O. D. Wiestler, and W. K. Cavanee, WHO classification of tumours of the central nervous system, WHO/IARC, 2007.

E. Eisenhauer, P. Therasse, J. Bogaerts, L. Schwartz, D. Sargent et al., New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1), European Journal of Cancer, vol.45, issue.2, pp.228-247, 2009.
DOI : 10.1016/j.ejca.2008.10.026

P. Y. Wen, D. R. Macdonald, D. Reardon, T. F. Cloughesy, .. G. Sorensen et al., Updated Response Assessment Criteria for High-Grade Gliomas: Response Assessment in Neuro-Oncology Working Group, Journal of Clinical Oncology, vol.28, issue.11, pp.1963-72, 2010.
DOI : 10.1200/JCO.2009.26.3541

E. D. Angelini, O. Clatz, E. Mandonnet, E. Konukoglu, L. Capelle et al., Glioma Dynamics and Computational Models: A Review of Segmentation, Registration, and In Silico Growth Algorithms and their Clinical Applications, Current Medical Imaging Reviews, vol.3, issue.4, pp.262-276, 2007.
DOI : 10.2174/157340507782446241

URL : https://hal.archives-ouvertes.fr/inria-00616021

S. Bauer, R. Wiest, L. Nolte, and M. Reyes, A survey of MRI-based medical image analysis for brain tumor studies, Physics in Medicine and Biology, vol.58, issue.13, pp.97-129, 2013.
DOI : 10.1088/0031-9155/58/13/R97

M. Kaus, S. K. Warfield, A. Nabavi, E. Chatzidakis, P. M. Black et al., Segmentation of Meningiomas and Low Grade Gliomas in MRI, Proc MICCAI, pp.1-10, 1999.
DOI : 10.1007/10704282_1

L. M. Fletcher-heath, L. O. Hall, D. B. Goldgof, and F. R. Murtagh, Automatic segmentation of non-enhancing brain tumors in magnetic resonance images, Artificial Intelligence in Medicine, vol.21, issue.1-3, pp.43-63, 2001.
DOI : 10.1016/S0933-3657(00)00073-7

Y. Tsai, I. Chiang, Y. Lee, C. Liao, and K. Wang, Automatic MRI meningioma segmentation using estimation maximization, Proc IEEE Eng Med Biol Soc, vol.3, pp.3074-3077, 2005.

E. Konukoglu, W. M. Wells, S. Novellas, N. Ayache, R. Kikinis et al., Monitoring slowly evolving tumors, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.1-4, 2008.
DOI : 10.1109/ISBI.2008.4541120

URL : https://hal.archives-ouvertes.fr/inria-00616117

M. B. Cuadra, M. D. Craene, V. Duay, B. Macq, C. Pollo et al., Dense deformation field estimation for atlas-based segmentation of pathological MR brain images, Computer Methods and Programs in Biomedicine, vol.84, issue.2-3, pp.66-75, 2006.
DOI : 10.1016/j.cmpb.2006.08.003

L. Weizman, L. B. Sira, L. Joskowicz, S. Constantini, R. Precel et al., Automatic segmentation, internal classification, and follow-up of optic pathway gliomas in MRI, Medical Image Analysis, vol.16, issue.1, pp.177-188, 2012.
DOI : 10.1016/j.media.2011.07.001

M. Styner, J. Lee, B. Chin, M. Chin, O. Commowick et al., 3D segmentation in the clinic: A grand challenge ii: MS lesion segmentation, MIDAS Journal, pp.1-5, 2008.

K. Van-leemput, F. Maes, D. Vandermeulen, and P. Suetens, Automated model-based bias field correction of MR images of the brain, IEEE Transactions on Medical Imaging, vol.18, issue.10, pp.885-896, 1999.
DOI : 10.1109/42.811268

M. R. Kaus, S. K. Warfield, A. Nabavi, P. M. Black, F. Jolesz et al., Automated Segmentation of MR Images of Brain Tumors, Radiology, vol.218, issue.2, pp.586-91, 2001.
DOI : 10.1148/radiology.218.2.r01fe44586

M. Prastawa, E. Bullitt, S. Ho, and G. Gerig, A brain tumor segmentation framework based on outlier detection*1, Medical Image Analysis, vol.8, issue.3, pp.275-283, 2004.
DOI : 10.1016/j.media.2004.06.007

K. M. Pohl, J. Fisher, J. J. Levitt, M. E. Shenton, R. Kikinis et al., A Unifying Approach to Registration, Segmentation, and Intensity Correction, LNCS Proc MICCAI, vol.3750, pp.310-318, 2005.
DOI : 10.1007/11566465_39

F. O. Kaster, B. H. Menze, M. Weber, and F. A. Hamprecht, Comparative Validation of Graphical Models for Learning Tumor Segmentations from Noisy Manual Annotations, Proc MICCAI-MCV (Workshop on Medical Computer Vision), 2010.
DOI : 10.1007/978-3-642-18421-5_8

URL : https://hal.archives-ouvertes.fr/hal-00813770

B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich et al., Whole Brain Segmentation, Neuron, vol.33, issue.3, pp.341-355, 2002.
DOI : 10.1016/S0896-6273(02)00569-X

J. Ashburner and K. J. Friston, Unified segmentation, NeuroImage, vol.26, issue.3, pp.839-851, 2005.
DOI : 10.1016/j.neuroimage.2005.02.018

E. I. Zacharaki, D. Shen, and C. Davatzikos, ORBIT: A Multiresolution Framework for Deformable Registration of Brain Tumor Images, IEEE Transactions on Medical Imaging, vol.27, issue.8, pp.1003-1020, 2008.
DOI : 10.1109/TMI.2008.916954

B. Bach-cuadra, C. Pollo, A. Bardera, O. Cuisenaire, and J. P. Thiran, Atlas-Based Segmentation of Pathological MR Brain Images Using a Model of Lesion Growth, IEEE Transactions on Medical Imaging, vol.23, issue.10, pp.1301-1315, 2004.
DOI : 10.1109/TMI.2004.834618

D. Gering, W. Grimson, and R. Kikinis, Recognizing Deviations from Normalcy for Brain Tumor Segmentation, Lecture Notes In Computer Science, vol.2488, pp.388-395, 2002.
DOI : 10.1007/3-540-45786-0_48

K. Van-leemput, F. Maes, D. Vandermeulen, A. Colchester, and P. Suetens, Automated segmentation of multiple sclerosis lesions by model outlier detection, IEEE Transactions on Medical Imaging, vol.20, issue.8, pp.677-688, 2001.
DOI : 10.1109/42.938237

M. L. Seghier, A. Ramlackhansingh, J. Crinion, A. P. Leff, and C. J. Price, Lesion identification using unified segmentation-normalisation models and fuzzy clustering, NeuroImage, vol.41, issue.4, pp.1253-1266, 2008.
DOI : 10.1016/j.neuroimage.2008.03.028

N. Moon, E. Bullitt, K. Van-leemput, and G. Gerig, Model-based brain and tumor segmentation, Object recognition supported by user interaction for service robots, pp.528-559, 2002.
DOI : 10.1109/ICPR.2002.1044787

M. Prastawa, E. Bullitt, N. Moon, K. V. Leemput, and G. Gerig, Automatic brain tumor segmentation by subject specific modification of atlas priors1, Academic Radiology, vol.10, issue.12, pp.1341-1389, 2003.
DOI : 10.1016/S1076-6332(03)00506-3

A. Gooya, K. M. Pohl, M. Bilello, L. Cirillo, G. Biros et al., GLISTR: Glioma Image Segmentation and Registration, IEEE Transactions on Medical Imaging, vol.31, issue.10, pp.1941-1954, 2012.
DOI : 10.1109/TMI.2012.2210558

S. Parisot, H. Duffau, S. Chemouny, and N. Paragios, Joint Tumor Segmentation and Dense Deformable Registration of Brain MR Images, Proc MICCAI, pp.651-658, 2012.
DOI : 10.1007/978-3-642-33418-4_80

URL : https://hal.archives-ouvertes.fr/hal-00773618

A. Gooya, G. Biros, and C. Davatzikos, Deformable Registration of Glioma Images Using EM Algorithm and Diffusion Reaction Modeling, IEEE Transactions on Medical Imaging, vol.30, issue.2, pp.375-390, 2011.
DOI : 10.1109/TMI.2010.2078833

D. Cobzas, N. Birkbeck, M. Schmidt, M. Jagersand, and A. Murtha, 3D Variational Brain Tumor Segmentation using a High Dimensional Feature Set, 2007 IEEE 11th International Conference on Computer Vision, pp.1-8, 2007.
DOI : 10.1109/ICCV.2007.4409130

A. Lefohn, J. Cates, and R. Whitaker, Interactive, GPU-based level sets for 3D brain tumor segmentation, Proc MICCAI, pp.564-572, 2003.

R. Verma, E. I. Zacharaki, Y. Ou, H. Cai, S. Chawla et al., Multiparametric Tissue Characterization of Brain Neoplasms and Their Recurrence Using Pattern Classification of MR Images, Academic Radiology, vol.15, issue.8, pp.966-77, 2008.
DOI : 10.1016/j.acra.2008.01.029

S. Ho, E. Bullitt, and G. Gerig, Level-set evolution with region competition: automatic 3-D segmentation of brain tumors, Object recognition supported by user interaction for service robots, pp.532-567, 2002.
DOI : 10.1109/ICPR.2002.1044788

L. Gorlitz, B. H. Menze, M. Weber, B. M. Kelm, and F. A. Hamprecht, Semi-supervised Tumor Detection in Magnetic Resonance Spectroscopic Images Using Discriminative Random Fields, Proc DAGM, ser, pp.224-233, 2007.
DOI : 10.1007/978-3-540-74936-3_23

C. Lee, S. Wang, A. Murtha, and R. Greiner, Segmenting Brain Tumors Using Pseudo???Conditional Random Fields, LNCS Proc MICCAI, vol.5242, pp.359-66, 2008.
DOI : 10.1007/978-3-540-85988-8_43

M. Wels, G. Carneiro, A. Aplas, M. Huber, J. Hornegger et al., A discriminative model-constrained graph cuts approach to fully automated pediatric brain tumor segmentation in 3D MRI, LNCS Proc MICCAI, vol.5241, pp.67-75, 2008.

D. Zikic, B. Glocker, E. Konukoglu, A. Criminisi, C. Demiralp et al., Decision forests for tissue-specific segmentation of high-grade gliomas in multichannel MR, Proc MICCAI, 2012.

E. Geremia, B. H. Menze, O. Clatz, E. Konukoglu, A. Criminisi et al., Spatial Decision Forests for MS Lesion Segmentation in Multi-Channel MR Images, Proc MICCAI, ser, 2010.
DOI : 10.1007/978-3-642-15705-9_14

E. Geremia, O. Clatz, B. H. Menze, E. Konukoglu, A. Criminisi et al., Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance images, NeuroImage, vol.57, issue.2, pp.378-90, 2011.
DOI : 10.1016/j.neuroimage.2011.03.080

URL : https://hal.archives-ouvertes.fr/inria-00616194

E. Geremia, B. H. Menze, and N. Ayache, Spatially Adaptive Random Forests, 2013 IEEE 10th International Symposium on Biomedical Imaging, 2013.
DOI : 10.1109/ISBI.2013.6556781

S. Bauer, L. Nolte, and M. Reyes, Fully Automatic Segmentation of Brain Tumor Images Using Support Vector Machine Classification in Combination with Hierarchical Conditional Random Field Regularization, Proc MICCAI, pp.354-361, 2011.
DOI : 10.1007/978-3-540-85988-8_9

W. Wu, A. Y. Chen, L. Zhao, and J. J. Corso, Brain tumor detection and segmentation in a conditional random fields framework with pixelpairwise affinity and superpixel-level features, International journal of computer assisted radiology and surgery, pp.1-13, 2013.

C. Cortes and V. Vapnik, Support-vector networks, Machine Learning, pp.273-297, 1995.
DOI : 10.1007/BF00994018

A. Criminisi and J. Shotton, Decision Forests for Computer Vision and Medical Image Analysis, 2013.
DOI : 10.1007/978-1-4471-4929-3

J. E. Iglesias, E. Konukoglu, D. Zikic, B. Glocker, K. Van-leemput et al., Is Synthesizing MRI Contrast Useful for Inter-modality Analysis?, Proc MICCAI, p.p. in press, 2013.
DOI : 10.1007/978-3-642-40811-3_79

S. Roy, A. Carass, and J. Prince, A Compressed Sensing Approach for MR Tissue Contrast Synthesis, Proc IPMI, pp.371-383, 2011.
DOI : 10.1007/978-3-642-22092-0_31

S. Roy, A. Carass, N. Shiee, D. L. Pham, P. Calabresi et al., Longitudinal intensity normalization in the presence of multiple sclerosis lesions, 2013 IEEE 10th International Symposium on Biomedical Imaging, 2013.
DOI : 10.1109/ISBI.2013.6556791

B. H. Menze, K. Van-leemput, D. Lashkari, M. Weber, N. Ayache et al., Segmenting glioma in multi-modal images using a generative model for brain lesion segmentation, Proc MICCAI- BRATS (Multimodal Brain Tumor Segmentation Challenge, pp.2012-2019

D. Zikic, B. Glocker, E. Konukoglu, J. Shotton, A. Criminisi et al., Contextsensitive classification forests for segmentation of brain tumor tissues, Proc MICCAI-BRATS, 2012.

Y. Tarabalka, G. Charpiat, L. Brucker, and B. H. Menze, Enforcing Monotonous Shape Growth or Shrinkage in Video Segmentation, Procedings of the British Machine Vision Conference 2013, 2013.
DOI : 10.5244/C.27.27

URL : https://hal.archives-ouvertes.fr/hal-00856634

S. Bauer, J. Tessier, O. Krieter, L. Nolte, and M. Reyes, Integrated spatio-temporal segmentation of longitudinal brain tumor imaging studies, Proc MICCAI-MCV, 2013.

T. Riklin-raviv, B. H. Menze, K. Van-leemput, B. Stieltjes, M. A. Weber et al., Joint segmentation via patient-specific latent anatomy model, Proc MICCAI-PMMIA (Workshop on Probabilistic Models for Medical Image Analysis), pp.244-255, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00616174

T. Riklin-raviv, K. Van-leemput, B. H. Menze, W. M. Wells, and P. Golland, Joint Segmentation of Image Ensembles via Latent Atlases, Med Image Anal, vol.14, pp.654-665, 2010.
DOI : 10.1007/978-3-642-04268-3_34

D. Cobzas and M. Schmidt, Increased discrimination in level set methods with embedded conditional random fields, 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp.328-335, 2009.
DOI : 10.1109/CVPR.2009.5206812

J. J. Corso, E. Sharon, S. Dube, S. El-saden, U. Sinha et al., Efficient Multilevel Brain Tumor Segmentation With Integrated Bayesian Model Classification, IEEE Transactions on Medical Imaging, vol.27, issue.5, pp.629-669, 2008.
DOI : 10.1109/TMI.2007.912817

N. J. Tustison, H. J. Johnson, T. Rohlfing, A. Klein, S. S. Ghosh et al., Instrumentation bias in the use and evaluation of scientific software: recommendations for reproducible practices in the computational sciences, Frontiers in Neuroscience, vol.7, p.162, 2013.
DOI : 10.3389/fnins.2013.00162

D. W. Shattuck, G. Prasad, M. Mirza, K. L. Narr, and A. W. Toga, Online resource for validation of brain segmentation methods, NeuroImage, vol.45, issue.2, pp.431-439, 2009.
DOI : 10.1016/j.neuroimage.2008.10.066

C. Metz, M. Schaap, T. Van-walsum, A. Van-der-giessen, A. Weustink et al., 3D segmentation in the clinic: A grand challenge ii-coronary artery tracking, Insight Journal, vol.1, issue.5, p.6, 2008.

M. Schaap, C. T. Metz, T. Van-walsum, A. G. Van-der-giessen, A. C. Weustink et al., Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms, Medical Image Analysis, vol.13, issue.5, pp.701-714, 2009.
DOI : 10.1016/j.media.2009.06.003

URL : https://hal.archives-ouvertes.fr/hal-00443459

K. Hameeteman, M. A. Zuluaga, M. Freiman, L. Joskowicz, O. Cuisenaire et al., Evaluation framework for carotid bifurcation lumen segmentation and stenosis grading, Medical Image Analysis, vol.15, issue.4, pp.477-488, 2011.
DOI : 10.1016/j.media.2011.02.004

URL : https://hal.archives-ouvertes.fr/hal-00614145

T. Heimann, B. Van-ginneken, M. A. Styner, Y. Arzhaeva, V. Aurich et al., Comparison and Evaluation of Methods for Liver Segmentation From CT Datasets, IEEE Transactions on Medical Imaging, vol.28, issue.8, pp.1251-1265, 2009.
DOI : 10.1109/TMI.2009.2013851

B. Van-ginneken, T. Heimann, and M. Styner, 3D segmentation in the clinic: A grand challenge 3D segmentation in the clinic: a grand challenge, pp.7-15, 2007.

M. Niemeijer, B. Van-ginneken, M. J. Cree, A. Mizutani, G. Quellec et al., Retinopathy Online Challenge: Automatic Detection of Microaneurysms in Digital Color Fundus Photographs, IEEE Transactions on Medical Imaging, vol.29, issue.1, pp.185-195, 2010.
DOI : 10.1109/TMI.2009.2033909

URL : https://hal.archives-ouvertes.fr/hal-00473901

P. Lo, B. Van-ginneken, J. Reinhardt, T. Yavarna, P. A. De-jong et al., Extraction of Airways From CT (EXACT'09), IEEE Transactions on Medical Imaging, vol.31, issue.11, 2012.
DOI : 10.1109/TMI.2012.2209674

URL : https://hal.archives-ouvertes.fr/hal-00940864

S. F. Eskildsen, P. Coupé, V. Fonov, J. V. Manjón, K. K. Leung et al., BEaST: Brain extraction based on nonlocal segmentation technique, NeuroImage, vol.59, issue.3, pp.2362-2373, 2012.
DOI : 10.1016/j.neuroimage.2011.09.012

URL : https://hal.archives-ouvertes.fr/inserm-00629187

S. K. Warfield, K. H. Zou, and W. M. Wells, Simultaneous Truth and Performance Level Estimation (STAPLE): An Algorithm for the Validation of Image Segmentation, IEEE Transactions on Medical Imaging, vol.23, issue.7, pp.903-921, 2004.
DOI : 10.1109/TMI.2004.828354

K. H. Zou, S. K. Warfield, A. Bharatha, C. Tempany, M. R. Kaus et al., Statistical validation of image segmentation quality based on a spatial overlap index1, Academic Radiology, vol.11, issue.2, pp.178-189, 2004.
DOI : 10.1016/S1076-6332(03)00671-8

N. Archip, F. A. Jolesz, and S. K. Warfield, A Validation Framework for Brain Tumor Segmentation, Academic Radiology, vol.14, issue.10, pp.1242-1251, 2007.
DOI : 10.1016/j.acra.2007.05.025

A. Hamamci, N. Kucuk, K. Karaman, K. Engin, and G. Unal, Tumorcut: Segmentation of brain tumors on contrast enhanced MR images for radiosurgery applications, IEEE TMI, vol.31, issue.3, pp.790-804, 2012.

B. H. Menze, K. Van-leemput, D. Lashkari, M. Weber, N. Ayache et al., A Generative Model for Brain Tumor Segmentation in Multi-Modal Images, Proc MICCAI, ser. LNCS 751, pp.151-159, 2010.
DOI : 10.1007/978-3-642-15745-5_19

URL : https://hal.archives-ouvertes.fr/hal-00813776

L. Ibanez, W. Schroeder, L. Ng, and J. , Cates, and Others, The ITK software guide, Kitware, 2003.

S. Bauer, T. Fejes, and M. Reyes, A skull-stripping filter for ITK, Insight Journal, 2012.

M. Prastawa, E. Bullitt, and G. Gerig, Simulation of brain tumors in MR images for evaluation of segmentation efficacy, Medical Image Analysis, vol.13, issue.2, pp.297-311, 2009.
DOI : 10.1016/j.media.2008.11.002

O. Clatz, P. Bondiau, H. Delingette, M. Sermesant, S. K. Warfield et al., Brain tumor growth simulation, 2004.
URL : https://hal.archives-ouvertes.fr/inria-00071401

C. A. Cocosco, V. Kollokian, R. K. Kwan, G. B. Pike, and A. C. Evans, Brainweb: Online interface to a 3D MRI simulated brain database, NeuroImage, 1997.

B. Aubert-broche, M. Griffin, G. B. Pike, A. C. Evans, and D. L. Collins, Twenty New Digital Brain Phantoms for Creation of Validation Image Data Bases, IEEE Transactions on Medical Imaging, vol.25, issue.11, pp.1410-1416, 2006.
DOI : 10.1109/TMI.2006.883453

M. Kistler, S. Bonaretti, M. Pfahrer, R. Niklaus, and P. Büchler, The Virtual Skeleton Database: An Open Access Repository for Biomedical Research and Collaboration, Journal of Medical Internet Research, vol.15, issue.11, p.245, 2013.
DOI : 10.2196/jmir.2930

A. Mohamed, E. I. Zacharakib, D. Shena, and C. Davatzikos, Deformable registration of brain tumor images via a statistical model of tumor-induced deformation, Medical Image Analysis, vol.10, issue.5, pp.752-763, 2006.
DOI : 10.1016/j.media.2006.06.005

N. Tustison and J. Gee, N4ITK: Nick's N3 ITK implementation for MRI bias field correction, The Insight Journal, 2010.

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, 2009.

S. Bouix, M. Martin-fernandez, L. Ungar, M. Nakamura, M. Koo et al., On evaluating brain tissue classifiers without a ground truth, NeuroImage, vol.36, issue.4, pp.1207-1224, 2007.
DOI : 10.1016/j.neuroimage.2007.04.031

N. Porz, S. Bauer, A. Pica, P. Schucht, J. Beck et al., Multi-Modal Glioblastoma Segmentation: Man versus Machine, The Future Internet ? Future Internet Assembly, e. a. Galis A, pp.96873-104, 2013.
DOI : 10.1371/journal.pone.0096873.s001

URL : http://doi.org/10.1371/journal.pone.0096873

S. Bauer, T. Fejes, J. Slotboom, R. Wiest, L. Nolte et al., Segmentation of Brain Tumor Images Based on Integrated Hierarchical Classification and Regularization, Proc MICCAI-BRATS, 2012.

N. Komodakis, G. Tziritas, and N. Paragios, Performance vs computational efficiency for optimizing single and dynamic MRFs: Setting the state of the art with primal-dual strategies, Computer Vision and Image Understanding, vol.112, issue.1, 2008.
DOI : 10.1016/j.cviu.2008.06.007

URL : https://hal.archives-ouvertes.fr/hal-00918699

A. Criminisi, J. Shotton, and E. Konukoglu, Decision Forests: A Unified Framework for Classification, Regression, Density Estimation, Manifold Learning and Semi-Supervised Learning, Foundations and Trends?? in Computer Graphics and Vision, vol.7, issue.2-3, 2011.
DOI : 10.1561/0600000035

F. Rousseau, P. A. Habas, and C. Studholme, A supervised patchbased approach for human brain labeling, IEEE TMI, vol.30, pp.1852-1862, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00631458

M. Cabezas, A. Oliver, X. Lladó, J. Freixenet, and M. Bach-cuadra, A review of atlas-based segmentation for magnetic resonance brain images, Computer Methods and Programs in Biomedicine, vol.104, issue.3, pp.158-177, 2011.
DOI : 10.1016/j.cmpb.2011.07.015

H. Wang and P. A. Yushkevich, Multi-atlas Segmentation without Registration: A Supervoxel-Based Approach, Proc MICCAI, pp.535-542, 2013.
DOI : 10.1007/978-3-642-40760-4_67

T. Tong, R. Wolz, P. Coupé, J. V. Hajnal, and D. Rueckert, Segmentation of MR images via discriminative dictionary learning and sparse coding: Application to hippocampus labeling, NeuroImage, vol.76, 2013.
DOI : 10.1016/j.neuroimage.2013.02.069

URL : https://hal.archives-ouvertes.fr/hal-00806384

X. Artaechevarria, A. Munoz-barrutia, and C. Ortiz-de-solorzano, Combination Strategies in Multi-Atlas Image Segmentation: Application to Brain MR Data, IEEE Transactions on Medical Imaging, vol.28, issue.8, pp.1266-1277, 2009.
DOI : 10.1109/TMI.2009.2014372

P. Coupé, J. V. Manjón, V. Fonov, J. Pruessner, M. Robles et al., Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation, NeuroImage, vol.54, issue.2, pp.940-954, 2011.
DOI : 10.1016/j.neuroimage.2010.09.018

H. Wang, J. W. Suh, J. Pluta, M. Altinay, and P. Yushkevich, Optimal Weights for Multi-atlas Label Fusion, Proc IPMI, pp.73-84, 2011.
DOI : 10.1007/978-3-642-22092-0_7

G. Wu, Q. Wang, S. Liao, D. Zhang, F. Nie et al., Minimizing Joint Risk of Mislabeling for Iterative Patch-Based Label Fusion, Proc MICCAI, pp.551-558, 2013.
DOI : 10.1007/978-3-642-40760-4_69

D. Zikic, B. Glocker, E. Konukoglu, A. Criminisi, C. Demiralp et al., Decision Forests for Tissue-Specific Segmentation of High-Grade Gliomas in Multi-channel MR, Proc MICCAI, pp.369-376, 2012.
DOI : 10.1007/978-3-642-33454-2_46

S. H. Chan, R. Khoshabeh, K. B. Gibson, P. E. Gill, and T. Q. Nguyen, An Augmented Lagrangian Method for Total Variation Video Restoration, IEEE Transactions on Image Processing, vol.20, issue.11, pp.3097-3111, 2011.
DOI : 10.1109/TIP.2011.2158229

J. Besag, Statistical analysis of dirty pictures*, Journal of Applied Statistics, vol.6, issue.5-6, pp.259-302, 1986.
DOI : 10.1016/0031-3203(83)90012-2

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via the em algorithm, Journal of the Royal Statistical Society, vol.39, pp.1-38, 1977.

G. Celeux, F. Forbes, and N. Peyrard, EM procedures using mean field-like approximations for Markov model-based image segmentation, Pattern Recognition, vol.36, issue.1, pp.131-144, 2003.
DOI : 10.1016/S0031-3203(02)00027-4

URL : https://hal.archives-ouvertes.fr/inria-00072526

N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan et al., N4ITK: Improved N3 Bias Correction, IEEE Transactions on Medical Imaging, vol.29, issue.6, pp.1310-1320, 2010.
DOI : 10.1109/TMI.2010.2046908

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3071855

L. G. Nyúl, J. K. Udupa, and X. Zhang, New variants of a method of MRI scale standardization, IEEE Transactions on Medical Imaging, vol.19, issue.2, pp.143-150, 2000.
DOI : 10.1109/42.836373

K. I. Laws, Rapid texture identification, 24th Annual Technical Symposium. International Society for Optics and Photonics, pp.376-381, 1980.

S. Bauer, L. Nolte, and M. Reyes, Fully Automatic Segmentation of Brain Tumor Images using Support Vector Machine Classification in Combination with Hierarchical Conditional Random Field Regularization Medical image computing and computer-assisted intervention : MICCAI, International Conference on Medical Image Computing and Computer-Assisted Intervention, 2011.

S. Ahmed, K. M. Iftekharuddin, and A. Vossough, Efficacy of Texture, Shape, and Intensity Feature Fusion for Posterior-Fossa Tumor Segmentation in MRI, IEEE Transactions on Information Technology in Biomedicine, vol.15, issue.2, pp.206-213, 2011.
DOI : 10.1109/TITB.2011.2104376

A. Islam, S. M. Reza, and K. M. Iftekharuddin, Multi-fractal texture estimation for detection and segmentation of brain tumors, IEEE TBE, vol.60, pp.3204-3215, 2013.

T. Leung and J. Malik, Representing and recognizing the visual appearance of materials using three-dimensional textons, International Journal of Computer Vision, vol.43, issue.1, pp.29-44, 2001.
DOI : 10.1023/A:1011126920638

L. Breiman, Random forests, Machine Learning, vol.45, issue.1, pp.5-32, 2001.
DOI : 10.1023/A:1010933404324

H. Shin, M. Orton, D. J. Collins, S. Doran, and M. O. Leach, Autoencoder in Time-Series Analysis for Unsupervised Tissues Characterisation in a Large Unlabelled Medical Image Dataset, 2011 10th International Conference on Machine Learning and Applications and Workshops, pp.259-264, 2011.
DOI : 10.1109/ICMLA.2011.38

H. Shin, Hybrid clustering and logistic regression for multi-modal brain tumor segmentation, Proc. of Workshops and Challanges in Medical Image Computing and Computer-Assisted Intervention (MICCAI'12), 2012.

H. Shin, M. R. Orton, D. J. Collins, S. J. Doran, and M. O. Leach, Stacked Autoencoders for Unsupervised Feature Learning and Multiple Organ Detection in a Pilot Study Using 4D Patient Data, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, issue.8, pp.1930-1943, 2013.
DOI : 10.1109/TPAMI.2012.277

A. Krizhevsky, I. Sutskever, and G. Hinton, Imagenet classification with deep convolutional neural networks, Proc NIPS, pp.1106-1114, 2012.

N. Subbanna, D. Precup, L. Collins, and T. Arbel, Hierarchical Probabilistic Gabor and MRF Segmentation of Brain Tumours in MRI Volumes, Proc MICCAI, pp.751-758, 2013.
DOI : 10.1007/978-3-642-40811-3_94

N. Subbanna and T. Arbel, Probabilistic gabor and markov random fields segmentation of brain tumours in mri volumes, Proc MICCAI Brain Tumor Segmentation Challenge, pp.28-31, 2012.

J. Sled and G. Pike, Correction forB1 andB0 variations in quantitativeT2 measurements using MRI, Magnetic Resonance in Medicine, vol.23, issue.4, pp.589-593, 2000.
DOI : 10.1002/(SICI)1522-2594(200004)43:4<589::AID-MRM14>3.0.CO;2-2

D. L. Collins, P. Neelin, T. M. Peters, and A. C. Evans, Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space, Journal of Computer Assisted Tomography, vol.18, issue.2, pp.192-205, 1994.
DOI : 10.1097/00004728-199403000-00005

B. Belaroussia, J. Millesb, S. Carmec, H. Zhua, and Y. M. Benoit-cattina, Intensity non-uniformity correction in MRI: Existing methods and their validation, Medical Image Analysis, vol.10, issue.2, pp.234-246, 2006.
DOI : 10.1016/j.media.2005.09.004

N. Subbanna and Y. Zeevi, Existence Conditions for Discrete Noncanonical Multiwindow Gabor Schemes, IEEE Transactions on Signal Processing, vol.55, issue.10, pp.5113-5117, 2007.
DOI : 10.1109/TSP.2007.896100

D. C. Ince, L. Hatton, and J. Graham-cumming, The case for open computer programs, Nature, vol.20, issue.7386, pp.485-493, 2012.
DOI : 10.1038/nature10836

B. B. Avants, P. Yushkevich, J. Pluta, D. Minkoff, M. Korczykowski et al., The optimal template effect in hippocampus studies of diseased populations, NeuroImage, vol.49, issue.3, pp.2457-66, 2010.
DOI : 10.1016/j.neuroimage.2009.09.062

B. A. Landman, A. J. Huang, A. Gifford, D. S. Vikram, I. A. Lim et al., Multi-parametric neuroimaging reproducibility: A 3-T resource study, NeuroImage, vol.54, issue.4, pp.2854-66, 2011.
DOI : 10.1016/j.neuroimage.2010.11.047

B. B. Avants, N. J. Tustison, J. Wu, P. A. Cook, and J. C. Gee, An Open Source Multivariate Framework for n-Tissue Segmentation with Evaluation on Public Data, Neuroinformatics, vol.20, issue.Suppl 1, pp.381-400, 2011.
DOI : 10.1007/s12021-011-9109-y

B. B. Avants, N. J. Tustison, G. Song, P. A. Cook, A. Klein et al., A reproducible evaluation of ANTs similarity metric performance in brain image registration, NeuroImage, vol.54, issue.3, pp.2033-2077, 2011.
DOI : 10.1016/j.neuroimage.2010.09.025

Y. Boykov and V. Kolmogorov, An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.26, issue.9, pp.1124-1137, 2004.
DOI : 10.1109/TPAMI.2004.60

V. Kolmogorov and R. Zabih, What energy functions can be minimized via graph cuts?, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.26, issue.2, pp.147-159, 2004.
DOI : 10.1109/TPAMI.2004.1262177

R. Y. Boykov and O. Veksler, Efficient approximate energy minimization via graph cuts, IEEE TPAM, vol.20, issue.12, pp.1222-1239, 2001.

S. M. Smith and J. M. Brady, Susan -a new approach to low level image processing, International Journal of Computer Vision, vol.23, issue.1, pp.45-78, 1997.
DOI : 10.1023/A:1007963824710

R. Achanta, A. Shaji, K. Smith, P. Lucchia, S. Fua et al., SLIC Superpixels Compared to State-of-the-Art Superpixel Methods, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.34, issue.11, pp.2274-2282, 2012.
DOI : 10.1109/TPAMI.2012.120

Y. Boykov, O. Veksler, R. J. Zabih, A. Shotton, M. Fitzgibbon et al., Efficient approximate energy minimization via graph cuts Real-time human pose recognition in parts from a single depth image, IEEE Computer Vision and Pattern Recongnition, pp.1222-1239, 2001.

P. Viola and M. J. Jones, Robust Real-Time Face Detection, International Journal of Computer Vision, vol.57, issue.2, pp.137-154, 2004.
DOI : 10.1023/B:VISI.0000013087.49260.fb