
HAL Id: hal-00936333
https://inria.hal.science/hal-00936333v2

Submitted on 25 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic Detection of Calibration Grids in
Time-of-Flight Images

Miles Hansard, Radu Horaud, Michel Amat, Georgios Evangelidis

To cite this version:
Miles Hansard, Radu Horaud, Michel Amat, Georgios Evangelidis. Automatic Detection of Calibration
Grids in Time-of-Flight Images. Computer Vision and Image Understanding, 2014, 121, pp.108-118.
�10.1016/j.cviu.2014.01.007�. �hal-00936333v2�

https://inria.hal.science/hal-00936333v2
https://hal.archives-ouvertes.fr

Automatic Detection of Calibration Grids in Time-of-Flight Images

Miles Hansarda,b, Radu Horauda,∗, Michel Amata,c, Georgios Evangelidisa

aINRIA Grenoble Rhône-Alpes, 38330 Montbonnot Saint-Martin, France
bSchool of Electronic Engineering and Computer Science, Queen Mary, University of London, Mile End Road, United Kingdom

cSuperSonic Imagine, 510 Rue René Descartes, 13857 Aix-en-Provence, France

Abstract

It is convenient to calibrate time-of-flight cameras by established methods, using images of a chequerboard pattern. The low res-

olution of the amplitude image, however, makes it difficult to detect the board reliably. Heuristic detection methods, based on

connected image-components, perform very poorly on this data. An alternative, geometrically-principled method is introduced

here, based on the Hough transform. The projection of a chequerboard is represented by two pencils of lines, which are identi-

fied as oriented clusters in the gradient-data of the image. A projective Hough transform is applied to each of the two clusters,

in axis-aligned coordinates. The range of each transform is properly bounded, because the corresponding gradient vectors are

approximately parallel. Each of the two transforms contains a series of collinear peaks; one for every line in the given pencil.

This pattern is easily detected, by sweeping a dual line through the transform. The proposed Hough-based method is compared to

the standard OpenCV detection routine, by application to several hundred time-of-flight images. It is shown that the new method

detects significantly more calibration boards, over a greater variety of poses, without any overall loss of accuracy. This conclusion

is based on an analysis of both geometric and photometric error.

Keywords: Range imaging, time-of-flight sensors, camera calibration, Hough transform

1. Introduction

Time-of-flight () cameras [1] produce a depth image, each

pixel of which encodes the distance to the corresponding point

in the scene. These devices emit pulsed infrared illumina-

tion, and infer distances from the time taken for light to reflect

back to the camera. The  sensor can therefore be modelled,

geometrically, as a pinhole device. Furthermore, knowledge

of the  camera-parameters can be used to map raw depth-

readings (i.e. distances along lines of sight) into Euclidean

scene-coordinates. The calibration thereby enables these de-

vices to be used as stand-alone 3- sensors, or to be combined

with ordinary colour cameras, for complete 3- modelling and

rendering [2, 3, 4, 5, 6, 7, 8].

 cameras can, in principle, be calibrated with any existing

camera calibration method. For example, if a known chequer-

board pattern is detected in a sufficient variety of poses, then

the internal and external camera parameters can be estimated

by standard routines [9, 10, 11]. It is possible to find the che-

querboard vertices, in ordinary images, by first detecting image-

corners [12], and subsequently imposing global constraints on

their arrangement [13, 14, 15]. This approach, however, is

not reliable for low-resolution images (e.g. in the range 100–

500px2) because the local image-structure is disrupted by sam-

pling artefacts, as shown in fig. 2. Furthermore, these artefacts

become worse as the board is viewed in distant and slanted po-

sitions, which are essential for high quality calibration [16, 17].

∗Corresponding author

Email address: Radu.Horaud@inria.fr (Radu Horaud)

The central motivation of this work is to detect a greater num-

ber and variety of calibration board-poses, in  images, with-

out increasing the geometric error of the vertices. The geomet-

ric error can be conveniently defined with respect to the known

geometry of the board, as will be shown in section 3.

 sensors provide low-resolution depth and amplitude im-

ages. This is because relatively large detector-elements are

required in order to allow accumulation of electrons, which

increases the signal-to-noise ratio and yields accurate depth-

estimates [18] but, in turn, limits the spatial resolution of

the devices. This explains the poor performance of heuris-

tic detection-methods, when applied to  camera calibration.

For example, the amplitude signal from a typical  camera

[19, 20] resembles an ordinary greyscale image, but is of very

low spatial resolution (e.g. 176×144 for the SR4000 camera, or

160 × 120 for the PMD PhotonICs on-chip sensor) , as well as

being noisy. A 712×496 CMOS color-depth sensor is currently

being developed, but the resolution of the  image delivered

by this sensor is only 356×248 pixels [21]. A 340×96 pixels 

camera has also been developed, for driving applications [22].

Lindner at al. [17] used the calibration module included in the

OpenCV library [15] to estimate the parameters of a 200 × 200

PMD depth-camera and noticed a high dependency between the

intrinsic and extrinsic parameters. To overcome these issues,

a calibration method that combines a  camera with colour

cameras was proposed [3, 17]. While this method yields very

accurate parameters, it requires a multiple-sensor setup com-

posed of both  and standard cameras.

Calibration grids are essentially composed of two pencils of

Article to appear in Computer Vision and Image Understanding January 24, 2014

Figure 1: An example of a  amplitude image taken in the infrared range

in a normal neon-lit room. The original 176 × 144 image has been magnified

and smoothed for display. The OpenCV software is unable to detect the ver-

tices of the chequerboard in this case and in many other images as the board is

viewed in distant and slanted positions. The red and green lines are the initial

pencils detected by the proposed Hough-based method (prior to the refinement

described in section 3). The thick lines are the local Hough coordinate-systems,

which are automatically established, as described in section 2.3.

lines, therefore chequerboard detection should explicitly take

this structure into account. For instance, the method in [23, 24]

starts by extracting points of interest, followed by eliminat-

ing those points that do not have a local chequerboard pattern,

and finally by grouping together points lying along lines. This

method puts a lot of emphasis on interest points, which are dif-

ficult to detect in low-resolution images, and does not take full

advantage of the global structure of the calibration grid.

Two families of mutually orthogonal lines may also be de-

tected by finding a dominant pair of vanishing-points. In [25]

it is proposed to represent image lines on the Gaussian sphere

(a unit sphere around the optical center of the camera). Under

perspective projection, an image line projects onto a great cir-

cle on the Gaussian sphere, and a pencil of lines corresponds to

a family great circles that intersect at antipodal points (see for

example fig. 1 in [26]). Therefore, a vanishing point may be

found by detecting the intersections, provided that the camera’s

internal parameters are known. Vanishing point detection was

implemented using a quantized Gaussian sphere and a hierar-

chical (scale-space) Hough method, e.g. [27]. In general, Gaus-

sian sphere-based methods require the detection of edges or of

straight lines which are then projected as point sets (circles)

on an azimuth-elevation grid, which may also produce spurious

vanishing points [26].

More recently, vanishing-point detection was addressed as

a clustering problem in the parameter space, using maximum

likelihood and the EM algorithm [28], which requires suitable

initialization. Alternatively, parameter-space clustering can be

implemented using minimal sets [29] and random sampling. A

method that combines [29] with an EM algorithm was recently

proposed to find the three most orthogonal pencils of lines in

indoor and outdoor scenes [30]. We tested this method using

the software provided by the author1 but found that the algo-

rithm was not able to reliably extract and label edges from the

low-resolution  amplitude images. We conclude that vanish-

ing point methods, e.g., [30, 31] fail to extract pencils of lines

because they require accurate edge detection that is difficult to

accomplish in low resolution, noisy images.

The method described in this paper is also based on the

Hough transform [32], but it effectively fits a specific model to

the chequerboard pattern, e.g., fig. 1. This process is much less

sensitive to the resolution of the data, for two reasons. Firstly,

information is integrated across the source image, because each

vertex is obtained from the intersection of two fitted lines. Sec-

ondly, the structure of a straight edge is inherently simpler than

that of a corner feature. However, for this approach to be viable,

it is assumed that any lens distortion has been pre-calibrated,

so that the images of the pattern contain straight lines. This

is not a serious restriction, because it is relatively easy to find

enough boards (by any heuristic method) from which to obtain

adequate estimates of the internal and lens parameters. Indeed

there exist lens-calibration methods that require only a single

image [33, 34, 35]. The harder problems of reconstruction and

relative orientation can then be addressed after adding the newly

detected boards, ending with a bundle-adjustment that also re-

fines the initial internal parameters. Furthermore, the  de-

vices used here have fixed lenses, which are sealed inside the

camera body. This means that the internal and lens-distortion

parameters from previous calibrations can be re-used.

Another Hough-method for chequerboard detection has been

presented by de la Escalera and Armingol [36]. Their algorithm

involves a polar Hough transform of all high-gradient points in

the image. This results in an array that contains a peak for each

line in the pattern. It is not, however, straightforward to extract

these peaks, because their location depends strongly on the un-

known orientation of the image-lines. Hence all local maxima

are detected by morphological operations, and a second Hough

transform is applied to the resulting data in [36]. The true peaks

will form two collinear sets in the first transform (cf. sec. 2.4),

and so the final task is to detect two peaks in the second Hough

transform. This iteration makes it hard to determine an appro-

priate sampling scheme, and also increases the computation and

storage time of the procedure [37].

The method described in this paper is quite different. It

makes use of the gradient orientation as well as magnitude at

each point, in order to establish an axis-aligned coordinate sys-

tem for each image of the pattern. Separate Hough transforms

are then performed in the x and y directions of the local coordi-

nate system. By construction, the slope-coordinate of any line is

close to zero in the corresponding Cartesian Hough transform.

This means that, on average, the peaks occur along a fixed axis

of each transform, and can be detected by a simple sweep-line

procedure. Furthermore, the known ℓ × m structure of the grid

makes it easy to identify the optimal sweep-line in each trans-

form. Finally, the two optimal sweep-lines map directly back

to pencils of ℓ and m lines in the original image, owing to the

1http://www-etud.iro.umontreal.ca/~tardifj/fichiers/

VPdetection-05-09-2010.tar.gz

2

http://www-etud.iro.umontreal.ca/~tardifj/fichiers/VPdetection-05-09-2010.tar.gz
http://www-etud.iro.umontreal.ca/~tardifj/fichiers/VPdetection-05-09-2010.tar.gz

Cartesian nature of the transform. The principle of the method

is shown in fig. 3.

It should be noted that the method presented here was de-

signed specifically for use with  cameras. For this reason,

the range, as well as intensity data are used to help segment the

image in sec. 2.1. However, this step could easily be replaced

with an appropriate background subtraction procedure [15], in

which case the new method could be applied to ordinary 

images. Camera calibration is typically performed under con-

trolled illumination conditions, and so there would be no need

for a dynamic background model.

1.1. Overview and Contributions

The new method is described in section 2; preprocessing

and segmentation are explained in sections 2.1 and 2.2 respec-

tively, while section 2.3 describes the geometric representation

of the data. The necessary Hough transforms are defined in sec-

tion 2.4, and analyzed in sections 2.5 and 2.6. The new method

is evaluated on over 700 detections in section 3, and shown to be

substantially better, for  images, than the standard OpenCV

method. Conclusions are stated in section 4. 2.

The main contributions of this paper are the use of a double-

angle mapping to segment the gradient vectors (2.2), the split-

ting of detection process into a pair of Cartesian Hough trans-

forms (2.4), and the sweep-line method of analyzing these

transforms (2.5, 2.6).

1.2. Notation

Matrices and vectors will be written in bold, e.g. M, v, and

the Euclidean length of v will be written |v|. Equality up to an

overall nonzero-scaling will be written v ≃ u. Image-points

and lines will be represented in homogeneous coordinates [10],

p ≃ (x, y, 1)⊤ and λ ≃ (α, β, γ), such that λ p = 0 if λ passes

through p. The intersection-point of two homogeneous lines

can be obtained from the cross-product (λ×µ)⊤. An assignment

from variable a to variable b will be written b ← a. It will be

convenient, for consistency with the pseudo-code listings, to

use the notation (m : n) for the sequence of integers from m to n

inclusive. The ‘null’ symbol ∅ will be used to denote undefined

or unused variables in the algorithms.

2. Method

It is convenient to begin with an overview of the complete

algorithm, before describing the exact form of the input data.

Following this, subsections 2.1–2.6 will describe each step in

detail. The individual stages of the algorithm are as follows:

A. Preprocessing. The background of the image is roughly

identified, by depth-thresholding or image-differencing, and

discarded. The gradient of the remaining image is then com-

puted.

2Supplementary material can be found at http://www.eecs.qmul.ac.

uk/~milesh/detect-suppl.pdf

Figure 2: Example chequers from a  amplitude image (shown on the left).

Note the variable appearance of the four junctions at this resolution; ‘× like’ at

lower-left vs. ‘+ like’ at top-right.

B. Gradient Clustering. Two gradient clusters, one for each

parallel set of edges on the board, are identified. All weak

gradients are discarded.

C. Local Coordinates. A pair of orthogonal axes, centred on

the board, are constructed from the two gradient clusters.

D. Hough Transform. Two Cartesian Hough transforms are

performed, one for each gradient cluster. The local coordi-

nate system ensures that all edge directions can be properly

represented.

E. Hough Analysis. A line is swept across both transforms,

until a collinear set of peaks is found in each case. The

two sets of peaks correspond to two pencils of image-lines,

the intersections of which are the estimated vertices of the

calibration grid.

F. Decision Functions. The solution is accepted if two tests

are passed: Firstly, the separation of adjacent lines in each

pencil must not be too variable. Secondly, there must be

black squares on both sides of the outermost lines of each

pencil.

The form of the input data will now be detailed. Suppose that

the chequerboard has (ℓ + 1) × (m + 1) squares, with ℓ < m. It

follows that the internal vertices of the pattern are imaged as

the ℓm line-intersections

vi j = λi × µ j where















λi ∈ L for i = 1 : ℓ, and

µ j ∈ M for j = 1 : m.
(1)

The sets L andM are pencils, meaning that the λi all intersect

at a point p, while the µ j all intersect at a point q. Note that p

and q are the vanishing points of the grid-lines, which may be

at infinity in the images (cf. pencilM in fig. 3).

It is assumed that the imaging device, such as a  camera,

provides a range map Dxy, containing distances from the optical

centre, as well as a luminance-like amplitude map Axy, where

(x, y) represents a pixel. The images D and A are of size X × Y .

All images must be undistorted, as described in the introduc-

tion.

2.1. Preprocessing

The amplitude image A is roughly segmented, by discarding

all pixels that correspond to very near or far points. This gives

3

http://www.eecs.qmul.ac.uk/~milesh/detect-suppl.pdf
http://www.eecs.qmul.ac.uk/~milesh/detect-suppl.pdf

Figure 3: Left: A perspective image of a calibration grid is represented by line-

pencils L and M, which intersect at the ℓ × m = 20 internal vertices of this

board. Strong image-gradients are detected along the dashed lines. Right: The

Hough transform H of the image-points associated with L. Each high-gradient

point maps to a line, such that there is a pencil in H for each set of edge-points.

The line L⋆, which passes through the ℓ = 4 Hough-vertices, is the Hough

representation of the image-pencil L.

a new image B, which typically contains the board, plus the

person holding it:

Bxy ←















Axy if d0 < Dxy < d1

∅ otherwise.
(2)

The near-limit d0 is determined by the closest position for

which the board remains fully inside the field-of-view of the

camera. The far-limit d1 is typically set to a value just closer

than the far wall of the scene. These parameters need only be

set approximately, provided that the interval [d1, d0] covers the

possible positions of the calibration board.

It is useful to perform a morphological erosion operation at

this stage, in order to partially remove the perimeter of the

board. In particular, if the physical edge of the board is not

white, then it will give rise to irrelevant image-gradients. The

erosion radius need only be set approximately (a value of 2px

was used here), assuming that there is a reasonable amount of

white-space around the chessboard pattern.

The gradient of the remaining amplitude image is now com-

puted, using the simple kernel ∆ = (−1/2, 0, 1/2). The horizon-

tal and vertical components are

ξxy ← (∆ ⋆ B)xy

= ρ cos θ
and

ηxy ← (∆⊤⋆ B)xy

= ρ sin θ
(3)

where ⋆ indicates convolution, and (ρ, θ) is the polar represen-

tation of the gradient. No pre-smoothing of the image is per-

formed, owing to the low spatial resolution of the data.

2.2. Gradient Clustering

The objective of this section is to assign each gradient vector

(ξxy, ηxy) to one of three classes, with labels κxy ∈ {λ, µ, ∅}. If

κxy = λ then pixel (x, y) is on one of the lines inL, and (ξxy, ηxy)

is perpendicular to that line. If κxy = µ, then the analogous

relations hold with respect to M. If κxy = ∅ then pixel (x, y)

does not lie on any of the lines.

The gradient distribution, after the initial segmentation, will

contain two elongated clusters through the origin, which will

be approximately orthogonal. Each cluster corresponds to a

●

●

●●

●

●

●● ●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●●●●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

● ●

● ●

●

●

●
●

●

●

● ●
●

●
●

●
●●
●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

● ●●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●
●●
●●

●

●

●

●
●

●

●●
●

●

●

●

●
●●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

● ●

●

●

●
● ●

●
●
● ●

●
●●●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●●

●

●

●

●

●

●

●

●
●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

● ●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

● ● ●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

● ●

●

●

● ●
●

●

●

●

●

●

●●
●

●

●●

●

●
● ●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

● ●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●● ●

ξ

η

−0.3 −0.1 0.1 0.3

−
0.

3
−

0.
1

0.
1

0.
3

●

●
●
●

●

●

●

●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●
●●

●
●

●

●

●

●

●
●●

●

●

●
●●
●

●

● ●

●

●

●
●●

●

●
●

●

●
●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●●

●

●

●

●

●
●

● ●

●

●

●●

●

●
●

●● ●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

● ●

●

●

●

●
●

●
●

●

● ●
● ●●

●

●

●
●

●

●

●

●
●● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●● ●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●●●●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

● ●

●●

●

●

●

●

●

● ●●
● ●●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●●
●

●
●● ●

●
●

●

●

●

●

●

●

●● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●● ●

●

●

●

●

●

●● ●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

● ●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●
● ●●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

● ●

●

● ●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●
●

●

●

●

●●

●
●

●
●

●

●●

●●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●
● ●

●
●

●
●
●

●

●

●

●
●●●

●
● ●

● ●

●

●

●

●

●

●

●●

●

●

●

●●
● ●

●

●

●

●
●

●
●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

σ

τ

−0.3 −0.1 0.1 0.3

−
0.

3
−

0.
1

0.
1

0.
3

Figure 4: Left: the cruciform distribution of image gradients, due to

black/white and white/black transitions at each orientation, would be difficult

to segment in terms of horizontal and vertical components (ξ, η). Right: the

same distribution is easily segmented, by eigen-analysis, in the double-angle

representation of equation (4). The red and green labels are applied to the cor-

responding points in the original distribution, on the left.

gradient orientation (mod π), while each end of a cluster cor-

responds to a gradient polarity (black/white vs. white/black).

Two methods of identifying these clusters are described below;

a principal component method, and a  method.

The principal component method begins with a double-angle

mapping of the data [38], which will be expressed as (ξ, η) 7→

(σ, τ). This mapping results in a single elongated cluster, each

end of which corresponds to a gradient orientation (mod π). A

real example of this mapping is shown in fig. 4.

The double-angle coordinates are obtained by applying the

trigonometric identities cos(2θ) = cos2 θ − sin2 θ and sin(2θ) =

2 sin θ cos θ to the gradients (3), so that

σxy ←
1

ρxy

(

ξ2xy − η
2
xy

)

and τxy ←
2

ρxy

ξxy ηxy (4)

where ρxy =

√

ξ2xy + η
2
xy

for all points at which the magnitude ρxy is above machine pre-

cision. Let the first unit-eigenvector of the (σ, τ) covariance

matrix be
(

cos(2φ), sin(2φ)
)

, which is written in this way so

that the angle φ can be interpreted in the original image. The

cluster-membership is now defined by the orthogonal projection

πxy =
(

σxy, τxy

)

·
(

cos(2φ), sin(2φ)
)

(5)

of the data onto this axis. It is now straightforward to classify

the gradient-vectors (ξxy, ηxy), as shown in fig. 4, according to a

threshold πmin;

κxy ←



























λ if πxy ≥ πmin

µ if πxy ≤ −πmin

∅ otherwise.

(6)

Hence the symbol ∅ is assigned to all strong gradients that are

not aligned with either axis of the board, as well as to all weak

gradients.

The above method is robust to moderate perspective effects,

because only the first principal component is needed, and this is

well-defined for any elongated distribution. However, in order

4

to include boards with extreme perspective distortion, an even

more robust  method can be used, as described below.

The RANSAC method is based on the fact that two lines through

the origin can be defined by two points; one on each line. These

two points are randomly sampled in the (ξ, η) gradient space,

and used to define two normal vectors (−ηλ, ξλ) and (−ηµ, ξµ).

The projections of the all (x, y) gradient points, onto each unit

vector, are defined as

πλxy =
(−ηλ, ξλ) · (ξxy, ηxy)

√

ξ2
λ
+ η2
λ

(7)

π
µ
xy =

(−ηµ, ξµ) · (ξxy, ηxy)
√

ξ2µ + η
2
µ

(8)

The gradients are are now classified, in relation to a slab of

thickness 2 × πmin around each line:

κxy ←



























λ if |πλxy| ≤ πmin and |π
µ
xy| > πmin

µ if |π
µ
xy| ≤ πmin and |πλxy| > πmin

∅ otherwise.

(9)

Points that are in both slabs (i.e. around the intersection) are

given the null label, which means that more points are excluded

as the two lines become more parallel. This has desirable effect

of automatically excluding more weak gradients as the perspec-

tive distortion increases. The quality of the classification is de-

fined as the number of non-null labels, and the best solution is

chosen, as usual, from the ensemble of samples.

In general, the  method is more robust that the the

principal component method; it does, however, have two draw-

backs. Firstly, it is necessary to set the number of random

samples to be drawn, which introduces an additional parameter.

Secondly, the final result of the calibration will not be exactly

repeatable, unless the same random-number generator and seed

are employed each time.

Suppose that the gradients have now been classified, using ei-

ther the principal component method or the  method, as

described above. The next task is to resolve the respective iden-

tities of the clusters, with respect to labels λ and µ. In principle,

the class that contains the greater number of gradients should

correspond to L, which was defined as the pencil containing

fewer lines. This is because, for a fronto-parallel board, the to-

tal lengths of the edges in L andM are proportional to ℓ(m−1)

and m(ℓ − 1) respectively, with ℓ < m. This prediction is un-

reliable, in practice, owing to foreshortening and other image-

effects. For this reason, the correspondence {λ, µ} ⇔ {L,M}

between labels and pencils will be resolved more robustly, in

section 2.5.

2.3. Local Coordinates

A coordinate system will now be constructed for each image

of the board. Recall from (2) that amplitude-image B typically

contains the board, as well as the person holding it. The very

low amplitudes Bxy ≈ 0 of the black squares tend to be char-

acteristic of the board itself (i.e. Bxy ≫ 0 for both the white

squares and for the rest of B). Hence a good estimate of the

board-centre can be obtained by normalizing B to the range

[0, 1] and then computing a centroid using weights (1 − Bxy).

The centroid, together with the angle φ from (5) defines the Eu-

clidean transformation E into local coordinates, centred on and

aligned with the board. From now on, unless otherwise stated,

it will be assumed that this simple transformation has been per-

formed.

Let (xκ, yκ, 1)⊤ be the local coordinates of given point, after

transformation by E, with the label κ inherited from κxy. Now,

by construction, any labelled point is hypothesized to be part of

L or M, such that that λ(xλ, yλ, 1)⊤ = 0 or µ(xµ, yµ, 1)⊤ = 0,

where λ and µ are the local coordinates of the relevant lines.

These lines can be expressed as

λ ≃ (−1, βλ, αλ) and µ ≃ (βµ, −1, αµ) (10)

with inhomogeneous forms xλ = αλ + βλyλ and yµ = αµ + βµxµ,

such that the slopes |βκ| ≪ 1 are bounded. In other words, the

board is axis-aligned in local coordinates, and the perspective-

induced deviation of any line is less than 45◦. Furthermore, if

the board is visible, then the intercepts |ακ| ≪
1
2
(X + Y) are

bounded in relation to the image size.

Recall from (1) that the vertices vi j of the board are computed

as the intersections of L with M. The resulting points can be

expressed in the original image coordinates as vi j ≃ E−1
(

λi ×

µ j

)⊤
, via the inverse transformation.

2.4. Hough Transform

The Hough transform, as used here, maps points from the

image to lines in the transform. In particular, points along a

line are mapped to lines through a point. This duality between

collinearity and concurrency suggests that a pencil of n image-

lines will be mapped to a line of n transform points, as in fig. 3.

The transform is implemented as a 2- histogram H(u, v),

with horizontal and vertical coordinates u ∈ [0, u1] and v ∈

[0, v1]. The point (u0, v0) = 1
2
(u1, v1) is the centre of the trans-

form array. Two transforms, Hλ and Hµ, will be performed, for

points labelled λ and µ, respectively. The Hough variables are

related to the image coordinates in the following way; let

u(x, y, v) = u0 + x − y(v − v0), and

uκ(x, y, v) =



















u(x, y, v) if κ = λ

u(y, x, v) if κ = µ
(11)

Here u(x, y, v) is the u-coordinate of a line (parameterized by v),

which is the Hough-transform of an image-point (x, y). The

Hough intersection point (u⋆κ , v
⋆
κ) is found by taking two points

(x, y) and (x′, y′), and solving uλ(x, y, v) = uλ(x′, y′, v), with xλ
and x′

λ
substituted according to (10). The same coordinates are

obtained by solving uµ(x, y, v) = uµ(x′, y′, v), and so the result

can be expressed as

u⋆κ = u0 + ακ and v⋆κ = v0 + βκ (12)

with labels κ ∈ {λ, µ} as usual. A peak at (u⋆κ , v
⋆
κ) evidently maps

to a line of intercept u⋆κ − u0 and slope v⋆κ − v0. Note that if the

5

perspective distortion in the images is small, then βκ ≈ 0, and all

intersection points lie along the horizontal midline (u, v0) of the

corresponding transform. The Hough intersection point (u⋆κ , v
⋆
κ)

can be used to construct an image-line λ or µ, by combining

(12) with (10), resulting in

λ←
(

−1, v⋆λ − v0, u⋆λ − u0

)

µ←
(

v⋆µ − v0, −1, u⋆µ − u0

)

.
(13)

The two Hough transforms are computed by the procedure in

fig. 5. Let Hκ refer to Hλ or Hµ, according to the label κ of

the point (x, y). For each accepted point, the corresponding line

(11) intersects the top and bottom of the (u, v) array at points

(s, 0) and (t, v1) respectively. The resulting segment, of length

w1, is evenly sampled, and Hκ is incremented at each of the

constituent points.

The procedure in fig. 5 makes use of the following functions.

Firstly, interpα(p, q), with α ∈ [0, 1], returns the convex combi-

nation (1−α)p+αq. Secondly, the ‘accumulation’ H ⊕ (u, v) is

equal to H(u, v)← H(u, v)+1 if u and v are integers. In the gen-

eral case, however, the four pixels closest to (u, v) are updated

by the corresponding bilinear-interpolation weights (which sum

to one). This weighting-scheme, combined with the large num-

ber of gradient-vectors that are processed, tends to produce a

relatively smooth histogram.

2.5. Hough Analysis

The local coordinates defined in sec. 2.3 ensure that the

two Hough transforms Hλ and Hµ have the same characteris-

tic structure. Hence the subscripts λ and µ will be suppressed

for the moment. Recall that each Hough cluster corresponds

to a line in the image space, and that a collinear set of Hough

clusters corresponds to a pencil of lines in the image space, as

in fig 3. It follows that all lines in a pencil can be detected si-

multaneously, by sweeping the Hough space H with a line that

cuts a 1- slice through the histogram.

Recall from section 2.4 that the Hough peaks are most likely

to lie along a horizontal axis (corresponding to a fronto-parallel

pose of the board). Hence a suitable parameterization of the

sweep-line is to vary one endpoint (0, s) along the left edge,

while varying the other endpoint (u1, t) along the right edge, as

in fig. 6. This scheme has the desirable property of sampling

more densely around the midline (u, v0). It is also useful to note

that the sweep-line parameters s and t can be used to represent

the apex of the corresponding pencil. The local coordinates p

and q are p ≃ (λs × λt)
⊤ and q ≃ (µs × µt)

⊤ where λs and λt

are obtained from (10) by setting (u⋆
λ
, v⋆
λ

) to (0, s) and (u1, t)

respectively, and similarly for µs and µt.

The procedure shown in fig. 6 is used to analyze the Hough

transform. The sweep-line with parameters s and t has the form

of a 1- histogram hst
κ (w). The integer index w ∈ (0 : w1) is

equal to the Euclidean distance |(u, v) − (0, s)| along the sweep-

line. The procedure shown in fig. 6 makes further use of the

interpolation operator that was defined in section 2.4. Each

sweep-line hst
κ (w), constructed by the above process, will con-

tain a number of isolated clusters:
∣

∣

∣clusters(hst
κ)
∣

∣

∣ ≥ 1. These

for (x, y) in (0 : X) × (0 : Y)

if κxy , ∅

κ ← κxy

s← uκ(x, y, 0)

t ← uκ(x, y, v1)

w1 ←
∣

∣

∣(t, v1) − (s, 0)
∣

∣

∣

for w in
(

0 : floor(w1)
)

Hκ ← Hκ ⊕ interp
w/w1

(

(s, 0), (t, v1)
)

end
endif

end

Figure 5: Left: Hough transform space. Right: Constructing the transform.

Each gradient pixel (x, y) labelled κ ∈ {λ, µ} maps to a line uκ(x, y, v) in trans-

form Hκ. The operators H⊕p and interpα(p, q) perform accumulation and linear

interpolation, respectively. See section 2.4 for details.

clusters are simply defined as runs of non-zero values in hst
κ (w).

The existence of separating zeros is, in practice, highly reliable

when the sweep-line is close to the true solution. This is sim-

ply because the Hough data was thresholded in (6), and strong

gradients are not found inside the chessboard squares. The rep-

resentation of the clusters, and subsequent evaluation of each

sweep-line, will now be described.

The label κ and endpoint parameters s and t will be sup-

pressed, in the following analysis of a single sweep-line, for

clarity. Hence let w ∈ (ac : bc) be the interval that contains the

c-th cluster in h(w). The score and location of this cluster are

6

for (s, t) in (0 : v1) × (0 : v1)

w1 =
∣

∣

∣(u1, t) − (0, s)
∣

∣

∣

for w in
(

0 : floor(w1)
)

(u, v)← interp
w/w1

(

(0, s), (u1, t)
)

hst
λ

(w)← Hλ(u, v)

hst
µ (w)← Hµ(u, v)

end

end

Figure 6: Left: Hough transform space. Right: Searching the transform. A line

hst
κ (w), with end-points (0, s) and (u1, t), is swept through each Hough transform

Hκ. A total of v1 × v1 1- histograms hst
κ (w) are computed in this way. See

section 2.5 for details.

defined as the mean value and centroid, respectively:

score
c

(h) =

∑bc

w=ac
h(w)

1 + bc − ac

(14)

wc = ac +

∑bc

w=ac
h(w)w

∑bc

w=ac
h(w)

(15)

More sophisticated definitions are possible, based on quadratic

interpolation around each peak. However, the mean and cen-

troid give similar results in practice. A total score must now

be assigned to the sweep-line, based on the scores of the con-

stituent clusters. If n peaks are sought, then the total score is

the sum of the highest n cluster-scores. But if there are fewer

than n clusters in h(w), then this cannot be a solution, and the

score is zero:

Σn(h) =



















∑n
i=1 score

c(i)
(h) if n ≤

∣

∣

∣clusters(h)
∣

∣

∣

0 otherwise
(16)

where c(i) is the index of the i-th highest-scoring cluster.

The optimal clusters are those in the sweep-line that maxi-

mizes (16). Now, restoring the full notation, the score of the

optimal sweep-line in the transform Hκ is

Σn
κ ← max

s, t
score

n

(

hst
κ

)

. (17)

One problem remains: it is not known in advance whether there

should be ℓ peaks in Hλ and m in Hµ, or vice versa. Hence

all four combinations, Σℓ
λ
, Σm
µ , Σℓµ, Σ

m
λ

are computed. The am-

biguity between pencils (L,M) and labels (λ, µ) can then be

resolved, by picking the solution with the highest total score:

(

L,M
)

⇔















(λ, µ) if Σℓ
λ
+ Σm

µ > Σ
ℓ
µ + Σ

m
λ

(µ, λ) otherwise.
(18)

Here, for example,
(

L,M
)

⇔ (λ, µ) means that there is a pencil

of ℓ lines in Hλ and a pencil of m lines in Hµ. The procedure in

(18) is based on the fact that the complete solution must consist

of ℓ + m clusters. Suppose, for example, that there are ℓ good

clusters in Hλ, and m good clusters in Hµ. Of course there are

also ℓ good clusters in Hµ, because ℓ < m by definition. How-

ever, if only ℓ clusters are taken from Hµ, then an additional

m − ℓ weak or non-existent clusters must be found in Hλ, and

so the total score Σℓµ + Σ
m
λ

would not be maximal.

It is straightforward, for each centroid wc in the optimal

sweep-line hst
κ , to compute the 2- Hough coordinates

(

u⋆κ , v⋆κ
)

← interp
wc/w1

(

(0, s), (u1, t)
)

(19)

where w1 is the length of the sweep-line, as in fig. 6. Each of

the resulting ℓm points are mapped to image-lines, according

to (13). The vertices vi j are then computed from (1). The or-

der of intersections along each line is preserved by the Hough

transform, and so the i j indexing is automatically consistent.

Finally, in order to minimize any effects of discretization, it

would be possible to perform quadratic (or other) interpolation

around the maximal sweep-line score, with respect to the end-

point parameters. In practice, owing to the high resolution of

the sweep-procedure around zero-slope (as described above),

this does not prove to be necessary.

2.6. Decision Functions

The analysis of section 2.5 returns estimated pencils (L,M),

even if the board is not visible in the image. Hence it is nec-

essary to evaluate the quality of the solution. One possibility

would be to test a statistic based on the scores in (18). However,

a more robust approach is to test whether the solution (L,M)

satisfies certain geometric constraints that were not used in the

estimation process.

There are, in practice, two types of mis-detections. In the first

case a minority of the lines are not aligned with the chessboard

pattern, and so the solution is corrupted. In the second case the

lines include an external edge of the chessboard pattern, and so

the entire solution is displaced. These two types of error, which

may co-occur, are addressed below.

Recall that vertex vi j is the intersection between lines λi and

µ j, as in (1). Corrupted estimates can be detected by noting that

cross ratios of distances between quadruples of vertices should

7

be near unity, given that the observations are projectively re-

lated to a regular grid [10, 24]. In practice, extremely foreshort-

ened boards cannot be detected (owing to limited resolution),

and so it suffices to use an affine test. In particular, for line λi,

consider the ratio of the vertex-intervals starting at positions j

and k:

F jk(λi) =
|vi(j+1) − vi j|

|vi(k+1) − vik |
. (20)

These ratios are tested along the first and last line in each pencil,

and so a suitable set of decision functions is

∣

∣

∣1 − F jk(λi)
∣

∣

∣ ≤ f for all i, j, k (21)

i = {1, ℓ}, j, k ∈ (1 : m − 1), j , k

for a small positive threshold f . The analogous tests are applied

to the other pencil, M. If any of the tests (21) are failed, then

the estimate (L,M) is rejected.

Displaced estimates can be determined as follows. Let w ∈ λi

be an image-point on the line segment between vertices vi1 and

vim that lies ‘inside’ the pencilM. If this segment is strictly in-

side the chessboard pattern, then there should be equal numbers

of black-white and white-black transitions across it. If, on the

other hand, the segment is along the perimeter of the pattern,

then the two types of transition will be very imbalanced, as the

black squares are ‘missing’ on one side of the perimeter. Let

(ξw, ηw) be the gradient at edge-point w, and let λ⋆ = (α, β, γ)

be the normalized line coordinates, such that α2 + β2 = 1. Now

the dot-product λ⋆(ξw, ηw, 0)⊤ is the projection of the gradient

onto the edge-normal at w, and so the amount of black-white

vs. white-black transitions can be measured by the ratio of the

summed positive and negative projections,

G(λi) =

∑k≤d
k=0

pos
(

λ⋆i (ξw, ηw, 0)⊤
)

∑k≤d
k=0

neg
(

λ⋆i (ξw, ηw, 0)⊤
)

where (22)

d = |vim − vi1| and w = interp
k/d

(vi1, vim). (23)

Here the function pos(x) returns x if x > 0, or zero otherwise,

and neg(x) returns |x| if x < 0, or zero otherwise. The ratio

G(λ) should be close to unity for all internal segments, and so

an appropriate set of decision functions is

∣

∣

∣1 −G(λi

)

∣

∣

∣ ≤ g for all i = 1 : ℓ (24)

where g is a small positive threshold. The same test is applied

to the j = (1 : m) segments between v1 j and vℓ j, in pencilM.

The thresholds f and g in tests (21) and (24) were fixed once

and for all in the experiments, such that no false-positive de-

tections (which are unacceptable for calibration purposes) were

made, across all data-sets. Furthermore, the same thresholds

were used for all cameras.

3. Results

The new method is evaluated in two ways. Firstly, in sec-

tion 3.1, the robustness of the gradient-labelling method to per-

spective distortion is investigated. Secondly, in section 3.2

the overall detection performance is compared, over a data-

set of several hundred real images, to the most commonly-used

(OpenCV) detection method.

It is important, at the outset, to clarify the nature of the eval-

uation. The ultimate objective of a board-detection algorithm,

for calibration purposes, is to detect as many boards as possible,

in the greatest variety of poses. In particular, good coverage of

the entire 3D scene-volume, by the board vertices, is required

for subsequent extrinsic calibration procedures. However, it is

also essential that the vertices be accurate, in the sense of ge-

ometric error; in particular, there must be no ‘false’ detections

or mis-labellings of the vertices. In practice, this means that

the parameters of any detection algorithm must be set conser-

vatively. Having done this, then any additional detection is ben-

eficial for subsequent extrinsic calibration, provided that it does

not increase the overall geometric error. The evaluation in 3.2

is based on large real-world calibration sets, which inevitably

contain many problematic images (including those in which the

board is not fully visible to one or more cameras). In order to

make a real evaluation, there was no attempt to avoid or subse-

quently remove these images from the data-sets.

3.1. Geometric robustness

This section investigates whether the method can reliably

identify two pencils of lines, in the presence of perspective dis-

tortion. In particular, it must be shown that the method does not

require the midlines of the two pencils to be orthogonal. Ide-

ally, the evaluation would be performed on a controlled image-

set, showing a board at all possible orientations. In practice, it is

very hard to obtain such an image-set, without using a mechani-

cal mounting for the board. However, it is possible to accurately

simulate the geometric effects of foreshortening, by applying a

2D homography to real image-data. This makes it straightfor-

ward to construct a uniform distribution of board orientations,

including all slants ϕ. Furthermore, each classified pixel, la-

belled κϕ, is in correspondence with the fronto-parallel ‘best

case’, labelled κ0. The latter can therefore be used as ground-

truth measurements for the evaluation, as explained below. This

procedure, importantly, allows us to isolate geometric effects

from sampling effects, which leads to a better understanding.

In more detail, a single fronto-parallel (zero slant) image is

processed as described in section 2.1, yielding a gradient vec-

tor (ξ0, η0, 1), and a label κ0 at each pixel. A rotation matrix

Rϕ = R
(

ϕ,w(ϑ)
)

R(ω,z) is then constructed, using angle-axis

factors R(·, ·). The rotation has the effect of slanting the board

by an angle ϕ, around an axis w(ϑ). This axis is perpendicular

to the optical axis z, with ϑ being the tilt angle. The second

factor, R(ω, z), is a cyclo-rotation around the optical axis z. The

important variable is the slant angle, ϕ, which is systematically

varied from zero (fronto-parallel) to 90◦. At each slant, the tilt

and cyclorotation angles ϑ and ω are sampled 100 times from

the uniform distribution on [0, 2π].

A homography Hϕ is now constructed from the rotation ma-

trix Rϕ, and applied to the gradient-vectors, so that (ξϕ, ηϕ, 1) =

(ξ0, η0, 1)H−1
ϕ . The transformed gradients are then re-classified,

and the ‘slanted’ label κϕ is compared to the ‘fronto-parallel’

8

0 44 88 132 176

14
4

10
8

72
36

0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

0 44 88 132 176

14
4

10
8

72
36

0

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

Figure 7: Example trials from the slant experiment. Top: A cyclo-rotation of

the original gradient-vectors, which are easily classified (except for saturated

highlight in the centre), as there is zero slant ϕ. Bottom: the classification is

more difficult at a slant of ϕ = 70◦. A total of 5000 gradient vectors were

sampled, but only the labelled pixels are shown. The grey rectangles are the

convex hulls of the 5000 samples. A total of 1200 trials were performed; the

results are shown in fig. 8.

label κ0, at each pixel. This can be visualized as a compari-

son between the two classifications in fig. 7. Consistency of the

slanted classification is defined as the proportion of unchanged

labels, over all edges. If δ(κϕ, κ0) is the indicator function that

is 1 if κϕ = κ0, and 0 otherwise, then

consistency =

∑

{κ0,∅} δ(κϕ, κ0)
∣

∣

∣{κ0 , ∅}
∣

∣

∣

where {κ0 , ∅} is the set of edge-pixels (i.e. large gradients),

and
∣

∣

∣{κ0 , ∅}
∣

∣

∣ is the number of pixels in this set. This statistic

is relatively strict, in that it ignores the easy task of classifying

the non-edge pixels, for which κ = ∅.

The results of the experiment are shown in fig. 8, from which

it can be seen that the labelling is robust to slants of more than

70◦. This finding validates the basic detection principle, in re-

lation to the geometry of perspective projection. However, in

this experiment, the low-level image-processing was performed

in the original fronto-parallel images. This was to avoid con-

founding geometric effects with sampling effects. A complete

evaluation, using a real calibration data-set, is performed in the

following section.

● ● ● ● ●
●

●

●
●

●

●

●

0 10 20 30 40 50 60 70 80 90

0.
6

0.
7

0.
8

0.
9

1.
0

Slant angle (degrees)

F
ro

nt
o−

pa
ra

lle
l c

on
si

st
en

cy

Figure 8: Edge-classification accuracy, over 1200 trials, as a function of slant-

angle. The labelling becomes less accurate as the foreshortening increases, and

eventually becomes undefined at 90◦ (when only the edge of the board can be

seen). The labelling is robust to slants of more than 70◦. The error bars show

±1 standard deviation per 100 trials; the variation is due to the random tilt-angle

on each trial.

3.2. Comparison with heuristic methods

The method was formally tested on five multi-view data-sets,

captured by Mesa Imaging Swiss-Ranger SR-4000  cameras

[19]. We used between two and four cameras per data-set (see

table 1), all performing simultaneous capture. The sizes u1 and

v1 of the Hough array were set to 1.5 times the average dimen-

sion, (X + Y)/2, of the input images.

We compare our results to the widely-used OpenCV detector

[15]. Both the OpenCV and Hough detections were refined by

the OpenCV subpixel routine, which adjusts the given point to

minimize the discrepancy with the image-gradient around the

chequerboard corner [15, 16]. Specifically, if the true vertex

has coordinates (x0, y0), and (ξxy, ηxy) is the image-gradient at a

nearby point (x, y), then

(ξxy, ηxy) · (x − x0, y − y0) ≈ 0. (25)

This is because if the magnitude of (ξxy, ηxy) is not negligible,

then (x, y) must be on a black-white edge. Hence (ξxy, ηxy) must

be perpendicular to the edge, while (x − x0, y − y0) must be

parallel to it.

Table 1 shows the number of true-positive detections by

each method, as well as the number of detections common

to both methods. The geometric error is the discrepancy

from the ‘ideal’ board, after fitting the latter by the opti-

mal homography (initialized by the DLT method, and refined

by Levenberg-Marquardt optimization [10]). This is by far

the most useful measure, as it is directly related to the role

of the detected vertices in subsequent calibration algorithms

(e.g. bundle-adjustment [10]), and also has a simple interpre-

tation in pixel-units. The photometric error is the RMS gradi-

ent residual (25) computed over a 5 × 5 window. This measure

is worth considering, because it is the criterion minimized by

the subpixel optimization, but it is much less useful than the

geometric error.

9

Number detected Geometric error Photometric error

Set / Camera OCV HT Both OCV HT OCV HT

1 / 1 19 34 13 0.2263 0.1506 0.0610 0.0782

1 / 2 22 34 14 0.1819 0.1448 0.0294 0.0360

1 / 3 46 33 20 0.1016 0.0968 0.0578 0.0695

1 / 4 26 42 20 0.2044 0.1593 0.0583 0.0705

2 / 1 15 27 09 0.0681 0.0800 0.0422 0.0372

2 / 2 26 21 16 0.0939 0.0979 0.0579 0.0523

2 / 3 25 37 20 0.0874 0.0882 0.0271 0.0254

3 / 1 14 26 11 0.1003 0.0983 0.0525 0.0956

3 / 2 10 38 10 0.0832 0.1011 0.0952 0.1057

3 / 3 25 41 21 0.1345 0.1366 0.0569 0.0454

3 / 4 18 23 10 0.1071 0.1053 0.0532 0.0656

4 / 1 16 21 14 0.0841 0.0874 0.0458 0.0526

4 / 2 45 53 29 0.0748 0.0750 0.0729 0.0743

4 / 3 26 42 15 0.0954 0.0988 0.0528 0.0918

5 / 1 25 37 18 0.0903 0.0876 0.0391 0.0567

5 / 2 20 20 08 0.2125 0.1666 0.0472 0.0759

5 / 3 39 36 24 0.0699 0.0771 0.0713 0.0785

5 / 4 34 35 19 0.1057 0.1015 0.0519 0.0528

6 / 1 29 36 20 0.1130 0.1203 0.0421 0.0472

6 / 2 35 60 26 0.0798 0.0803 0.0785 0.1067

Mean: 25.75 34.8 16.85 0.1157 0.1077 0.0547 0.0659

Table 1: Results over six multi- camera-setups. Total detections for the OpenCV (N = 515) vs. Hough Transform (N = 696) method are shown, as well as the

accuracy of the estimates. Geometric error is in pixels. The chief conclusion is that the HT method detects 35% more boards, and slightly reduces the average

geometric error. The increased number and variety of detected boards is very beneficial for extrinsic calibration procedures, which require the input-points to be

spread throughout the entire scene-volume.

The proposed Hough-based method detects 35% more

boards than the OpenCV method, on average. There is also

a slight reduction in average geometric error, even though the

additional boards were more problematic to detect. Even if

OpenCV had detected these boards, it is likely that their inclu-

sion would have increased the geometric error even further. It

may also be noted that the new method is dramatically better in

five cases, in the sense that it detects an additional ten or more

boards, while also reducing the geometric error. These results

should not be surprising, because the new method uses a very

strong model of the global board-geometry.

There were zero false-positive detections (100% precision),

as explained in sec. 2.5. The number of true-negatives is not

useful here, because it depends largely on the configuration of

the cameras (i.e. how many images show the back of the board).

The false-negatives do not provide a very useful measure ei-

ther, because the definition of these would depend on an arbi-

trary judgement about which of the very foreshortened boards

‘ought’ to have been detected (i.e. whether an edge-on board is

‘in’ the image or not). It is emphasized that the test-data are ac-

tual calibration sets, containing many problematic images, and

so the evaluation is based in a real-world application. Some ex-

ample detections are shown in figs. 9–11, including a variety of

difficult cases.

4. Discussion

A new method for the automatic detection of calibration grids

in time-of-flight images has been described. The method is

Figure 9: Example detections in 176 × 144  amplitude images. The yellow

dot (one-pixel radius) is the estimated centroid of the board, and the attached

thick translucent lines are the estimated axes. The board on the right, which is

relatively distant and slanted, was not detected by OpenCV.

Figure 10: Example detections (cf. fig. 9) showing significant perspective ef-

fects.

based on careful reasoning about the global geometric struc-

ture of the board, before and after perspective projection. The

10

Figure 11: Example detections (cf. fig. 9) showing significant scale changes.

The board on the right, which is in an image that shows background clutter and

lens distortion, was not detected by OpenCV.

method detects many more boards than existing heuristic ap-

proaches, which results in a larger and more complete data-set

for subsequent calibration algorithms. This is achieved while

also reducing the overall geometric error. The increased num-

ber and variety of detections is of great benefit to subsequent

extrinsic calibration procedures.

4.1. Future work

The Hough transform was developed, in section 2.4, as a

dense 2- array. This presentation has the advantage of mak-

ing the method easy to visualize and implement. However, it

also raises issues of resolution and scalability [39, 40]. In par-

ticular, the implementation in section 2.4 is inefficient, both in

space and time. These issues could be addressed by the use

of a randomized Hough transform [41]. This approach avoids

building a dense transform array, in favour of a dynamic data

structure [42]. Future work will examine the advantages of

randomized methods, in relation to the increased complexity

of implementation. Another possible direction for future work

would be to perform a global refinement of the line-pencils, in

the geometric parameterization, but by minimizing a photomet-

ric cost-function with respect to the original images.

In a more general view, the present work suggests that it

would be useful to have a data-set of calibration images with

known 3D poses. These could, for example, be acquired using

a robotic mounting of the physical board. This would enable

a fine-grained comparison of algorithms, thereby encouraging

future work in this area.

References

[1] M. Hansard, S. Lee, O. Choi, R. Horaud, Time-of-Flight Cameras: Prin-

ciples, Methods and Applications, Springer, 2013.

[2] J. M. Dubois, H. Hügli, Fusion of Time of Flight Camera Point Clouds,

ECCV Workshop on Multi-Camera and Multi-modal Sensor Fusion Al-

gorithms and Applications (2008).

[3] I. Schiller, C. Beder, R. Koch, Calibration of a PMD camera using a planar

calibration object together with a multi-camera setup, in: Int. Arch. Soc.

Photogrammetry, Remote Sensing and Spatial Information Sciences XXI,

2008, pp. 297–302.

[4] J. Zhu, L. Wang, R. G. Yang, J. Davis, Fusion of time-of-flight depth and

stereo for high accuracy depth maps, in: Proc. CVPR, 2008, pp. 1–8.

[5] U. Hahne, M. Alexa, Depth Imaging by Combining Time-of-Flight and

On-Demand Stereo, in: Proc. DAGM Workshop on Dynamic 3D Imag-

ing, 2009, pp. 70–83.

[6] R. Koch, I. Schiller, B. Bartczak, F. Kellner, K. Köser, MixIn3D: 3D

Mixed Reality with ToF-Camera, in: Proc. DAGM Workshop on Dy-

namic 3D Imaging, 2009, pp. 126–141.

[7] A. Kolb, E. Barth, R. Koch, R. Larsen, Time-of-Flight Cameras in Com-

puter Graphics, Computer Graphics Forum 29 (1) (2010) 141–159.

[8] M. Hansard, R. Horaud, M. Amat, S. Lee, Projective Alignment of Range

and Parallax Data, in: Proc. IEEE CVPR, 2011, pp. 3089–3096.

[9] Z. Zhang, A flexible new technique for camera calibration, IEEE Trans.

PAMI 22 (11) (2000) 1330–1334.

[10] R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision,

Cambridge University Press, 2000.

[11] V. Douskos, I. Kalisperakis, G. Karras, E. Petsa, Fully Automatic Camera

Calibration using Regular Planar Patterns, in: Int. Arch. Soc. Photogram-

metry, Remote Sensing and Spatial Information Sciences, Vol. 37(5),

2008, pp. 21–26.

[12] C. Harris, M. Stephens, A combined corner and edge detector, in: Proc.

4th Alvey Vision Conference, 1988, pp. 147–151.

[13] L. Krüger, C. Wöhler, A. Würz-Wessel, F. Stein, In-factory calibration of

multiocular camera systems, in: SPIE Photonics Europe, 2004, pp. 126–

137.

[14] Z. Wang, W. Wu, X. Xu, D. Xue, Recognition and location of the in-

ternal corners of planar checkerboard calibration pattern image, Applied

Mathematics and Computation 185 (2) (2007) 894–906.

[15] G. Bradski, A. Kaehler, Learning OpenCV, O’Reilly, 2008.

[16] A. Datta, K. Jun-Sik, T. Kanade, Accurate camera calibration using iter-

ative refinement of control points, in: Workshop on Visual Surveillance,

Proc. ICCV 2009, 2009, pp. 1201–1208.

[17] M. Lindner, I. Schiller, A. Kolb, R. Koch, Time-of-flight sensor calibra-

tion for accurate range sensing, Computer Vision and Image Understand-

ing 114 (12) (2010) 1318–1328.

[18] B. Buttgen, P. Seitz, Robust optical time-of-flight range imaging based

on smart pixel structures, IEEE Transactions on Circuits and Systems I:

Regular Papers 55 (6) (2008) 1512–1525.

[19] Mesa Imaging AG, Swiss Ranger, http://www.mesa-imaging.ch/

(2010).

[20] S. Foix, G. Alenya, C. Torras, Lock-in Time-of-Flight (ToF) Cameras: A

Survey, IEEE Sensors 11 (9) (2011) 1917–1926.

[21] S.-J. Kim, J. D. Kim, B. Kang, K. Lee, A CMOS image sensor based

on unified pixel architecture with time-division multiplexing scheme for

color and depth image acquisition, IEEE Journal of Solid-State Circuits

47 (11) (2012) 2834–2844.

[22] C. Niclass, M. Soga, H. Matsubara, S. Kato, M. Kagami, A 100-m range

10-frame/s 340 96-pixel time-of-flight depth sensor in 0.18-CMOS, IEEE

Journal of Solid-State Circuits 48 (2) (2013) 559–572.

[23] J.-E. Ha, Automatic detection of calibration markers on a chessboard,

Optical Engineering 46 (10) (2007) 107203.

[24] J.-E. Ha, Automatic detection of chessboard and its applications, Optical

Engineering 48 (6) (2009) 067205.

[25] S. T. Barnard, Interpreting perspective images, Artificial Intelligence 21

(1983) 435–462.

[26] J. A. Shufelt, Performance evaluation and analysis of vanishing point de-

tection techniques, IEEE Transactions on Pattern Analysis and Machine

Intelligence 21 (3) (1999) 282–288.

[27] L. Quan, R. Mohr, Determining perspective structures using hierarchical

Hough transform, Pattern Recognition Letters 9 (4) (1989) 279–286.

[28] J. Košecká, W. Zhang, Video compass, in: European Conference on Com-

puter Vision, Springer, 2006, pp. 476–490.

[29] R. Toldo, A. Fusiello, Robust multiple structures estimation with j-

linkage, in: European Conference on Computer Vision, Springer, 2008,

pp. 537–547.

[30] J. P. Tardif, Non-iterative approach for fast and accurate vanishing point

detection, in: IEEE International Conference on Computer Vision, 2009,

pp. 1250–1257.

[31] M. Antunes, J. P. Barreto, A global approach for the detection of vanish-

ing points and mutually orthogonal vanishing directions, in: IEEE Con-

ference on Computer Vision and Pattern Recognition, 2013, pp. 1336–

1343.

[32] J. Illingworth, J. Kittler, A survey of the Hough transform, Computer

Vision, Graphics and Image Processing 44 (1988) 87–116.

[33] F. Bukhari, M. Dailey, Robust radial distortion from a single image, in:

Proc. Int. Conf. on Advances in Visual Computing, 2010, pp. 11–20.

11

http://www.mesa-imaging.ch/

[34] D. Gonzalez-Aguilera, J. Gomez-Lahoz, P. Rodriguez-Gonzalvez, An au-

tomatic approach for radial lens distortion correction from a single image,

IEEE Sensors 11 (4) (2011) 956–965.

[35] R. Melo, M. Antunes, J. Barreto, G. Falcao, N. Gonçalves, Unsupervised

intrinsic calibration from a single frame using a plumb-line approach, in:

IEEE International Conference on Computer Vision, 2013, pp. 537–544.

[36] A. de la Escalera, J. Armingol, Automatic Chessboard Detection for In-

trinsic and Extrinsic Camera Parameter Calibration, Sensors 10 (2010)

2027–2044.

[37] T. Tuytelaars, M. Proesmans, L. V. Gool, The Cascaded Hough Trans-

form as Support for Grouping and Finding Vanishing Points and Lines,

in: Proc. International Workshop on Algebraic Frames for the Perception-

Action Cycle, 1997, pp. 278–289.

[38] G. Granlund, In search of a general picture processing operator, Computer

Graphics and Image Processing 8 (1978) 155–173.

[39] M. Zhang, On the discretization of parameter domain in hough transfor-

mation, in: Proc. Int. Conf. on Pattern Recognition (ICPR), 1996, pp.

527–531.

[40] L. Guo, O. Chutatape, Influence of discretization in image space on hough

transform, Pattern Recognition 32 (4) (1999) 635–644.

[41] H. Kälviäinen, P. Hirvonen, L. Xu, E. Oja, Probabilistic and non-

probabilistic Hough transforms: overview and comparisons, Image and

Vision Computing 13 (4) (1995) 239–252.

[42] L. Xu, E. Oja, P. Kultanen, A new curve detection method: Randomized

hough transform (rht), Pattern Recognition Letters 11 (5) (1990) 331–338.

12

