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Introduction

We present a new mathematical model of the elec-
tric activity of the heart. The main drawback of
the standard bidomain model is that it as-
sumes the existence of excitable cells (myocytes) ev-
erywhere in the heart, while it is known that there
exist non small regions where non-excitable cells (fi-
broblasts and collagen) take place. The problems
that we are trying to address with our model are:

•The laminar structure of the myocardium
that shows the presence of collagen, especially
between muscle layers [2].

Figure 1: The laminar structure of myocardium. [3]

•The infarct border zone. After infraction in
the heart some number of myocytes die and they
are replaced by collagen and a few cells of
fibroblasts. In our current model we consider as if
there are no cells of fibroblasts in the extracellular
space.

Figure 2: Fibroblast organization in sheep normal ventricular
myocardium (A), infarct border zone (B) and centre (C), 1
week after infarction. [4]

I - Mesoscopic model

Modelling assumptions:
•Periodic distribution of added extracellular space
•Extracellular space is a passive conductor

Work on the domain Ω = Bε ∪Dε

•Bε represent the bidomain layer.
• given intra- and extracellular conductivities σiε and σeε
• unknown potentials uiε and ueε
• define vε := uiε − ueε

•Dε represent the diffusive inclusions.
• conductivity σdε
• unknown potential udε

• Σε = ∂Bε ∩ ∂Dε is the interface.
The bidomain model

∂tvε + cvε =∇ · (σiε∇uiε), Bε,

∂tvε + cvε =−∇ · (σeε∇ueε), Bε,

The diffusive inclusion
0 =−∇ · (σdε∇udε), Dε,

The transmission conditions
σiε∇uiε · nΣε

= 0,
σeε∇ueε · nΣε

= σdε∇udε · nΣε
,

ueε = udε,



Σε,

The initial and the boundary conditions given.
•We have a well posed problem up to a constant.
•Numerical simulations expensive.
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II - Homogenisation

Principle: Redefine the problem in two scales and
obtain the limit problem that depends only on a
large scale. It gives a global, macroscopic behaviour
of the unknown functions.
Assumption
σiε(x) = σi
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Having apriori estimates on the norms of the un-
known functions and their derivatives, and following
the work in [1], there is a limit for ε→ 0

uiε→ ui0, ueε→ ue0, udε → ud0.

III - Macroscopic equations

Define σ∗i := σi/|YB|, σ∗e := σe/|YB|, σ∗d := σd/|YD|, ρ = |YD|/|YB|.
In the limit ue0(t, x) = ud0(t, x) =: u0(t, x).

And the limit problem is again the bidomain model with updated conductivities
∇x ·

(σ∗i + Id)∇xu
i
0

 = ∂tv0 + cv0, in Ω,
∇x · ((σ∗e + ρσ∗d + (σe − σd) (Ae + ρAd))∇xu0) = −(∂tv0 + cv0), in Ω,

Where Ae and Ad are constant matrices that depend only on the geometry of the unit cell.
Remark:
•The modified conductivities depend on the volume fraction of the diffusive part and on the geometry of
the unit cell.

• If σe = σd the problem simplifies and the modified conductivities depend only on the volume fraction.

IV - Numerical verifications

We work on the numerical simulations
•On simple geometries.
•Using FEM method.
•Values of parameters obtained from the literature.
•Using Gmsh mesh generator ([6]) and
FreeFem++ PDE solver ([5]).

We expect to observe the convergence of the meso-
scopic model to the macroscopic model.

Perspectives

We can develop our work in several directions.
•Perform numerical experiments on different
geometries, simulating only the macroscopic
model.

•Use real data obtained by clinicians. For
example, the late enhancement MRI provides the
volume fraction of the extracellular space, ρ.

•Apply the ionic current model.
•Develop a model for the infarct scar transiting
from the classical bidomain, via our new model,
to the purely diffusive centre of the scar.
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