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Handcrafted Inversions Made Operational

on Operational Semantics

Jean-François Monin1,2 and Xiaomu Shi1

1 Université de Grenoble 1 - VERIMAG
2 CNRS - LIAMA

Abstract. When reasoning on formulas involving large-size inductively
defined relations, such as the semantics of a real programming language,
many steps require the inversion of a hypothesis. The built-in “inversion”
tactic of Coq can then be used, but it suffers from severe controllability,
maintenance and efficiency issues, which makes it unusable in practice
in large applications.

To circumvent this issue, we propose a proof technique based on the
combination of an antidiagonal argument and the impredicative encoding
of inductive data-structures. We can then encode suitable helper tactics
in LTac, yielding scripts which are much shorter (as well as corresponding
proof terms) and, more importantly, much more robust against changes
in version changes in the background software. This is illustrated on
correctness proofs of non-trivial C programs according to the operational
semantics of C defined in CompCert.

1 Introduction

The work described here is motivated by an experiment reported in [3,14], called
SimSoc-Cert (a certified simulator of Systems on Chips) where we develop proofs
of C programs using the operational semantics of a large subset of the C lan-
guage as defined in the CompCert project [6]. An important characteristic of our
framework is the large complexity of the specification, driving us to use powerful
features such as higher-order functions, dependent types, modules, not only for
convenience, but in order to keep the specification as readable and reusable as
possible. Still, its size is rather large by force, since it includes the behavior of
several commercial processors (currently: ARM and SH4). In such a framework,
there is little hope for full automation. Proofs are performed by alternating clues
given by the human user and tedious steps that are expected to be automated.
Though all this is well-known, the situation can become very tricky when au-
tomated steps produce goals with many new variables and hypotheses in the
environment. In an interactive setting, their names can be refered to later in
the script. This issue cannot be overlooked, despite the lack of a nice theory
on massive names management – up to our knowledge. And it actually occurs
with SimSoc-Cert, because proofs rely heavily on inversion steps on hypotheses
relating memory states of the program, according to a large inductive transi-
tion relation which is the heart of the operational semantics of C defined in
CompCert.
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In a few words, an inversion is a kind of forward reasoning step, which allows
us to extract all useful information contained in a hypothesis. It is nothing but a
case analysis on a carefully prepared goal (more detail to come in Section 2). The
practical need for automating inversion has been identified many years ago and
most proof assistants (Isabelle, Coq, Matita,...) provide an appropriate mecha-
nism. The first implementations for Coq and LEGO are analyzed and explained
in [5] for Coq and [7] for LEGO. Since then, the main tool available to the Coq
user is a tactic called inversion which, basically performs a case analysis over
a given hypothesis according to its specific arguments, removes absurd cases,
introduces relevant premises in the environment and performs suitable substitu-
tions in the whole goal. This tactic works remarkably well, though it fails in rare
intricate cases, as reported in mailing lists (see also Section 3.5). An additional
approach called BasicElim was proposed in [8]. It is implemented in Matita [13],
for instance. BasicElim is available in Coq as well.

However, the price to pay for the generality of inversion and BasicElim
is a high complexity of underlying proof-terms. Does it reflect an unnecessar-
ily complex formalization of a (at first sight) rather simple idea? A practical
consequence is that unpleasantly heavy proof terms can unexpectedly occur in
functions defined in interactive mode. For developments which make an inten-
sive use of inversion, such as SimSoc-Cert, the evaluation of scripts is painfully
slowed down.

However, the abovementioned issue on name management turns out to be still
much more important: hardly controlled names are introduced in the environ-
ment. This would not be an issue if we don’t see them, e.g., if the generated goals
can be automatically discharged. But this is hopeless when dealing with complex
specifications, as in our case. In general, the sequel of the script refers to gener-
ated hypotheses. Typically, introduced hypotheses could be inverted again, and
so on. This poses a very serious problem of robustness: updating the inductive
relation or even minor modifications in another part of the development may re-
sult in a complete renaming inside a proof script, which has then to be debugged
line by line. In the previous stage of our work reported in [14], we could perform
a proof on a single instruction of the ARM processor. So in theory, everything
was solved. However, the number of inversion steps was so large this proof could
not survive the various updates of Coq and CompCert.

The available version of inversion where explicit names can be given in the
script (inversion... as) is better for robustness, but too heavy for our needs:
each inversion would require the introduction of many (often more than ten)
additional names. BasicElim raises similar issues, though its behaviour is more
regular.

In order to get scripts which are both robust and much shorter, we want to
provide programmable inversion tactics, requiring only a few explicit names. To
this effect, we propose a handcrafted approach to inversion. The initial idea for
this inversion was exposed in [9] (and is recalled here in Section 3.2) but, in
order to be general enough, it had to be revisited with inspiration coming from
the impredicative encoding of inductive datatypes.
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The concrete setting considered here is the Coq proof assistant, but the tech-
nique can be adapted to any proof assistant based on the Calculus of Inductive
constructions or a similar type theory, such as LEGO or Matita.

The rest of the paper is organized as follows. Section 2 recalls the basics on
inversion. Section 3 explains our technique for performing inversions. Section 4
contains a summary of the application to SimSoC-cert. We conclude in Section 5
with a comment on our achievements and some perspectives.

2 Inversion

Type-theoretic settings such as Coq [15,2,4] offer two elementary ways of con-
structing new objects: functions and inductive types1. For instance, even Peano
natural numbers can be inductively characterized by the following two rules:

E0
even i 0

even i n
E2

even i (S (S n))

Rules E0 and E2 serve as canonical justifications for even i, they are called the
constructors of the inductive definition.

Now, assume a hypothesis H claiming that even i (S (S (S x))) for some
natural number x. Then, by looking at the definition of even i, we see that only
E2 could justify H , and we can conclude that even i (S x). Similarly, even i 1
can be considered as an absurd hypothesis, since (S 0) matches neither 0 nor (S
(S n)), none of the two possible canonical ways of proving even i, namely E0
and E2 can be used. Such proof steps are called inversions, because they use
justifications such as E0 and E2 in the opposite way, i.e., from their conclusion
to their premises. Note that even i 3, even i 5, etc. do not immediately yield
the contradiction by inversion. However, by iterating the first inversion step, we
eventually get even i 1 and then the desired result using a last inversion. This
illustrates that inversion is closer to case analysis than to induction.

Indeed, as we will see below, inversion can be decomposed into elementary
proof steps, where the key step is a primitive case analysis on the considered
inductive object (the hypothesis H , in our previous example). However, this
decomposition is very often far from trivial because, in the general case, rules
may include several premises, premises and conclusions may have several argu-
ments and some of these arguments can be shared. Still, inversion turns out to
be extremely useful in practice. Well-known instances are related to program-
ming languages, whose semantics is described using complex inductively defined
relations.

Note that it may be worth considering a (recursive) function for defining a
predicate, rather than an inductive relation. For instance, in Coq syntax, an
alternative way to specify even numbers is as follows:

1 Co-inductive types are available as well. However, this paper does not depend on
issues related to finiteness of computations: what is said about inductive types holds
as well for co-inductive types.
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Fixpoint even f (n: nat) : Prop :=
match n with

| O ⇒ True
| 1 ⇒ False
| S (S n) ⇒ even f n
end.

Here True denotes a trivially provable proposition, and False denotes an absurd
proposition. Using even f is much simpler in the previous situations: for instance,
even f (S (S (S x))) just reduces to even f (S x) using computation. In other
words, computation provides inversion for free. Therefore, one may wonder why
we should bother with inductively defined relations. Two kinds of answers can
be given.

One of them is that an inductive definition allows us to focus exactly on the
relevant values whereas, with functional definitions, we have to deal with the full
domain, which can be much bigger in general. In our example above, suppose
that we want to prove a statement such as ∀n, even n ⇒ P n. We can always
attempt an induction on n, but this strategy forces to reason on all numbers,
including odd numbers. If even is the recursive function above even f, there is
no other option. However, using even i, we have the additional opportunity to
make an induction on (the shape of) even i n, without needing to bother about
odd numbers.

Another issue is that it is not always convenient or even possible to provide
a functional definition of a predicate. Whenever possible, an n-ary relation R
on A1 × . . . An, is advantageously modeled by a function from A1, . . . An−1 to
An. But it requires R to be functional (deterministic) and moreover, in type-
theoretical settings such as CIC, to be total. If the relation is non-deterministic,
we still can try to define it by a function returning either True or False, as is
the case for even f ; this essentially amounts to providing a decision procedure
for the intended predicate2. This is not always possible and, even if we can find
such an algorithm, it may be hindered by undesired encoding tricks, which will
induce additional complications in proofs. Moreover, a requirement of formal
methods expresses that high-level definitions and statements should be as clear
as possible in order to be convincing. The inductive style is not always better than
the functional style, but it is often enough the case so that we cannot ignore it.
For technical reasons, it is sometimes worth considering a functional version and
an inductive version of the same notion. Even if the functional version is much
better at inversion-like proof steps, the two versions have to be proved equivalent
and there, the need for inverting the inductive version almost inevitably shows
up.

Inductive relations are commonly used for defining the operational semantics
of programming languages, either in small-step or in big-step style [11]. Such
semantics define transitions between states, language constructs and, very often,

2 Note that a 1-ary relation P on A1 is isomorphic to a binary relation on 1 × A1,
where 1 is a type with exactly one inhabitant. If P holds for at least two values on
A1, it can be clearly considered as a non-deterministic function from 1 to A1.
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additional arguments such as input/output events. A tutorial example of a toy
(but Turing-complete) language formally defined in Coq along these lines is
given in [12] and routinely used as a teaching support in many universities. The
Compcert project [6] is of course a much more involved example.

3 A Handcrafted Inversion

As noticed above, the heart of inversion is a suitable pattern matching on the
hypothesis to be analyzed. With dependent types, it is possible for different
branches to return a result whose type depends on the constructor. We make a
systematic use of this feature: our key ingredient is a diagonalization function
diag, which will be used for specifying the type returned on each branch. The
exact shape of diag range from very simple to somewhat elaborated according
to the goal at hand.

We recall the basics on dependent pattern matching, then we successively con-
sider three situations, corresponding to increasingly complex variants of diag. In
the two first situations, we consider inductive predicates with exactly one argu-
ment, for simplicity. The first situation is when all cases are absurd. The second
is when a case is successful (or several cases) and we need to extract the informa-
tion contained in successful cases, making new hypotheses in the environment.
Then we show how to deal with additional arguments, so that constraints com-
ing from the conclusion have to be propagated on the new hypotheses. Finally,
we consider more elaborate dependent types and show how our technique works
on a case where inversion fails.

3.1 Dependent Pattern Matching

To start with, let us take again the example of even numbers. Here is the corre-
sponding Coq inductive definition.

Inductive even i : nat → Prop :=
| E0 : even i 0
| E2 : ∀ n, even i n → even i (S (S n)).

We see that each rule is given by a constructor in a dependent data type – also
called an inductive predicate or relation because its sort is Prop. Therefore, the
elementary way to decompose an object of type even i n is to use dependent
pattern matching. This is already done by primitive tactics of Coq such as case
and destruct, which turn out to be powerful enough in many situations, when
a condition is satisfied: the conclusion of the current goal fits all arguments of
the hypothesis to be analyzed by pattern matching.

Let us first illustrate dependent pattern matching on even numbers. Consider
a proof PE of type even i n for some natural number n. For each possible
constructor, E0 or E2 , we provide a proof term, respectively tE0 and tE2. As
usual, this term may depend on the arguments of the corresponding constructor,
none for E0 and, say x and ex for E2 . More importantly for us, tE0 and tE2
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may have different types : the type P n of the whole expression depends on n; in
the first branch, the type of tE0 is P 0 and in the second branch, the type of tE2

is P (S (S x)). Therefore, the syntax of the match construct contains a return

clause with the expected type of the result P n as an argument; moreover, there
is also an in clause for the type of PE which binds n:

match PE in even i n return P n with

| E0 ⇒ tE0

| E2 e ex ⇒ tE2

end

Most of the time, Coq users do not need to go to this level of detail: in interactive
proof mode, if n and P n are clear from the context, case PE will do the job.
More precisely, if we have an hypothesis H of type even i n and a desired
conclusion of type P n, case H will construct a proof term having the previous
shape and answer with two new subgoals: one for P 0 and one for P (S (S x)),
with even i x as an additional assumption.

As a last remark, let us recall that an inductive type may have two kinds of
arguments. We don’t care about arguments which are “fixed” for all construc-
tors: they are not even considered in pattern matching. In Coq they are called
parameters. The other arguments are called indexes. For example, even i has
one index and no parameter.

3.2 Auxiliary Diagonalization Function

More work is needed precisely when there is no obvious relationship between the
conclusion and the hypothesis to be analyzed. This happens in particular whenH
is absurd: the goal should be discharged whatever is its conclusion. This situation
is covered as follows: the conclusion is converted to an expression diag V , where
V is a value coming from H and diag a suitable diagonal function, such that
the dependent case analysis on H provides only trivial subgoals. For example,
assume that we want to conclude 4 = 7 from the hypothesis H : even i 1. Our
diagonal function is then defined as follows.

diag x := match x with 1 ⇒ 4 = 7 | ⇒ True end

Then the conclusion is converted to diag 1, and the case analysis on H auto-
matically provides two subgoals diag 0 and diag (S (S y)) for an arbitrary even
natural number y. Each of these goals reduce to True, and we are done. The
proof term behind this reasoning is very short (I is the standard proof of True):

match H in even i n return diag n with E0 ⇒ I | E2 ⇒ I end

Such functions were already introduced in [9], but they work well only for han-
dling absurd hypotheses. For instance, the examples presented below are out
of reach of [9]. In order to explain how to extract information from satisfiable
hypotheses, we start with an obvious generalization of the previous function for
inverting absurd hypotheses.
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3.3 Handling Successful Cases

A first easy improvement makes diag independent from the conclusion. To this
effect, we replace it with (∀X,X) in the first branch of diag. In our previous
example, this yields

diag x := match x with 1 ⇒ ∀ (X : Prop), X | ⇒ True end

Then the previous proof term (match H in even i n return diag n with 1
. . .) has the type ∀X,X and then can be successfully applied to any current
conclusion. Alternatively, we can define a general function as follows:

Definition pr 1 {n} (en: even i n) :=
let diag x := match x with 1 ⇒ ∀ (X : Prop), X | ⇒ True end in

match en in even i n return diag n with E0 ⇒ I | ⇒ I end.

Next consider the following theorem:

∀ n m, even i n → even i (n+m) → even i m.

The proof is by induction on even i n. In the inductive step, we have to prove
even i m from the induction hypothesis even i (n+m) → even i m and a new
hypothesis H : even i (S (S (n+m))). Intuitively, we want to invert H in order
to push even i (n+m) in the environment. We can then adapt pr 1 as follows:

Definition premises E2 {n} (en: even i n) :=
let diag x :=
match x with

| S (S y) ⇒ ∀ (X : Prop), (even i y → X ) → X
| ⇒ True

end in

match en in even i n return diag n with

| E2 p e ⇒ fun X k ⇒ k e
| ⇒ I

end.

Then, applying premises E2 toH yields a function in continuation passing style.
Its type parameter X is automatically identified to the conclusion even i m,
while y is bound to n+m, so that we get a new goal even i(n+m) → even i m.
That is, we have exactly the expected inversion. Functions such as pr 1 and
premises E2 can be seen as inversion lemmas, but note that their type is the
dependent type expressed by their own diag.

More generally, let us then invert an hypothesis H having the type AP where
A(u) is an inductive type with index u : U and P : U is an expression made
of constructors in the type U . Given a constructor of type ∀p, A p, where p is
a telescope we proceed similarly: the match of diag has a first branch filtering
P and returning ∀X : Prop, (∀p, X) → X . If n constructors are possible for
AP , say respectively C1 : ∀p1, AP , . . ., and Cn : ∀pn, AP , the inverting lemma
corresponding to A P will be:

Definition premises Ap {u} (a: A u) :=
let diag x :=
match x with

| P ⇒ ∀ (X : Prop), (∀p1, X) → . . . (∀pn, X) → X
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| ⇒ True
end in

match a in A p return diag p with

| C1 e1 ⇒ fun X k1... kn ⇒ k1 e1

...
| Cn en ⇒ fun X k1... kn ⇒ kn en

| ⇒ I
end.

Remark the close relationship with the impredicative encoding of data-types in
system F.

3.4 Dealing with Constrained Arguments

The next stage to be considered is the case of an inductive type with more
than one index. This raises new issues, because additional identities between
arguments of the premises or the conclusion of a constructor may occur. This
happens routinely in the inductive definitions for the operational semantics of C
provided by CompCert. In order to explain the problems and how to deal with
them in our framework, we introduce a toy language, together with an inductively
defined evaluation rule eval having two indexes: the first one is the input type tm,
tm const and tm plus are the expected cases in pattern matching; the second
index is an output of type val, which is either nat or bool.

Inductive tm : Type :=
| tm const : nat → tm
| tm plus : tm → tm → tm.

Inductive val : Type :=
| nval : nat → val
| bval : bool → val.

Inductive eval : tm → val → Prop :=
| E Const : ∀ n,

eval (tm const n) (nval n)
| E Plus : ∀ t1 t2 n1 n2,

eval t1 (nval n1 ) → eval t2 (nval n2 ) →
eval (tm plus t1 t2 ) (nval (plus n1 n2 )).

In constructor E Plus, the two premises share the variables t1, t2, n1, n2 with
the conclusion. If we use the last solution with continuation passing style, as
it is presented above, we are able to keep the premises but the relationship
between the output values as specified in the inductive definition will be lost in
the generated subgoal. This issue is handled using an additional argument to
X corresponding to the second index of the inductive relation. The function for
extracting the premises of E Plus is:

Definition pr plus 1 {t} {v} (e: eval t v) :=
let diag t v :=
match t with

| tm plus t1 t2 ⇒ ∀ (X :val → Prop),
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(∀ n1 n2, eval t1 (nval n1 ) → eval t2 (nval n2 ) → X (nval (plus n1 n2 )))
→ X v

| ⇒ True
end in match e in (eval t v) return diag t v with

| E Plus n1 n2 H1 H2 ⇒ (fun X k ⇒ k n1 n2 H1 H2 )
| ⇒ I

end.

Now, consider the following examples.

Lemma ex1 : ∀ v, eval (tm plus (tm const 1) (tm const 0)) v → v = nval 1.
Lemma ex2 : ∀ n, eval (tm plus (tm const 1) (tm const 0)) (nval n) → n = 1.

In ex1, by applying pr plus 1, v will be equated to nval (plus n1 n2) according
to the rule specified by E plus. In ex2, we need to analyze at the same time
the two arguments of eval. The corresponding premises are extracted using a
function pr plus 1 2 having the same body as pr plus 1, but whose type is:

match t, v with

| tm plus t1 t2, nval n ⇒ ∀ (X :nat → Prop),
(∀ n1 n2, eval t1 (nval n1 ) → eval t2 (nval n2 ) → X (plus n1 n2 )) → X n

| , ⇒ True
end.

A similar situation happens with E Const in the two previous examples.
Defining an inverting function for each constructor is most convenient for

debugging. However the method is flexible and several such functions can be
merged. In particular, an elegant alternative3 is to provide a unique inverting
function managing all cases of the argument(s) under focus. For instance, an
exhaustive inverting function pr eval 1 2 suitable for ex2 has the type:

match t, v with

| tm const c, nval n ⇒ ∀ (X :nat → Prop), X c → X n
| tm plus t1 t2, nval n ⇒ ∀ (X :nat → Prop),

(∀ n1 n2, eval t1 (nval n1 ) → eval t2 (nval n2 ) → X (plus n1 n2 )) → X n
| , ⇒ ∀ X :Prop, X

end.

Full definitions as well as additional examples can be found on-line [10].

3.5 Beating inversion

Let us consider now a predicate defined on a dependent type. We take intervals
[1...n], formalized as t in the standard library Fin, then we restrict them to have
an odd length.

Inductive t : nat → Set :=
| F1 : ∀ {n}, t (S n)
| FS : ∀ {n}, t n → t (S n).

Inductive odd : ∀ n : nat, t n → Prop :=

3 We want to thank the anonymous reviewer who offered this remark.
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| odd 1 : ∀ n, odd (S n) F1
| odd SS : ∀ n i, odd n i → odd (FS (FS i)).

Finding the premises for the second constructor is a function similar to the one
provided for E2 above:

Definition premises odd SS {n} {i : t n} (of : odd n i) :=
let diag n i :=
match i with

| FS (FS y) ⇒ ∀ (X : Prop), (odd y → X ) → X
| ⇒ True

end in

match of in odd n i return diag n i with
| odd SS n i o ⇒ fun X k ⇒ k o
| ⇒ I

end.

In particular we can easily prove:

Lemma odd SS inv : ∀ n i, odd (FS (FS i)) → odd n i.
Proof. intros n i o. apply (premises odd SS o). trivial. Qed.

Standard inversion happens to fail here. Note that BasicElim may work (we
actually could not succeed) but would need an additional axiom related to John
Major equality.

4 Application to SimSoC-Cert

SimSoC-Cert [3,14] aims at certifying the simulator SimSoC, which is a complex
hardware simulator written in C and C++. SimSoC is able to simulate various
architectures including ARM and SH4 and is efficient enough to run Linux on
them at a realistic speed. The main objective of SimSoC is to help designers
of embedded systems: a large part of the design can be performed on software,
which is much more convenient, flexible and less expensive than with real specific
hardware components. However, this only makes sense if the simulator is actually
faithful to the real hardware. Therefore we engaged in an effort to provide a
formal certification of sensitive parts of SimSoC. More precisely, we consider the
Instruction Set Simulator (ISS) for the ARM, which is at the heart of SimSoC.
This ISS is called Simlight.

To this effect, first we defined a formal model in Coq of the ARM architec-
ture, as defined in the reference manual [1]. Our second input is the operational
semantics of the ISS encoded in C. This program is actually written in a large
enough subset of C called Compcert-C, which is fully formalized in Coq [6].

We can then compare the behavior of the ISS encoded in C with the expected
reference model directly defined in Coq. To this effect, a projection between
the Coq model of the memory state of Simlight to the states in the reference
model is defined. Then, correctness statements express that from a C memory
m1 corresponding to an abstract state s1, performing the function claimed to
represent a given instruction I in Simlight will result in a C memory m2 which
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operation semantics operation semantics

Coq State

Coq State’

State

State’

in C in Coq

CompCert−C

CompCert−C 

projection

projection

Fig. 1. Correctness of the simulation of an ARM operation

actually corresponds to the abstract state s2 obtained by running the Coq model
of I. This can be put under the form of a commutative diagram as schematized
in Fig. 1.

The operational semantics of C defining the evaluation is used everywhere
in the proof: it provides the decomposition of the vertical arrow on the left
column of Fig. 1 and drives the proof accordingly. We use the big step semantics,
which is defined in CompCert by 5 mutually inductive transition relations. The
largest inductive type for the evaluation of C expressions is eval expr. It has 17
constructors, one for each CompCert C expression such as assignment, binary
operation, dereference, etc.

In a typical proof step, we start from a goal containing a conclusion stat-
ing that a C memory state mn and an ARM state stn in the reference model
are related by our projection, a hypothesis R0 stating a similar relation be-
tween a C memory state m0 and an ARM state st0, and additional hypothe-
ses He1, He2, . . . , Hen. relating pairs of successive C memory states (m0,m1),
(m1,m2), . . . , (mn−1,mn) respectively with (ASTs for) C expressions e1, e2, . . . ,
en, according to the relevant transition relation provided by CompCert. The
general strategy is to propagate information from m0 to m1 using R0 and He1,
then so on until mn. To this effect we invert He1, He2, etc. However, according
to the structure of e1, inverting He1 generates intermediate memory states and
corresponding hypotheses that have to be inverted before going to He2, unless
e1 is a base case. And sometimes, other kind of reasoning steps are needed, e.g.,
lemmas on the reference model of ARM.

For illustration, the following code shows a small excerpt from an old proof
script in SimSoC-Cert using inversion. It corresponds to one line taken in
an instruction called ADC (add with carry). It sets the CPSR (Current Pro-
gram Status Register) with the value of SPSR (Saved Program Status Register).
Lemma same cp SR states that the C memory state of the simulator and the
corresponding formal representation of ARM processor state evolve consistently
during this assignment. The pseudo-code from the ARM reference manual is just
CPSR = SPSR. The corresponding C code is represented by the identifier
cp SR in the statement of the lemma.
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Lemma same cp SR :
∀ e m l b s t m’ v em,

proc state related proc m e (Ok tt (mk semstate l b s)) →
eval expression (Genv.globalenv prog adc) e m cp SR t m’ v →
proc state related proc m’ e

(Ok tt (mk semstate l b
(Arm6 State.set cpsr s (Arm6 State.spsr s em)))).

After a couple of introductions and other administrative steps, we get the fol-
lowing goal, where cp SR is unfolded in hypothesis H .

. . .
l’ : local
b’ : bool
a’ : expr
H : eval expr (Genv.globalenv prog adc) e m RV

(Ecall (Evalof (Evar copy StatusRegister T14 ) T14 )
(Econs

(Eaddrof
(Efield (Ederef (Evalof (Evar proc T3 ) T3 ) T6 )

adc compcert.cpsr T7 ) T8 )
(Econs

(Ecall (Evalof (Evar spsr T15 ) T15 )
(Econs (Evalof (Evar proc T3 ) T3 ) Enil) T8 ) Enil))

T12 ) t m’ a’
============================
proc state related m’ e st’

Then we have to invertH and similar generated hypotheses until all constructors
used in it type are exhausted. Here 18 consecutive inversions are needed. Using
inv, which performs standard inversion, clearing the inverted hypothesis and
rewriting of all auxiliary equations, the sequel of the script started as follows.

inv H. inv H4. inv H9. inv H5. inv H4. inv H5.
inv H15. inv H4. inv H5. inv H14. inv H4. inv H3.
inv H15. inv H5. inv H4. inv H5. inv H21. inv H13.

The names used there (H4, H9, etc.) are not under our control. The program for
simulating an ARM instruction usually contains expression more complex than
in the example given here. And unfortunately there is no clear way to share parts
of the proofs involved since the corresponding programs are rather specific, at
least for instructions belonging to different categories.

The drawbacks of the standard tactic inversion presented in the introduc-
tion show up immediatly. A first clue is the response time of Coq when inverting
hypotheses Hi. Compiling the proof script corresponding to one instruction took
more than a minute. About the naming issue, the constructors we face have up
to 19 variables and 6 premises, yielding 25 names to provide. We could try to au-
tomate this naming using an ad-hoc wrapper around inversion, but things are
complicated by the fact that this inversion program inserts additional hypothe-
ses putting equational constraints between variables of the inverted constructor.
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There are different ways to state and to place such constraints, and different
releases of Coq may make different choices. The BasicElim approach introduces
equations as well but from on our experiments, generated goals are much more
regular than with inversion. In contrast, our approach does not suffer from
such interferences, so we are anyway in a better position.

First, we define the diagonal-based function for each constructor of eval expr,
following the lines given in the previous section. For example, the evaluation of
a field is defined in CompCert by the following rule.

Inductive eval expr :
env → mem → kind → expr → trace → mem → expr → Prop :=
...
| eval field : ∀ e m a t m’ a’ f ty,

eval expr e m RV a t m’ a’ →
eval expr e m LV (Efield a f ty) t m’ (Efield a’ f ty)

We then define (observe that 2 variables and 1 hypothesis will be generated):

Definition inv field {g} {e} {m} {ex} {t} {m’} {ex’}
(ee:eval expr g e m LV ex t m’ ex’ ) :=
let diag e ex ex’ m m’ :=
match ex with

| Efield a b c ⇒
∀(X :expr→Prop),

(∀ t a’, eval expr g e m RV a t m’ a’ → X (Efield a’ b c)) → X ex’
| ⇒ True

end in

match ee in (eval expr e m ex m’ ex’ ) return diag e ex ex’ m m’ with
| eval field t a’ H1 ⇒ fun X k ⇒ k t a’ H1
| ⇒ I

end.

Next we introduce a high-level tactic for each inductive type, gathering all the
functions defined for its constructors. For example, eval expr contains:

Ltac inv eval expr m m’ :=
...
let t1 :=fresh ”t” in

let v1 :=fresh ”v” in

let ev ex1 := fresh ”ev ex” in

...
match goal with

...
| [ee: eval expr ?ge ?e m LV (Efield ?a ?f ?ty) ?t m’ ?a’ � ?cl ] ⇒
apply (inv field ee); clear ee; intros t1 a1 ev ex1 ; intros;
inv eval expr m m’

This tactic has two argumentsm andm′, corresponding to C memory states. The
first intros introduces the 3 generated components with names respectively
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prefixed by t, v and ev ex. The second intros is related to previously reverted hy-
potheses, their names are correctlymanagedbyCoq.Alltogether, such a tacticwill:

1. Automatically find the hypothesis matching the arguments to be inverted;
2. Repeatedly perform our hand-crafted inversions for type eval expr until all

constraints between two memory states m and m′ are derived;
3. Give meaningful names to the derived constraints;
4. Update all other related hypotheses according to the new variable names or

values;
5. Clean up useless variables and hypotheses.

For example the 18 inv in the example above are solved in one step using
inv eval expr m m′, Note that the names are not explicitly given in the script,
which would be cumbersome, but generated in our tactic.

Coq version changes had no impact on our scripts. Unexpectedly, changes in
CompCert C semantics between versions 1.9 and 1.11 had no impact as well on
proof scripts using our inversion. Of course, we still had to update the definition
of diagonal functions.

Comparing development times provides additional hints. In our first try, using
built-in inversion, more than two months were spent (by one person) on the
development of the correctness proof of instruction ADC. Much time was actually
wasted at maintaining the proofs since, as mentioned, a little change resulted in
a complete revision of proof scripts. We then designed the inversion technique
presented here. With the new approach, proofs for 4 other simple instructions
could be finished in only one week, taking of course advantage of the previous
experience with ADC. The high-level tactic described above required less than
2 weeks.

Finally, let us compare the efficiency of Coq built-in inversions (inversion,
derive inversionwhich can generate an inversion principle once for all, and Ba-
sicElim [8]) with our inversion. We apply the four methods to the same examples,
the lemma cp SR and a single inversion on type eval expr from CompCert C se-
mantics. The first row is about the whole expression given in the example above.
The other rows are inversions of specific expressions: Ecall is the CompCert-C
expression of function calls, Evalof is to get the value of the specified location,
Eval is to express constant, and Evar is to express variables. We can observe a
gain of about 4 to 5 times. And generated object files are 5 times smaller.

Table 1. Time costs (in seconds)

standard inversion derive inversion BasicElim our inversion

Full example 1.628 0.976 1.428 0.312

Ecall 0.132 0.076 0.112 0.028

Evalof 0.132 0.072 0.092 0.020

Evar 0.128 0.064 0.084 0.024

Eaddrof 0.140 0.076 0.104 0.020
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Table 2. Size of compilation results (in KBytes)

standard inversion derive inversion BasicElim our inversion

Full example 191 460 171 37

5 Conclusion

We see no reason why the technique developed above for performing inversions
could not be automated and implemented in Coq or in proof assistants based on
a similar calculus. One good motivation for that would be to get terms which
are much smaller, easier to typecheck, than with the currently available inver-
sion tactics. This can be very useful when interactively defining functions on
dependent types, for instance.

But we want to insist first on a much more important feature of our approach,
according to our experience with SimSoC-Cert: its impact on goals during in-
teractive proof development is actually controllable. We think that having much
shorter underlying functions is helpful in this respect: they are short enough
to be written by hand, providing an exact view on what is to be generated.
We claim that this feature is especially relevant to applications which make an
intensive use of inversion steps: in this situation, partial automation obtained
by programming small controllable building blocks turns out to be effective,
whereas automation tends to generate a response of the proof assistant which is
not completely predictible. This may not harm too much if the generated goals
can be fully discharged without further interaction, but this is not the general
case. In particular, this hope is vain when we deal with complex properties, as
in our application. A better alternative would be to automatically generate aux-
iliary definitions such as inv field. However, we consider that our technique is
already useful and worth to be offered.

In contrast to available techniques [5,8] we argue against the use of auxiliary
equations or disequations: the latter are better to be cleaned, in order to avoid
clumsy additional hypotheses, which hamper the management of proof scripts;
however, it is not that simple to do. The brute use of a tactic which performs all
possible rewriting steps, then cleans equalities avalaible in the goal, for instance,
is not satisfactory because some equalities already introduced by the user on
purpose could then disappear. Therefore, a special machinery is needed in order
to trace equalities coming from the inversion step under consideration (e.g., the
use of block in BasicElim). Our use of CPS encoding of Leibniz equality, on the
other hand, completely avoids this issue.

Our method was experimented on large proofs relying on big inductive rela-
tions independently defined in the Compcert project.

The current development can be found on-line [10], as well as examples given
in Section 3.

Our group recently started another project dedicated to a certifying compiler
from a high-level component-based language dedicated to embedded systems
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(BIP), with CompCert C as its target. We expect the work presented here and
our high-level tactics to be reused there.

Let us mention another possible application of the technique. Inversion is
sometimes needed to write a function whose properties will be established later
(as opposed to providing a monolithic and exhaustive Hoare-style specification
and along with a VC generator such as Program). In this context simply using
the proof engine and the inversion tactic tends to generate unmanageably large
terms. We expect our technique to be very helpful in such situations.
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