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Abstract

Video synchronization and alignment is a rather recent

topic in computer vision. It usually deals with the problem

of aligning sequences recorded simultaneously by static,

jointly– or independently–moving cameras. In this pa-

per, we investigate the more difficult problem of match-

ing videos captured at different times from independently–

moving cameras, whose trajectories are approximately co-

incident or parallel. To this end, we propose a novel method

that pixel-wise aligns videos and allows thus to automati-

cally highlight their differences. This primarily aims at vi-

sual surveillance but the method can be adopted as is by

other related video applications, like object transfer (aug-

mented reality) or high dynamic range video. We build

upon a slice matching scheme to first synchronize the se-

quences, while we develop a spatio-temporal alignment

scheme to spatially register corresponding frames and re-

fine the temporal mapping. We investigate the performance

of the proposed method on videos recorded from vehicles

driven along different types of roads and compare with re-

lated previous works.

1. Introduction

Video alignment aims to relate two video sequences in

both their spatial and temporal dimensions so that they can

be compared pixel–wise. By designating one of them as

observed and the other as reference sequence, video align-

ment consists of mapping the reference spatio-temporal co-

ordinates to the observed ones. That mapping thus decom-

poses in a temporal and a spatial component (Fig. 1). The

former, or synchronization, estimates a frame correspon-

dence (ti,o, t
∗

i,r) that associates the frame t∗i,r in the refer-

ence sequence to the frame ti,o in the observed sequence.

Once the temporal mapping has been estimated, the lat-

ter, usually called image registration, estimates a geometric

transformation that provides dense matches of correspond-

ing frames. Both mappings usually count on optimizing

Figure 1. Slice matching provides temporal correspondences by

analogy to image matching that provides spatial correspondences.

an appropriate measure. The same problem is addressed

by various computer vision applications like wide baseline

matching [3, 17], high dynamic range video and video mat-

ting [13], action recognition and sensor fusion [16], differ-

ence spotting [5], video-copy detection [2] and frame drop-

ping prevention [10].

Static or jointly moving cameras come with a fixed

inter-sequence geometric transformation (i.e. homogra-

phy), while simultaneous recording amounts to a fixed tem-

poral mapping across the sequences [3, 17, 10, 16, 9, 12]

like constant time-offset and frame rate ratio. But when

video acquisition takes place at different times, from inde-

pendently moving cameras following nearly coincident tra-

jectories [13, 5], the problem becomes much more challeng-

ing, as the above constancy for both spatial and temporal

mapping is not active.

The latter scenario is what we consider in this paper.

Specifically, we propose a novel video alignment method

based on slice1 matching to align sequences recorded at dif-

ferent times from independently moving cameras whose tra-

jectories can be more or less coincident or parallel. The

1A slice is defined as a ’cut’ of a video sequence seen as a spatio-

temporal volume in a XY T system, normal to the X and parallel to the Y

axis for vertical Y–T slices, and the opposite for X–T slices.



key idea of the algorithm is to exploit the analogy be-

tween image matching and slice matching (Fig. 1). As

image matches are processed to obtain the geometric trans-

formation between images, slice matching provides tempo-

ral correspondences that can be further processed towards

temporal mapping. Although image matching via retrieval

can also lead to synchronization [7, 2], by slice matching

we work directly on time domain. Furthermore, putative

matches are viewed as samples of a frame correspondence

pdf described by a Gaussian mixture model (GMM). The

GMM parameters are learnt through a Maximum Likelihood

Estimation. We then formulate the temporal mapping esti-

mation as a maximum a posteriori (MAP) inference prob-

lem based on probabilities extracted by the learnt pdf, in

contrast to [5] where they are estimated empirically.

Unlike [3], independently moving cameras imply that

each frame, or at most short-time sequence, must be sepa-

rately registered in space, as well as that each observed (ref-

erence) frame ideally corresponds to a reference (observed)

subframe. Thus, instead of spatially registering correspond-

ing single frames [5], a spatio-temporal alignment applies to

short subsequences in turn towards spatial registration and

synchro refinement. A common choice for this would be

the spatio-temporal extension of the Lucas-Kanade algo-

rithm [3]. However, different recording times come with

variant illumination and outliers. To handle the former we

extend in time the recently proposed ECC image alignment

algorithm [6] that offers robustness to appearance variation.

1.1. Related works

Caspi and Irani [3] present video alignment solutions for

static or jointly moving cameras. They align feature trajec-

tories, as [11, 15, 17] also do, or register direct the whole

intensity manifolds, in order to estimate homographies or

fundamental matrices and affine temporal models. Tuyte-

laars and VanGool [15] consider moving cameras that cap-

ture the same event and synchronize the videos by register-

ing backprojected lines. Our work is more closely to [13, 5]

where different recording times are supposed. Sand and

Teller [13] propose an exhaustive search between frames

looking for motion-consistent pixel matches, while Diego et

al. [5] globally solve the temporal mapping by fusing the

information obtained from camcorders and GPS receivers.

In the context of video alignment, Liu et al. [7] recently

proposed a dense alignment scheme for retrieving and reg-

istering still images from different scenes. That solution

easily adapts to our problem by considering each observed

frame as a query and the same goes for [2] where video

copy detection is addressed as retrieval based on the stan-

dard bag-of-keypoints paradigm [14]. Finally, Pundik and

Moses [10] solve the synchronization problem by exploit-

ing temporal signals along epipolar lines, but considering

static cameras.

2. A slice matching to video synchronization

Suppose we are given two spatio-temporal volumes

that are represented with an observed and reference im-

age sequence, let Io = {Ion(xo, yo)}
N
n=1 and Ir =

{Irm(xr, yr)}
M
m=1, respectively, where N , M are their num-

ber of frames. These volumes can be also represented by

Y T slice sequences, {So
l (yo, to)}

L
l=1 and {Sr

z (yr, tr)}
Z
z=1,

being L, Z the width of observed and reference frames, re-

spectively (Fig. 1, Fig. 2).

Our scenario involves sequences recorded at different

times from cameras that follow similar or approximately

parallel trajectories. Lateral displacements like those due

to lane changes lead to partial overlap in the camera field

of view. As the speed of cameras can vary, we need a non–

parametric model to describe the temporal mapping from

an observed frame to to a reference frame tr = ft[to], with

to = 1, . . . , N and ft : {1, . . . , N} → {1, . . . ,M} a dis-

crete mapping. To this end, the estimation of temporal map-

ping is posed here as a MAP Bayesian inference problem:

T∗

r = argmax
Tr∈M

p(Tr|To; I
r, Io), (1)

where T∗

r = (t∗1,r, . . . , t
∗

i,r, . . . , t
∗

N,r) is the most likely im-

age indexes of ft given the input To = (1, . . . , ti,o, . . . , N),
t∗i,r is the reference index that corresponds to the ti,o ob-

served index frame, Tr is a sequence of N random vari-

ables and M is the set of all possible temporal mappings.

The posterior probability distribution p(Tr|To; I
r, Io) de-

scribes the probability that the observed frames To corre-

spond to the frames Tr in the reference sequence. For

conciseness, from now on the arguments Ir, Io are omit-

ted. The most likely temporal alignment between the ob-

served and reference sequences is inferred by optimizing

Eq. (1). For simplicity, each random variable ti,r is condi-

tionally independent given their respective observed frame

ti,o. Hence, p(Tr|To) decomposes as the product of frame

correspondence probabilities p(ti,r|ti,o) for all frames in the

observed sequences. Therefore, the most likely temporal

alignment in Eq. (1) is inferred by associating the observed

frame ti,o to the frame in the reference sequence with the

highest frame correspondence probability as follows:

t∗i,r = argmax
ti,r∈[1,M ]

p(ti,r|ti,o), i = 1, . . . , N. (2)

To estimate p(ti,r|ti,o), or in short p(tr|to), and achieve

synchronization, we proceed as follows. The most likely

reference slice Sr
z is retrieved for each observed slice So

l

and a matching scheme between corresponding slices pro-

vides putative temporal matches (Sec. 2.1). Based on these

matches (samples), we learn the joint p.d.f. of frame corre-

spondence p(to, tr) modeled by a Gaussian mixture model

instead of the posterior probability distribution p(tr|to)



Figure 2. Slice retrieval and matching lead to putative tempo-

ral correspondences (t̂j,o, t̂j,r) between observed and reference

frames.

(Sec. 2.2) because there is no distinction between refer-

ence and observed sequence, the samples are continuous,

and also the latter can be easily derived by the former for all

observed frames to like in [1]. Fig. 2 describes visually the

above procedure of slice retrieval, matching and learning.

2.1. Slice retrieval & matching

Slice retrieval aims at efficiently associating a slice So
l

to the most similar Sr
z in the reference sequence. There-

fore, in order to match all observed slices, we run a retrieval

algorithm for all slices in the observed sequence. To do

this, we follow an approach similar to [14]. In short, we

first enable the SIFT algorithm to localize keypoints in all

the reference slices and describe the area around them [8].

Next, we build a visual vocabulary and an inverted index

list. Given an observed slice, we extract its SIFT descriptors

and look for the closest visual word, voting thus for the as-

signed slices stored in the inverted file through the inverse-

document-frequency weighting scheme [14]. The reference

slice with the highest score is assigned to the query slice.

Note that we do not make use of any a priori knowledge

about partial (lateral trajectories) of full (almost coincident

trajectories) overlap between sequences, but, rather, we ob-

tain this information (horizontal overlap) by slice retrieval.

Having corresponding slices at our disposal, we follow

a matching scheme to aggregate temporal correspondences,

since each descriptor is assigned to continuous y and t loca-

tions. The matching procedure is performed similar to [8],

using a distance ratio between nearest and second-nearest

neighbor. As a result, pairs of temporal coordinates for

matched descriptors reflect putative matches (t̂j,o, t̂j,r).

2.2. Learning frame correspondence pdf

Slice matching provides a set of putative matches T =
{(t̂j,o, t̂j,r)}

J
j=1 that reflects the frame correspondence be-

tween observed and reference sequence. Since the match-

ing scheme provides mismatches too, T is noisy. In this

sense, putative matches are considered as samples on R
2 of

a frame correspondence pdf p(to, tr). Hence, our goal here

is to find the density function p(to, tr) that is most likely to

have generated the set T . To this end, we propose the use of

a Gaussian mixture model (GMM) and we model the den-

sity function as a mixture of K two–dimensional Gaussians,

that is,

p(to, tr) =
K
∑

k=1

πkΦ(to, tr;µk,Σk), (3)

where Φ(to, tr;µk,Σk) denotes the evaluation of the Gaus-

sian pdf N (µk,Σk) at (to, tr), and πk, µk = [µto,k, µtr,k]
T

and Σk are the prior, the mean and covariance of the

kth posterior Gaussian pdf, respectively. The param-

eters of GMM {πk,µk,Σk}
K
k=1 are learnt using Maxi-

mum Likehood Estimation that is solved by Expectation—

Maximization (EM) algorithm [4]. The likelihood increase

of frame correspondence is guaranteed during optimization.

In order to avoid over–fitting, the number of Gaussian com-

ponents K is chosen evaluating the Bayesian information

criterion (BIC) from a set of possible number of compo-

nents with K ∈ {N/2, N/2 + 10, . . . , N}. That criterion

penalizes models with a large number of parameters.

3. Spatial registration and synchro refinement

Now that we have synchronized the sequences up to

frame accuracy, our goal reduces to the alignment in space.

However, due to unsynchronized acquisition, observed

frames optimally match to reference subframes. To achieve

simultaneously spatial registration and synchro refinement,

we propose the use of a spatio-temporal alignment scheme

that applies to short subsequences (say 3 frames long) in

turn and assumes homographies in space and affinities in

time. Homographies approximate the inter-sequence mo-

tion since our scenario assumes a short baseline, while tem-

poral affinities provide subframe accuracy and compensate

for different frame rates and/or speed of cameras.

Let us suppose that qo = [xo, yo, to]
t and qr =

[xr, yr, tr]
t denote space-time points in the observed and

reference sequences respectively. Since we are interested

in dense correspondences, we adopt a parametric model

qo = γ(qr;h) parameterized as follows:









x̃o

ỹo
w̃o

to






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=
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









xr
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1
tr









, (4)

where xo = x̃o/w̃o and yo = ỹo/w̃o, and h =
[h1, . . . , h8,α,β]

T . Essentially, the parameters hi, i =
1, ..8 describe the motion between corresponding frames,



the parameter α adjusts the foreshortening in time between

sequences and the parameter β provides the subframe cor-

rection. The goal of parametric alignment is the estimation

of the above transformation matrix by defining an objective

function and solving the appropriate optimization problem.

To this end, we extend the Enhanced Correlation Coefficient

(ECC) algorithm [6] to space–time dimensions, since ECC

offers robustness to appearance variations.

Let us assume that we are interested in correspondences

of a Group Of Locations (GOL) in the input sequence, being

L their number. In our case, GOL reflects all space-time

points, otherwise it could be a group of sparse points or a

sub-region. By stacking the image intensities of GOL, we

form the observed vector and the reference counterpart b

and rh respectively, denoting as b̄ and r̄h their zero-mean

versions. Note that reference vector is parameterized by h

since γ() applies to the reference sequence. Then, ECC

alignment algorithm aims at solving the following problem

max
h

f(h) = max
h

b̄tr̄h

‖b̄‖‖r̄h‖
, (5)

where f(h) is the enhanced correlation coefficient between

the two vectors (sequences). By assuming a forwards addi-

tive rule hj = hj−1 + ∆hj , j = 1, 2, ..., and after Taylor

expanding the reference vector, f(h) is approximated by

the function

f(∆hj ;hj−1) =
b̄t [̄rhj−1 +Ghj−1∆hj ]

‖b̄‖‖r̄hj−1 +Ghj−1∆hj‖
, (6)

where Gh is the L× 10 Jacobian of r w.r.t. h. Specifically,

each row of G is obtained by the product of spatio-temporal

gradient of reference image at some location and the Jaco-

bian of warp in (4) for this location, given by

Jγ=
1

w̃o





xr yr 1 0 0 0 −xrxo −yrxo 0 0
0 0 0 xr yr 1 −xryo −yryo 0 0
0 0 0 0 0 0 0 0 w̃otr w̃o



 .

(7)

Hence, by the above iterative framework, we ideally expect

that f(∆hj ;hj−1) approaches f(h) as j increases.

By dropping the indices h and j , when b̄tAr̄h > 0 2 with

A = I − G(GTG)−1GT being an orthogonal projection

operator and I the identity matrix, it has been proved [6]

that the function f(∆h;h) attains a global maximum at

∆h = (GtG)−1Gt

{

r̄t
h
Ar̄h

b̄tAr̄h
b̄− r̄h

}

. (8)

The complexity of ECC algorithm is O(LN2
h) per iteration

where Nh is the number of parameters.

The partial overlap of frames caused by parallel camera

trajectories can be easily extracted by slice matching, ini-

tializing thus appropriately the parameter h3 of the warp.

2This condition degenerates only when totally unrelated profiles are

compared [6]. Though, we consider here highly correlated image profiles.

4. Experimental results

In this section qualitative and quantitative results are pre-

sented to validate the proposed approach. Specifically, we

evaluate the performance of different counterparts of the

proposed algorithm and compare them with the most related

works [5, 7]. The evaluation counts on experimenting with

real sequences recorded by in-vehicle cameras, when they

are following approximately coincident trajectories [5]. The

alignment of these sequences implies a quite challenging

task, since the speed of vehicles varies too irregularly. The

average length of the reference and observed sequences is

approximately 2000 and 1400 frames respectively, while

their spatial resolution is 720 × 540 pixels. These datasets

are provided with their ground–truth, i.e. the reference in-

tervals [li, ui] that each observed frame must correspond to;

the length of these intervals is 3 frames on average. Sim-

ilar to [5], the synchronization error of a candidate pair

(ti,o, ti,r) is defined as

err(ti,o, ti,r)=

{

0 if li ≤ ti,r ≤ ui

min (|li−ti,r|, |ui−ti,r|) otherwise

(9)

The performance of synchronization is quantified through

the percentage 1 −
∑

i(err(ti,o, ti,r) > ε)/N for ε = 0, 1.

However, since it comes to real datasets, we qualitatively

compare the performance of the methods regarding the spa-

tial registration.

4.1. Performance Evaluation

In this section, we evaluate the different components

of the proposed algorithm: slice retrieval & matching

(SRM) (Sec. 2.1), learning frame correspondence pdf

(SRM+GMM) (Sec. 2.2), and finally, subframe video align-

ment (SVA) (Sec. 3). The first two components infer the

temporal mapping maximizing Eq. (2) (pure SRM builds

on empirical probabilities), while SVA refines the temporal

mapping obtained by SRM+GMM and register spatially the

corresponding frames based on the ECC outcome.

In the context of pure SRM, we could obviously ob-

tain temporal matches by directly matching spatio-temporal

descriptors through retrieval, without mapping the slices

before; we call this scheme as direct temporal matching

(DTM). This way, we empirically estimate the needed prob-

abilities, that is, by counting the number of times that a can-

didate pair (to, tr) appears in T after its rounding. That

counting goes for all possible frame correspondences within

the proper normalization.

Table 1 shows the synchronization scores achieved by

the investigated methods. We provide results for ε = 0 and

ε = 1 to show the error variance. As we can see, SRM

achieves higher synchronization scores than DTM across

all sequences. It is very important to note that no geometric

constraints about matched descriptors are taken into account



with both methods. Moreover, the contribution of learning

the pdf (GMM) instead of the empirical estimation of prob-

abilities (DTM) is clearly evident too. Specifically, GMM

remarkably increases the performance of SRM, that is, by

9% on average.

Except for the contribution in spatial alignment, we

achieve further improvements in synchronization with the

help of ECC (SVA). Subsequences of 3 frames were

adopted, permitting ECC to execute 15 iterations per sub-

sequence. However, experiments showed us that misalign-

ment in space comes usually with misalignment in time.

Therefore, and taking into account the assumption of sim-

ilar trajectories, it is reasonable to not refine frame pairs

when SVA returns an extreme homography; this can be eas-

ily checked by the value of parameters h7 and h8. As a

result, SVA reaches more higher levels as it increases the

synchronization score by 7% on average.

4.2. Comparison

We compare the proposed algorithm with the two closest

related works [5, 7]. Diego et al. [5] estimate a complete

temporal mapping by maximizing an image– and location–

similarity based on global image descriptors and GPS data

respectively. Note that this method exploits prior informa-

tion as it assumes forward motion only. Besides, we adapt

the scene alignment algorithm proposed by Liu et al. [7] to

video alignment, i.e. we solve the problem in turn for all

observed frames. This reflects a reasonable comparison be-

tween frame and slice retrieval. That method consists of re-

trieving the short-list (i.e. top-20 [7]) of reference frames by

spatial histogram matching of quantized SIFT. Then, a spa-

tial coherence step using the SIFT-flow algorithm re-ranks

the list w.r.t. the flow energy, thus emerging the nearest ref-

erence frame.

From the results of Table 1, we derive that SVA out-

performs its competitors, SIFT-flow [7] and BN [5], in all

cases. Specifically, SVA improves by 13% and 6% the

scores obtained by BN and SIFT-flow respectively. We re-

call that this comparison does not favor our method in the

sense that our method does not count on geometric con-

straints, since we aim at investigating the performance of

the net algorithm. However, it is obvious that SRM scheme

would be benefitted by such constraints.

By putting aside the training time of the algorithms, the

main drawback of SIFT-flow algorithm is its complexity,

since it requires more than 30 sec to compute the flow be-

tween two frames at half resolution. This leads to a heavy

task since the alignment of two sequences with 1000 frames

takes approximately 7 days. On the other hand, synchro-

nization by SRM+GMM takes 15 sec and the ECC algo-

rithm, implemented in Matlab, requires 14 sec per subse-

quence. BN method adopts an image alignment scheme

based on Lucas-Kanade framework with 3 parameters (3D

rotation) that captures obviously the registration faster than

ECC at the cost of lower accuracy. However, the synchro-

nization problem is solved globally and execution times are

not given in [5]. Note that ECC and Lucas-Kanade attain

the same complexity for the same number of parameters

and pixels [6]. Although, we consider here an offline ap-

plication, we must stress that SIFT-flow requires a lot of

time for typical current architectures, even if we drastically

reduce the short-list.

As we deal with real data, we give in Fig. 3 some rep-

resentative results that capture the pros and cons of SVA

and its strong competitor SIFT-flow. To qualitatively as-

sess the spatial registration, a simple image fusion is estab-

lished by replacing the green component of the observed

frame with the warped green component of the reference

frame. As a consequence, any misalignment or difference

is marked with green and pink colors [3]. A motorbike

in (Fig. 3a), two persons in (Fig. 3b) and various vehi-

cles in (Fig. 3c-f) appear in one of the frames must be

aligned. We observe that Liu et al.’s algorithm achieves

pixel-wise correspondences at the expense of misalignment

when non-scene objects appear (outliers). SIFT-flow cre-

ates splashes in their locations while the proposed algo-

rithm seems to be robust to these outliers and provides ac-

curate registration results. When the homography does not

fit well, SVA may cause minor local misalignments, as in

road–lines in Fig. 3b. Note that SIFT-flow returns pixel–

wise flows instead of estimating a global transformation

as SVA does. The performance of the spatial registration

and the final video alignment is clearly more evident in

http://www.cvc.uab.es/˜fdiego/VS2011/.

5. Conclusions

A novel spatio-temporal alignment method was pro-

posed to align video sequences recorded at different times

from independently moving cameras whose trajectories can

be nearly coincident or parallel. In order to avoid exhaus-

tive cross-frame search, video synchronization builds upon

matches between corresponding spatio-temporal slices.

These matches are considered as samples of frame corre-

spondence pdf modeled by a GMM whose parameters are

learnt, and a MAP inference problem is solved based on this

pdf. Next, a spatio–temporal alignment is adopted to refine

the synchronization up to subframe resolution, and at the

same time, to spatially align subsequences. Experiments on

real video sequences recorded by moving vehicles on dif-

ferent road types show that the proposed algorithm outper-

forms state–of–the–art methods. As future work, we envis-

age dealing with crossed, or at least more random, trajec-

tories by working with sub-slices or appropriately oriented

slices and piece-wise homographies.



Figure 3. Example results of SVA algorithm (top) and SIFT-flow (bottom). More results of SVA can be viewed at the supplemental material.

Please refer to http://www.cvc.uab.es/˜fdiego/VS2011/ for video results.

Highway (ε = 0\ε = 1) Campus (ε = 0\ε = 1) Backroad (ε = 0\ε = 1) Average (ε = 0\ε = 1)

DTM 67.7\81.5 69.6\78.9 50.2\62.1 62.5\71.2

SRM 72.2\83.2 73.4\85.3 63.0\77.4 69.5\81.9

SRM+GMM 83.2\92.6 75.8\88.0 69.2\85.1 76.1\88.6

SVA 84.5\92.3 82.3\91.5 78.1\88.7 81.6\90.8

SIFT-flow [7] 74.2\87.2 82.0\89.7 72.4\86.4 76.2\87.7

BN [5] 67.6\73.1 83.1\90.5 66.8\70.5 72.5\78.0

Table 1. Synchronization scores (%) obtained by the proposed methods and the competitors for two values of error tolerance ε.
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