
HAL Id: hal-00937307
https://hal.science/hal-00937307

Submitted on 8 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A friendly framework for hidding fault enabled virus for
Java based smartcard

Tiana Razafindralambo, Guillaume Bouffard, Jean-Louis Lanet

To cite this version:
Tiana Razafindralambo, Guillaume Bouffard, Jean-Louis Lanet. A friendly framework for hidding
fault enabled virus for Java based smartcard. 26th Conference on Data and Applications Security
and Privacy (DBSec), Jul 2012, Paris, France. pp.122-128, �10.1007/978-3-642-31540-4_10�. �hal-
00937307�

https://hal.science/hal-00937307
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A friendly framework for hidding fault enabled
virus for Java based smartcard

Tiana Razafindralambo, Guillaume Bouffard, and Jean-Louis Lanet

Secure Smart Devices (SSD) Team
XLIM/Université de Limoges – 123 Avenue Albert Thomas, 87060 Limoges, France

aina.razafindralambo@etu.unilim.fr, guillaume.bouffard@xlim.fr,
jean-louis.lanet@xlim.fr

Abstract. Smart cards are the safer device to execute cryptographic
algorithms. Applications are verified before being loaded in the card.
Recently, the idea of combined attacks to bypass byte code verification
has emerged. Indeed, correct and legitimate Java Card applications can
be dynamically modified on-card using a laser beam to become mutant
applications or fault enabled viruses. We propose a framework for manip-
ulating binary applications to design viruses for smart cards. We present
development, experimentation and an example of this kind of virus.

Keywords: Java Card, Virus, Logical Attack, Hidding Code

1 Introduction

Nowadays, a new deployment model has taken place and provides the
ability to load third tiers applications in the SIM card through an ap-
plication store controlled by the network operator. Unfortunately, these
applications are subject to fault attacks as it is possible to design in-
offensive applications, made hostile once hit by a laser beam. We call
them fault enabled viruses. Our contribution is twofold, first we propose
an architecture as tool and we provide a set of constraint to choose an
instruction which will be subjects to a laser attack.

2 Context

Software attacks against smart card can be classified in two categories:
ill-typed applications or well-typed applications. But the second category
can also be split into permanent well-typed applications or transient well-
typed applications. In ill-typed applications [9,4] the input file has been
modified in order to illegally obtain information. Permanent well-typed
application [8], relies on some weakness of the specification. Transient

2

well-typed applications is a new research field [3,16,4] where an applica-
tion mutes when a fault occurs. In this way, we have fault enabled viruses.
Ill-typed applications and transient well-typed applications need to apply
byte code transformation engineering at the CAP file level.

2.1 State of the Art about smart card attacks

Physical attacks. As explained by [2], a modification of the input cur-
rent may modify the execution flow as the card is not self-powered as
described in [1,10]. We also have attacks, explained by S. Skorobogatov
and R. Anderson in [15], that use the light (LED, laser, etc.) and fo-
cus on a specific part of the chip, and the light provides enough energy
in the memory-cell to change its value. Electromagnetic attack, as pre-
sented by [13] and [14], like the inducted current provides a way to modify
the memory value, and it also helps in characterizing the chip area used
during a critical operation.

Logical Attacks. In E. Hubbers et al.’s paper [8], they presented a
quick overview of the available classical attacks and gave some counter-
measures. There are different way to get type confusion: CAP file manip-
ulation after the building step to bypass an off-card Byte Code Verifier
(BCV). Using fault injection to bypass the on-card one (difficult and ex-
pensive). There is also the use of the shareable interface mechanism, but
on recent cards this attack is no longer possible. And finally, we have the
transaction mechanism, that consists in making a set of atomic opera-
tions. By definition, the rollback mechanism should also deallocate any
objects allocated during an aborted transaction and reset references to
such objects to null. However, the authors found some cases where the
card keeps the reference to objects allocated during transaction even after
a rollback. The idea of EMAN attack [9], explained by J. Iguchi-Cartigny
et al., is to abuse the firewall mechanism with the unchecked static in-
structions (as getstatic, putstatic and invokestatic) to call mali-
cious byte codes. In a malicious CAP file, the parameter of invokestatic
instruction may redirect the control flow graph (CFG) of another installed
applet in the targeted smart card. At CARDIS 2011, G. Bouffard et al.
described, in [4], two methods to change the Java Card CFG. The EMAN2
attack will be further explained in the subsection 3.1.

3

2.2 The CAP File

As described by S. Hamadouche in [7], the CAP (Convert APplet) file
format is based on the notion of interdependent components that contain
specific information from the Java Card package. For instance, the Method
component contains the methods byte code, and the Class component
has information on classes such as references to their super-classes or
declared methods.

3 The CapMap

3.1 Modification of a CAP File

CapMap has been developed [12] with the aim of having a handy and a
friendly way to parse and modify a CAP file. It is very useful and very
convenient while designing a logical attack to test Java Cards security.
There are three steps to modify a CAP file using the CapMap: identi-
fying in which CAP file’s standard components are located our target,
getting the right set of elements, and then applying changes thanks to
setters provided by the CapMap over each CAP file elements. This is a
simple example that makes the use of CapMap clearer: it is a reference
to the EMAN2 attack. We are going to use the CapMap to particularly
manipulate the instruction sstore to perform our attack. First, we need
to target our method within the Method Component, interdependent to
the others components. Element within it are indexed. A method is a set
of instructions, and an instruction is a set of byte-values. They both are
indexed in structures provided by CapMap. Secondly, we have to target
the sstore instruction, and we are going to change its operand’s value.
We are going to change the operand’s value to write in return function
address as listing 1.1.

CapFi leEditab le capF i l e = new CapFi leEditab le () ;
capF i l e . load (MY CAP FILE) ; // Load the cap f i l e
ArrayList<MethodInfo> methods = // Get methods

capF i l e . getMethodComponent () . getMethods () ;
// Set the i n s t r u c t i o n you want to r ep l a c e
methods . get (METHOD INDEX) . getBytecodes () . s e t

(SSTORE OPERAND INDEX, RETURN ADDRESS REGISTER) ;

Listing 1.1. CAP File modification with CapMap

4

3.2 Stack Evaluation

If the byte code of a java program is dedicated to be a fault enabled
virus it needs to avoid the software counter-measures embedded into the
card. This type verification is performed for each method present in the
package. The type checking ensures that no disallowed type conversion is
performed. For example, an integer cannot be converted into an object
reference. A downcast can only be performed using the checkcast in-
struction, and arguments provided to methods have to be of compatible
types. The most complicated step and quite expensive (both time and
memory), is to retrieve the type of local variables by analyzing the byte
code. It requires computing the type of each variable and stack element
for each instruction and each execution path, accepting programs (set of
instructions) where each stack element and local variable have the same
type whatever the path taken to reach an instruction. This also requires
that the stack size is the same for each instruction and for each path
that can reach this instruction. Another constraint is that the stack must
never reach a maximum size which allows checking if we are not over-
flowing or underflowing the stack. So, each time we modify a method we
can verify the correctness type of the modification. The most important
thing for virus implementation is to define the set of instructions eligible
to be added to the byte array: only instructions that are compatible with
the previous instruction execution can be added to the method. The type
information associated to an instruction corresponds to the type of the
local variables and of the runtime stack before the instruction is exe-
cuted. The post conditions generated by the execution of the instruction
must be checked as pre-condition for the next instruction. This defines a
set of constraints that must be guaranteed by each byte code sequence.

3.3 Constraint Solving

To design a fault enabled virus we have to hide the real operation as a part
of the operands of the preceding instruction. Thus, when the preceding
instruction is hit by the laser and transformed as a NOP instruction: its
operand becomes an instruction. Within this fault model, we need to find
an instruction which needs one operand and satisfies several constraints,
or an instruction which needs two operands. In such a case, the first
operand becomes either the first instruction of the virus, or an instruction
without operand and the second operand becomes the first instruction
of the virus. We need to be able to select an instruction that satisfies
several constraints, hence we will be able to hide viruses in a well-typed

5

program. We try to build a sequence of instructions prog, empty at the
beginning, such that it exists an instruction ins, with an operand number
greater than one, for which the consumption of the stack is empty and the
production on the stack is lower than the maximum value of the stack.
If such an instruction exists, we can concatenate the sequence prog with
the sequence virus minus its head. Executing the new sequence prog

must lead to an empty stack at the end of execution. Unfortunately, the
resulting program may be a non valid Java program: not all sequences of
byte code can be generated by a compiler. But the certification scheme
proposed by GlobalPlatform [5] do not imply to provide source code. The
certification process must be done at the CAP file level.

3.4 Java Card Code Reverser

The complete process of generating a fault enabled virus needs four steps
using CapMap. Firstly, finding a sequence of instructions which hides
the virus code that satisfies a set of constraints. The resulting CAP File
represents a valid Java program in term of stack typing. Next, evaluating
the resulting CAP file using an off-card BCV. If it is rejected, it means
that either stack evaluation goes wrong, or the constraint solver failed. If
the off-card BCV evaluation succeeds, the third step is going to be using
our Cap2Class tool to reversed code. Finally, converting to Java file. This
step is performed as a lot of existed tools if the generated code is a valid.

4 Evaluation of the Threat Capacities

4.1 Building a fault enabled virus with the CapMap

public void proce s s (APDU apdu) {
short l o c a l S ; byte l o ca lB ;
byte [] apduBuffer = apdu . ge tBu f f e r () ; // ge t the APDU bu f f e r

i f (s e l e c t i n g A p p l e t ()) { return ; } B1
byte rece ivedByte = (byte) apdu . setIncomingAndReceive () ;

−−
// any code can be p laced here

DES keys . getKey (apduBuffer , (short) 0) ; B2
−−

apdu . setOutgoingAndSend ((short) 0 ,16) ; B3
}

Listing 1.2. The unwanted code

6

The listing 1.2 explains how to build the virus. It aim is to send in
clear text the value of an encrypted key container. Of course any analysis
will reject this code as the secret key is sent to the external world. This
code can be split into three parts. The first one (B1) is mandatory and
corresponds to the APDU reception. The second block (B2) corresponds to
the code to obfuscate and which should only be executable once a fault
occurs. It decrypts the key container and put the value in the APDU
buffer at offset 0. The last one (B3) sends the content of the apdu buffer
from offset 0 for 16 elements (a 3-DES key) to the reader. If we can replace
the B2 block by an inoffensive code, it is said to be a fault enabled smart
card virus. This code corresponds to the following byte code listed in 1.3.

/∗00bd∗/ L0 : a load 1 // apdu
/∗00 be ∗/ i n v o k e v i r t u a l 8 // g e tBu f f e r (APDU c l a s s)
/∗00c1∗/ a s t o r e 4 // L4 = apduBuffer
/∗00c3∗/ a load 0 // t h i s=Applet in s t ance
/∗00c4∗/ i n v o k e v i r t u a l 9 // s e l e c t i n gApp l e t ()
/∗00c7∗/ i f e q L1 // r e l :+3 (@00CA)
/∗00c9∗/ return

/∗00ca∗/ L1 : a load 1 // apdu B1
/∗00 cb ∗/ i n v o k e v i r t u a l 10
/∗00 ce ∗/ s2b // redByte
/∗00 c f ∗/ s s t o r e 5 // L5 = redByte
−−
/∗00d6∗/ g e t f i e l d a t h i s 1 // DES keys
/∗00d8∗/ aload 4 // L4=>apdubu f f e r
/∗00da∗/ s c o n s t 0

/∗00db∗/ i n v o k e i n t e r f a c e nargs : 3 , index : 0 , B2
const : 3 , method : 4 // ge t k ey

/∗00e0∗/ pop // re turned Le by t e
−−
/∗00e1∗/ a load 1 //L1 apdu
/∗00e2∗/ s c o n s t 0
/∗00e3∗/ bspush 0x0F // DES keys s i z e

/∗00e5∗/ i n v o k e i n t e r f a c e nargs : 1 , index : 0 , B3
const : 3 , meth . : 1

/∗00ea∗/ i n v o k e v i r t u a l 11 // setOutgoingAndSend
/∗00ed∗/ return

Listing 1.3. The virus code at the byte code level

The B1 block is the preamble, a correct code that must be executed.
The B2 block corresponds to the code that must be obfuscated, and the
last one B3 is the postamble. After the execution of the B1 block the state
of the stack is {ref, ref, value}. Obfuscating B2 will consist in insert-
ing an instruction before, in a such a way the constraints explained in the
previous section are verified. But prior to select an instruction, we need to

7

link statically the B2 code fragment. The final linking process is done in-
side the card and we can not rely on this process to resolve automatically
the addresses. For that purpose, we have developed an attack, presented
in [6], that provides us the way to retrieve (for most of the current cards)
the linking information. For this card the linked address of the getKey

method is 0x023C. Then the code to hide becomes:

/∗00db∗/ i n v o k e i n t e r f a c e nargs : 3 , @023c , method : 4
/∗00e0∗/ pop // pop the re turn by t e o f the method

Listing 1.4. Resolved address of the B2 block

If we consider the single fault model then one of the selectable instruc-
tions is ifle (Ox65) . It uses a short value and its operand is an offset
to the branching instruction. The B2 code fragment to be loaded into
the card becomes like in the listing 1.5. If the byte at the offset 0x00D6

becomes 0x0000 (thanks to the laser hit) the original B2 code will be
executed.

/∗00d6∗/ [6 5] i f l e @0x8D // 0x8D corresponds to i n v o k e s t a t i c
/∗00d8∗/ [0 3] s c o n s t 0 // corresponds to the nargs
/∗00d9∗/ [0 2] sconst m1 // corresponds to the address h igh
/∗00da∗/ [3 c] pop2 // corresponds to the address low
/∗00db∗/ [0 4] s c o n s t 1 // corresponds to the method number
/∗00dc∗/ [3 b] pop // resynchron i zed wi th the o r i g i n a l code

Listing 1.5. The hiding code

4.2 Detecting a fault enabled virus with SmartCM

The starting point of this study was the development of SmartCM [11],
a simulator that detects such attack, and aims to analyze the effect of a
fault on a Java Card program using different modules : the code mutation
engine, the risk analysis tool, and a last one the mutants reducer.

5 Conclusion

We have presented in this paper a complete CAP file engineering tool
to modify each component of the CAP file in a coherent way. Within
this tool, we have the possibility to design a very efficient attack using
ill-typed application but also fault enabled viruses. It includes a stack
checker to avoid embedded counter-measures and a minimalist constraint
solver to generate the hiding sequence. We demonstrated the efficiency of
the constraint solver to built a valid program which hides a fault enabled

8

virus. We have developed a static analyzer SmartCM that is able to detect
such a fault enabled virus. Recently, it appears that the single fault model
is out of date and we must consider the possibility of a dual fault attack as
a valid hypothesis. Thus, the CapMap tool is able to build such a second
order virus by simply applying twice the process. But the constraints for
the second pass must be different to not reveal the hidden code. This is
a new research direction on which we are working now.

References

1. Agoyan, M., Dutertre, J., Naccache, D., Robisson, B., Tria, A.: When clocks fail:
On critical paths and clock faults. Smart Card Research and Advanced Application
pp. 182–193 (2010)

2. Aumiiller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.: Fault attacks on
RSA with CRT : Concrete results and practical countermeasures. Cryptographic
Hardware and Embedded Systems-CHES 2523, 260–275 (2002)

3. Barbu, G., Thiebeauld, H., Guerin, V.: Attacks on java card 3.0 combining fault
and logical attacks. Smart Card Research and Advanced Application pp. 148–163
(2010)

4. Bouffard, G., Iguchi-Cartingy, J., Lanet, J.L.: Combined software and hardware
attacks on the java card control flow. CARDIS (september 2011)

5. Global Platform: Composition Model Security Guidelines for Basic Applications
(2012)

6. Hamadouche, S., Bouffard, G., Lanet, J.L., Dorsemaine, B., Nouhant, B., Magloire,
A., Reygnaud, A.: Subverting Byte Code Linker service to characterize Java Card
API. Submitted at SAR-SSI (2012)

7. Hamadouche, S.: Étude de la sécurité d’un vérifieur de Byte Code et génération
de tests de vulnérabilité. Master’s thesis, Université de Boumerdés (2012)

8. Hubbers, E., Poll, E.: Transactions and non-atomic API calls in Java Card: speci-
fication ambiguity and strange implementation behaviours. Tech. rep., University
of Nijmegen (2004)

9. Iguchi-Cartigny, J., Lanet, J.: Developing a trojan applets in a smart card. Journal
in computer virology 6(4), 343–351 (2010)

10. Kömmerling, O., Kuhn, M.: Design principles for tamper-resistant smartcard pro-
cessors. In: Proceedings of the USENIX Workshop on Smartcard Technology (1999)

11. Machemie, J.B., Mazin, C., Lanet, J.L., Cartigny, J.: SmartCM A Smart Card
Fault Injection Simulator. IEEE International Workshop on Information Forensics
and Security - WIFS (2011)

12. Noubissi, A., Séré, A., Iguchi-Cartigny, J., Lanet, J., Bouffard, G., Boutet, J.:
Cartes à puce: Attaques et contremesures. MajecSTIC 16(1112) (november 2009)

13. Quisquater, J., Samyde, D.: Eddy current for magnetic analysis with active sensor.
In: Proceedings of Esmart (2002)

14. Schmidt, J., Hutter, M.: Optical and em fault-attacks on crt-based rsa: Concrete
results. In: Proceedings of the Austrochip. pp. 61–67. Citeseer (2007)

15. Skorobogatov, S., Anderson, R.: Optical fault induction attacks. Cryptographic
Hardware and Embedded Systems-CHES 2002 pp. 31–48 (2003)

16. Vetillard, E., Ferrari, A.: Combined attacks and countermeasures. Smart Card
Research and Advanced Application pp. 133–147 (2010)

	A friendly framework for hidding fault enabled virus for Java based smartcard

