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Sur la reconnaissance des graphes sans C4 et des graphes

1/2-hyperboliques

Résumé : La métrique d des plus courts chemins d’un graphe connexe G est 1
2 -hyperbolique

si et seulement si elle satisfait d(u, v) + d(x, y) ≤ max{d(u, x) + d(v, y), d(u, y) + d(v, x)} + 1
pour tout quadruplet u, x, v, y de G. Nous montrons que résoudre le problème de décider si un
graphe est 1/2-hyperbolique revient à résoudre le problème de décider si un graphe contient un
cycle sans corde de longueur 4, et inversement, en proposant une transformation en temps sous-
cubique d’un problème vers l’autre. De plus, nous proposons un algorithme en temps O(n3.26),
basé sur la multiplication de matrices rectangulaires, pour résoudre chacun de ces problèmes.
Nous améliorons ainsi l’état de l’art.

Mots-clés : Hyperbolicité, algorithme, graphe, cycles induit.
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1 Introduction

The primary aim of our work is to study hyperbolicity of simple unweighted graphs. This is
a metric parameter, that was first introduced by Gromov in the context of automatic groups
(see [23]), then extended to more general metric spaces [5]. Roughly, the hyperbolicity of a
connected graph is a measure of how far is the shortest-path metric of the graph from a tree
metric. One can deduce from this parameter tight bounds for the (worst) additive distortion of
the distances in the graph when its vertices are embedded into a weighted tree [10]. Practical
applications of hyperbolicity were proposed in the domains of routing [6], network security [27],
bioinformatics [18], and in the spread of information in social networks [4].

So far, the best known algorithm for determining the hyperbolicity of a graph has an O(n3.69)-
time complexity [21]. This is however prohibitive for graphs with tens of thousands of nodes such
as the graph of the Autonomous Systems of the Internet, road maps, etc. An algorithm with
good practical performances has been proposed in [11]. It improves the worst-case running time
on certain graph classes, but it cannot be used on graphs with hyperbolicity less than one.

Related work Our work focuses on a decision version of the problem, namely the recognition
of graphs with hyperbolicity (at most) 1

2 . Graphs with small hyperbolicity value have already
received some attention, as a first characterization of 1

2 -hyperbolic graphs was proposed in [1].
However, to the best of our knowledge, there was no known algorithmic application to it prior
to this work. We are more interested in a reduction such as the recent one in [21], where
the authors proved an equivalence between the problems of finding a 2-approximation for the
hyperbolicity and the (max,min)-matrix multiplication. A recent work [19] further exploits the
relation between both problems, yielding constant-factor approximations for the hyperbolicity in
subcubic-time. We point out that a similar line of research was followed in [34, 39], where they
determined the subcubic equivalence between various combinatorial problems.

Our contribution We relate the recognition of graphs with hyperbolicity (at most) 1
2 to the

search of (induced) cycles of length 4, e.g. C4, in a graph. It actually follows from our work that
either both problems are solvable in subcubic-time, or none of them is. We first present a linear-
time reduction from the C4-free graph recognition problem to the recognition of 1

2 -hyperbolic
graphs (Section 3.1). Then we prove a new characterization of 1

2 -hyperbolic graphs, which is
based on graph powers [30], and from which it follows that, conversely, deciding whether a
graph is 1

2 -hyperbolic can be reduced in subcubic-time to the C4-free graph recognition problem
(Section 3.2). In Section 4, we finally reduce both problems to the problem of the rectangular
matrix product that was defined in [31]. This allows us to solve both of them in O(n3.26)-time,
which beats the previous records established in [21, 37].

We give the notations used in this paper in Section 2, along with definitions for graph hyper-
bolicity and C4-free graphs.

2 Definitions and Notations

A graph G is a pair (V,E), whose n vertices are the elements of the set V , and whose m edges
are the elements of E; every edge is a set of two distinct vertices of G. The neighborhood N(u)
of a vertex u ∈ V , is the (possibly empty) set of vertices v ∈ V such that {u, v} is an edge.
Alternatively, we say that the elements of N(u) are adjacent to u. A clique is a set of pairwise
adjacent vertices. Note that the adjacency relation is clearly symmetric; we also define the
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4 D. Coudert & G. Ducoffe

(symmetric) adjacency matrix A = (I{u∈N(v)})u,v∈V , where I denotes the Kronecker delta1.
Finally, an induced subgraph of G is a graph G[X] = (X,F ) such that X ⊆ V and F =

{{u, v} ∈ E : u, v ∈ X}. In particular if X is a clique, then it is called a complete subgraph. The
induced subgraph is a path of length l ≥ 0 if |X| = l + 1 and the vertices of X can be linearly
ordered into a sequence (v0, v1, . . . , vl) such that for every 0 ≤ i, j ≤ l, the vertex vi is adjacent
to vj if, and only if, |j − i| = 1. In such a case, the vertices v0 and vl are called the endpoints of
the path, and the path is a v0vl-path. The graph G is connected if, for every pair u, v ∈ V , there
exists a uv-path. Also, a cycle is a graph such that the deletion of any edge {v0, vl} ∈ F yields
a v0vl-path, and a tree is a connected graph which does not contain any cycle as a subgraph.

Further standard graph terminology can be found in [7, 14].

2.1 1
2
-hyperbolic graphs

Given a connected graph G = (V,E), we define the distance dG(u, v) between two vertices
u, v ∈ V as the minimum length of a uv-path in the graph. This yields a (discrete) metric space
(V, dG). For a survey of metric graph theory, the reader may refer to [2]. We define in the space
(V, dG) an interval [u, v] between any two vertices u, v ∈ V , as the set of vertices “in between” u
and v, e.g. [u, v] = {x ∈ V : dG(u, v) = dG(u, x) + dG(x, v)}.

In the sequel, we will call a uv-path of minimum length a uv-shortest path, and we will
denote the distance function by d instead of dG whenever G is clear from the context. The graph
hyperbolicity of G can now be defined as follows:

Definition 1 (4-points Condition, [23]). Let G be a connected graph.
For every 4-tuple u, x, v, y of G, we define δ(u, v, x, y) as half of the difference between the

two largest sums amongst
S1 = d(u, v) + d(x, y),
S2 = d(u, x) + d(v, y), and
S3 = d(u, y) + d(v, x).
The graph hyperbolicity, denoted by δ(G), is equal to maxu,x,v,y δ(u, v, x, y).
Moreover, we say that G is δ-hyperbolic, for every δ ≥ δ(G).

Unlike many well-known graph properties, it is very important to note that the hyperbolicity
of an induced subgraph of G does not yield any information in general about the hyperbolicity
of G. For example, the wheel Wn is 1-hyperbolic, whereas it contains as an induced subgraph
the cycle Cn whose hyperbolicity grows linearly with n [11]. A way to deal with this difficulty
is to constrain ourselves to distance-preserving, or isometric subgraphs. Formally, an induced
subgraph H of G is isometric if, and only if, it is connected and for every pair of vertices u, v ∈ H,
we have that dH(u, v) = dG(u, v). We also say that a subgraph which is not isometric is a bridged
subgraph.

Lower and upper bounds on the hyperbolicity can be deduced from classical parameters such
as the girth [33], the circumference [8], the domination number [35], and the chordality [29, 40]. In

particular, we have that δ(G) ≤
⌊

diam(G)
2

⌋

, where diam(G) = maxu,v∈V dG(u, v) is the diameter

of the graph [11, 40].

We inform the reader that Definition 1 is not a universal definition for the hyperbolicity of a
graph. Some authors actually proposed and studied other definitions (see, for instance [13, 23]).
Though the value of δ(G) may vary depending on the choice of the definition, any δ-hyperbolic
graph with respect to (w.r.t.) any of the definitions is f(δ)-hyperbolic w.r.t. any other definition

1We use the symbol I instead of the classical symbol δ for the Kronecker delta in order to prevent confusion
with hyperbolicity.

Inria
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Figure 1: The six forbidden isometric subgraphs.

of the hyperbolicity. The function f is linear in δ in most cases. Moreover, the class of trees is
always contained into the class of 0-hyperbolic graphs, which makes the graph hyperbolicity a
tree-likeness parameter.

We here restrict our study to Definition 1, as it has algorithmic applications. Indeed, it is
straightforward by using Definition 1 to compute the graph hyperbolicity δ(G) in Θ(n4)-time
(see [11] and [21] for practical and theoretical improvements of the complexity). Also, note
that δ(G) is always a half-integer (w.r.t. Definition 1). Our work focuses on graphs with small
hyperbolicity, that is hyperbolicity at most 1

2 . Those graphs thus satisfy either δ(G) = 0 or
δ(G) = 1

2 . We address the problem of recognizing those graphs, that we formulate as follows.

Problem 1. Given a connected graph G, is G a 1
2 -hyperbolic graph ?

In [1], Bandelt and Chepoi characterized the 1
2 -hyperbolic graphs as the connected graphs

that simultaneously satisfy the three following conditions:

Condition 1. Every cycle of length at least 6 in G is bridged.

Condition 2. For every pair u, v ∈ G, N(u) ∩ [u, v] is a clique.

Condition 3. No graph in Figure 1 is an isometric subgraph of G.

A simpler characterization was previously given for 0-hyperbolic graphs [3, 24]. In fact,
0-hyperbolic graphs are block-graphs, that are graphs in which every biconnected component
(block) is a clique (possibly reduced to a single vertex). This class includes cliques and trees,
and a block-graph can be recognized in O(n+m)-time.

2.2 C4-free graphs

The C4-free graph recognition problem asks whether a given graph G contains an induced cycle
of length 4. In the sequel, such a cycle, if any, is called a C4, or a quadrangle. A graph G which
does not contain any C4 as an induced subgraph is a C4-free graph. Let us define our decision
problem in the following way.

Problem 2. Given a graph G, does G contain a C4 as an induced subgraph ?

RR n° 8458



6 D. Coudert & G. Ducoffe

We now remind a well-known, local characterization of those graphs:

Fact 2. A graph G = (V,E) is C4-free if, and only if, for every pair of non-adjacent vertices
u, v, the set N(u) ∩N(v) is a (possibly empty) clique.

To see the relation between Problem 2 and Problem 1, one can observe that the condition of
Fact 2 is equivalent to Condition 2 when considering vertices u, v at distance 2. As a consequence,
every 1

2 -hyperbolic graph is also C4-free. In fact, a more direct way to see this is to note that
every induced subgraph which is a quadrangle is isometric (this comes from the fact that a C4

is connected and it has diameter 2). Since one can easily check that δ(C4) = 1, then it indeed
follows that a 1

2 -hyperbolic graph cannot contain a quadrangle as an induced subgraph.
So far, the best-known algorithm we are aware of to detect an induced C4 in a graph has

O(nω(1)+1) = O(n3.3727)-time complexity [37], with O(nω(1)) being the complexity of multiplying
two n× n matrices (see Section 4.1 for details). We will improve this result in Section 4.

3 The subcubic equivalence

It is straightforward by the definitions that both the 1
2 -hyperbolic graph recognition problem

(Problem 1), and the C4-free graph recognition problem (Problem 2), are polynomial-time solv-
able [21, 37]. On the other hand, the best-known upper-bound on their time complexity is strictly
more than cubic. Thus it motivates the search for subcubic reductions between these problems,
as they are defined in [39]. Formally, a subcubic reduction from a problem A to a problem B is a
subcubic-time Turing reduction, which verifies the following additional properties on the oracle
access to problem B. For every positive real µ, there has to exist a positive real ε such that:

• the reduction runs in Õ(n3−ε)-time2, where n denotes the size of the input;

• and given an instance of size n of problem A,
∑

i Õ(n3−µ
i ) = Õ(n3−ε), where ni denotes

the size of the ith oracle call to problem B in the reduction.

In particular, a linear-time reduction is a subcubic reduction. More generally, any subcubic-
time reduction which satisfies

∑

i ni = Õ(n) is also a subcubic reduction. We will only consider
subcubic reductions of this kind in the sequel.

Subcubic reductions are of specific interest in the study of subcubic-time algorithms, because
if there exists a subcubic reduction from problem A to problem B, and there is a subcubic-time
algorithm which solves problem B, then there also exists a subcubic-time algorithm which solves
problem A. In particular, if problems A and B are subcubic equivalent, then either both of them
are solvable in subcubic-time, or none of them is. In this section, we will show that Problem 1 and
Problem 2 are subcubic equivalent. We first present a linear-time reduction from Problem 2 to
Problem 1 in Section 3.1 (Proposition 3). Then we present a subcubic reduction from Problem 1
to Problem 2 in Section 3.2 (Theorem 14).

3.1 Reducing the detection of a C4 to the recognition of a 1
2
-hyperbolic

graph

Proposition 3. There is a linear-time reduction from the C4-free graph recognition problem to
the problem of deciding whether a graph is 1

2 -hyperbolic.

2The notation Õ(f(n)) is for a complexity f(n) · logO(1) n.

Inria
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u

Figure 2: An illustration of the linear-time reduction of Proposition 3.

Proof. Let G = (V,E) be an instance of the C4-free graph recognition problem. Let u /∈ V , and
let G′ = (V ∪ {u}, E ∪ {{u, v} : v ∈ V }). By construction, G′ is connected, and it has diameter
at most 2. Thus, we have that δ(G′) ≤ 1 (e.g. see [11]), and all of its isometric subgraphs also
have diameter at most 2. Moreover we remind that a cycle of length l has diameter

⌊

l
2

⌋

. In
particular, every cycle of length at least 6 is a graph of diameter at least 3 and as such, it cannot
be an isometric cycle of G′. Consequently, G′ always satisfies Condition 1. We can prove that
it always satisfies Condition 3 in the same way. Finally, since Condition 2 is satisfied for every
pair u, v ∈ V of adjacent vertices, then G′ satisfies Condition 2 if, and only if, for every pair
u, v ∈ V of non-adjacent vertices, we have that NG′(u) ∩ [u, v] is a clique; since dG′(u, v) = 2
in such a case, then it is equivalent to have that NG′(u) ∩ NG′(v) is a clique, e.g. the graph
G′ is C4-free by Fact 2. Furthermore, we have by construction that any induced C4 in G′ is an
induced quadrangle in G, and vice-versa. Consequently, G is C4-free if, and only if, the graph
G′ is 1

2 -hyperbolic.

We want to highlight that our reduction from Problem 2 to Problem 1 here is linear-time,
whereas the converse reduction from Problem 1 to Problem 2, presented in Section 3.2, is super-
linear. It might be of interest to determine whether a linear-time reduction from Problem 1 to
Problem 2 exists.

3.2 Finding quadrangles to recognize non-1
2
-hyperbolic graphs

Our aim is now to prove that there exists a subcubic reduction from Problem 1 to Problem 2 (The-
orem 14). Ideally, we would ask for a subcubic-time routine for checking whether Conditions 1, 2
and 3 are satisfied. Our reduction is however more complex, as we actually introduce and verify
different conditions in subsequent sections. Thus we have to prove that these conditions imply
Conditions 1, 2 and 3, and also that they are satisfied by 1

2 -hyperbolic graphs.

3.2.1 Quickly excluding long isometric cycles

Let us first deal for our reduction with a tool that we will use later to verify whether Condition 1
is satisfied. We recall that Condition 1 requires that every cycle of length at least 6 in G is a
bridged subgraph. A first naive approach to deal with this condition is to compute the length
of a longest isometric cycle of G. This can be done in polynomial-time, but the best-known
algorithm runs in O(n2ω(1) log n) = O(n4.752 log n)-time, which is super-cubic [32]. Instead, we
propose in this section a way to weaken Condition 1, by only having to consider isometric cycles
of polylogarithmically-bounded length.

Given a connected graph G, we recall that a c-factor approximation of the hyperbolicity of G
is a half-integer δc(G) such that δ(G) ≤ δc(G) ≤ c.δ(G). In this section, we will assume we have

RR n° 8458



8 D. Coudert & G. Ducoffe

a subcubic-time algorithm computing a c-factor approximation of the hyperbolicity, for some
fixed choice of c = logO(1) n. Below, we remind possible ways to achieve such a result:

Lemma 4 ( [9, 19, 21]). Let G = (V,E) be a connected graph.

• There exists an algorithm computing a 2-factor approximation of the hyperbolicity in O(n
3−ω(1)

2 ) =
O(n2.69)-time [21].

• For every ε > 0, there exists an algorithm computing a (2 + ε)-factor approximation of the
hyperbolicity in Õ(ε−1nω(1)) = Õ(ε−1n2.3727)-time [19].

• There exists an algorithm computing a 1569-factor approximation of the hyperbolicity in
O(min{nm, nω(1) log n}+ n2) = Õ(n2.3727)-time3 [9].

Combining results from [10, 15, 21], there also exists a θ(log n)-factor approximation algorithm
of the hyperbolicity in Õ(n2)-time4. In addition, one can deduce from the results from [16, 17, 22]
an algorithm which computes a θ(log2 n)-factor approximation of the hyperbolicity in O(m log n)-
time.

It is well-known that the hyperbolicity of the cycle Cn grows linearly with n. Formally:

Lemma 5 ([11, 40]). Cycles of order 4p+ ε ≥ 3, with p ≥ 0 and ε ∈ {0, 1, 2, 3}, are (p− 1/2)-
hyperbolic when ε = 1, and p-hyperbolic otherwise.

As a result, it follows from Lemma 5 that a (polylogarithmic) upper-bound on the hyperbol-
icity of G yields a (polylogarithmic) upper-bound on the length of a longest isometric cycle of
G; more accurately:

Corollary 6. Let G = (V,E) be a connected graph. Then all the isometric cycles of G have
length upper-bounded by 4δ(G) + 3.

Proof. First assume δ(G) is an integer. By Lemma 5, the longest δ(G)-hyperbolic cycle has
length at most 4δ(G) + 3. Otherwise, δ(G) is a half-integer by Definition 1 and so, again by
Lemma 5, the longest δ(G)-hyperbolic cycle has length at most 4(δ(G)+ 1

2 )+1 = 4δ(G)+3.

Since we are interested in 1
2 -hyperbolic graphs, then Corollary 6 implies that every isometric

cycle must have length upper-bounded by 5 i.e., Condition 1. We introduce in the next section
a second tool so that we can detect isometric cycles of polylogarithmically-bounded length.

3.2.2 Using graph powers

Let us now present the main tool for our reduction, namely graph powers.

Definition 7. Given a connected graph G = (V,E), let i be a positive integer. The ith-power
of G, denoted by Gi = (V,Ei), is a graph whose set of vertices is the same as for G; two vertices
u, v ∈ V are adjacent in Gi if, and only if, there exists a uv-path of length at most i in G.
Formally, Ei = {{u, v} : 0 < dG(u, v) ≤ i}.

3The term min{nm,nω(1) logn} in the complexity comes from the computation of the all-pairs shortest-paths
in the graph (see [36] for an algorithm in Õ(nω(1))-time for the problem).

4The authors in [21] actually claim a O(n2)-time complexity for their algorithm, but it takes as inputs discrete
metric spaces and so, it does not apply to graphs directly. To apply their results on graphs, we can use a a
θ(logn)-additive approximation of the all-pairs shortest-paths, which can be computed in Õ(n2)-time (see [15]).

Inria
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Figure 3: Shrinking long isometric cycles into quadrangles.

In particular, the graph power G1 is G, and the graph power Gdiam(G) is the complete graph
Kn, where diam(G) = maxu,v∈V d(u, v) is the diameter of G. It is folklore that the graph power
Gi can be computed in O(nω(1) log i)-time, using fast square matrix multiplication [36].

Recall that we said in Section 2.2 that every 1
2 -hyperbolic graph G is C4-free. Roughly, most

of our reduction will consist in checking whether a polylogarithmic number of graph powers of G
are C4-free as well. This is a necessary condition so that G is 1

2 -hyperbolic, as stated below.

Lemma 8. If G is a 1
2 -hyperbolic graph, then for every positive integer i, the graph Gi is C4-free.

Proof. By contradiction, let u, v, x, y be the vertices of an induced quadrangle in Gi, for some
positive integer i ≥ 1. Without loss of generality, assume that x, y ∈ NGi(u)∩NGi(v). It follows
by Definition 7 that:

max{dG(u, x), dG(u, y), dG(v, x), dG(v, y)} ≤ i;

and min{dG(u, v), dG(x, y)} ≥ i+ 1.

As a consequence, we have by Definition 1 that:

δ(u, v, x, y) =
1

2
[(dG(u, v) + dG(x, y))−max{dG(u, x) + dG(v, y), dG(u, y) + dG(v, x)}]

≥
1

2
[2(i+ 1)− 2i]

≥ 1

which contradicts the fact that G is 1
2 -hyperbolic.

Intuitively, the existence of isometric cycles of length l in G yields the existence of induced
quadrangles in some graph power Gθ(l); this shrinking effect is illustrated with Figure 3. As a
result, it may be more efficient to search for induced cycles of length 4 in the graph powers rather
than computing the length of a longest isometric cycle of G directly.

We emphasize that the converse does not hold: not all the induced quadrangles in Gi yield
an isometric cycle in the original graph G. For instance, the square graph H2

1 of the graph H1 in
Figure 1a contains a quadrangle as an induced subgraph (the vertices of which are u, x, v, y), yet
H1 does not contain an isometric cycle of length more than 3. However, we remind that every
graph power has to be C4-free by Lemma 8 and so, any induced quadrangle that we detect in
some graph power is a certificate to prove that the graph is not 1

2 -hyperbolic.
We formalize it as follows.

Lemma 9. Let G = (V,E) be a connected graph, and let Cl be an isometric cycle of length
l = 4p + ε, p ≥ 1, ε ∈ {0, 1, 2, 3} and l 6= 5. There is an integer i ∈ [p, 2p] such that the graph
power Gi contains a C4 as an induced subgraph.

RR n° 8458



10 D. Coudert & G. Ducoffe

Proof. Let us fix an arbitrary orientation for Cl, and choose a 4-tuple u, x, v, y (in clockwise
order) such that:

• if ε = 0: dG(u, x) = dG(u, y) = dG(v, x) = dG(u, y) = p;

• if ε = 1: dG(u, x) = dG(u, y) = dG(v, x) = p, and dG(v, y) = p+ 1;

• if ε = 2: dG(u, x) = dG(v, y) = p, and dG(u, y) = dG(v, x) = p+ 1;

• if ε = 3: dG(u, x) = dG(u, y) = dG(v, x) = p+ 1, and dG(v, y) = p.

An example of such a choice is given in Figure 3. Note that all the above distances are upper-
bounded by p+

⌈

ε
4

⌉

. Furthermore, recall that Cl is an isometric cycle by the hypothesis. So, we
have:

dG(u, v) = dG(x, y) =

{

2p when ε ∈ {0, 1}

2p+ 1 when ε ∈ {2, 3}

Equivalently, we have dG(u, v) = dG(x, y) = 2p +
⌊

ε
2

⌋

. As a consequence, by Definition 7, we

have that Gi[{u, x, v, y}] is an induced C4, for every p+
⌈

ε
4

⌉

≤ i ≤ 2p+
⌊

ε
2

⌋

− 1. To prove that
such a value of i always exists, it now remains to prove that:

p+
⌈ε

4

⌉

≤ 2p+
⌊ε

2

⌋

− 1,

that is:
(

2p+
⌊ε

2

⌋

− 1
)

−
(

p+
⌈ε

4

⌉)

= p+
(⌊ε

2

⌋

−
⌈ε

4

⌉)

− 1 ≥ 0.

A straightforward calculation shows that:

⌊ε

2

⌋

−
⌈ε

4

⌉

=

{

0 if ε 6= 1

−1 otherwise

As a consequence, if ε 6= 1 then we are done. Otherwise, since l = 4p+ 1 > 5 by the hypothesis,
then p ≥ 2 and so:

p+
(⌊ε

2

⌋

−
⌈ε

4

⌉)

− 1 ≥ 2− 1− 1 ≥ 0.

Note that the only two possible lengths for an isometric cycle of the graph that Lemma 9
does not take into account are 3 and 5. This is not a coincidence, as C3 and C5 are the only
cycles that are 1

2 -hyperbolic by Lemma 5.

3.2.3 Transforming some obstructions into quadrangles

One of the most fundamental step for our reduction was to prove with Lemma 8 that every graph
power Gi, i ≥ 1, has to be C4-free so that a connected graph G is 1

2 -hyperbolic. An interesting
question on its own is whether it is also a sufficient condition.

We give a negative answer to this conjecture, using the graph H in Figure 6. The graph
H is the union of a C5 and a C3 that both share a single edge; using the 4-tuple in bold in
Figure 6, one can verify that δ(H) ≥ 1. Clearly, H does not contain a quadrangle as an induced
subgraph. Moreover, diam(H) = 3 and so, for every i ≥ 3, the graph power Hi is a complete
graph. Finally, as there is only one couple x, y of H such that dH(x, y) = 3, it follows that the
square graph H2 of H only lacks a single edge to be complete; as a result, H2 is C4-free as well.

Inria



On the recognition of C4-free and 1/2-hyperbolic graphs 11

G G3

edges of G + pseudo-
loops {(u,0), (u,1) }

2

Figure 4: The construction of the graph G[2].

The primary aim of this section is now to show that in order to complete our reduction, we
solely need to decide whether only one additional graph is C4-free:

Definition 10. Let G = (V,E) be a connected graph. The graph G[2] = (V [2], E[2]) is defined
as follows:

• V [2] ≃ V × {0, 1};

• G[2][V × {0}] ≃ G;

• G[2][V × {1}] ≃ G3;

• ∀u, v ∈ V , the vertices (u, 0) and (v, 1) are adjacent in G[2] if, and only if, dG(u, v) ≤ 2.

In particular, ∀u ∈ V , there is an edge {(u, 0), (u, 1)} ∈ E[2].

An illustration of the construction of G[2] is presented in Figure 4. It might help to observe
that for every edge of G2 i.e., for every two distinct vertices u, v such that dG(u, v) ≤ 2, there
are exactly two corresponding edges in G[2], denoted by {(u, 0), (v, 1)} and {(u, 1), (v, 0)}, that
connect the sets V × {0} and V × {1}. Every other connecting edge of G[2] is a pseudo-loop
{(u, 0), (u, 1)}, for some vertex u ∈ V .

We interpret the role of G[2] as the role of an "intermediate power" between the square graph
G2 and the cube graph G3. First, let us prove that it is necessary for G[2] to be C4-free so that
G is 1

2 -hyperbolic.

Lemma 11. If G is a 1
2 -hyperbolic graph, then the graph G[2] is C4-free.

Proof. By contradiction, let a, b, c, d be the vertices of an induced quadrangle in G[2]. Without
loss of generality, we assume that dG[2](a, b) = dG[2](c, d) = 2. Several cases have to be considered.

If a, b, c, d ∈ V × {0}, then there is an induced C4 in G by Definition 10. Similarly, if
a, b, c, d ∈ V × {1}, then there is an induced C4 in G3 by Definition 10. In both cases, this
implies that G is not 1

2 -hyperbolic, by Lemma 8.
For all the remaining cases, we claim that there is no vertex u ∈ V such that {(u, 0), (u, 1)} ⊆

{a, b, c, d}. It easily follows from the fact that NG[2]((u, 0)) ∪ {(u, 0)} ⊆ NG[2]((u, 1)) ∪ {(u, 1)}.
Thus we can write (a, b, c, d) = ((u, k), (v, k′), (x, j), (y, j′)), with {k, k′, j, j′} = {0, 1} and vertices
u, v, x, y are pairwise distinct.
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1 1

11

3 3

33
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32
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1
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2

2

2

2
2

1

2
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3

Figure 5: Possible quadrangles in G[2]. Weights on the edges represent distances in G.

Case 1: k = 0, k′ = j = j′ = 1 Here it comes that:

max{dG(u, x) + dG(v, y), dG(u, y) + dG(v, x)} ≤ 2 + 3 = 5,

whereas dG(u, v) + dG(x, y) ≥ 3 + 4 = 7.

In other words, δ(G) ≥ δ(u, v, x, y) ≥ 1.

Case 2: k = 1, k′ = j = j′ = 0 In such a case:

max{dG(u, x) + dG(v, y), dG(u, y) + dG(v, x)} ≤ 2 + 1 = 3,

whereas dG(u, v) + dG(x, y) ≥ 3 + 2 = 5.

So, δ(G) ≥ δ(u, v, x, y) ≥ 1.

Case 3: k = k′ = 0, j = j′ = 1 It follows that:

max{dG(u, x) + dG(v, y), dG(u, y) + dG(v, x)} ≤ 2 + 2 = 4,

whereas dG(u, v) + dG(x, y) ≥ 2 + 4 = 6.

In other words, δ(G) ≥ δ(u, v, x, y) ≥ 1.

Case 4: k = j = 0, k′ = j′ = 1 Then we have:

max{dG(u, x) + dG(v, y), dG(u, y) + dG(v, x)} ≤ max{1 + 3, 2 + 2} = 4,

whereas dG(u, v) + dG(x, y) ≥ 3 + 3 = 6.

So, we again conclude that δ(G) ≥ δ(u, v, x, y) ≥ 1.

Recall that in order to decide whether a graph is 1
2 -hyperbolic, our aim is to check whether

all of the three Conditions 1, 2 and 3 of [1] are satisfied, using stronger necessary conditions.

Inria



On the recognition of C4-free and 1/2-hyperbolic graphs 13

So far, we only dealt with Condition 1, developing tools in Sections 3.2.1 and 3.2.2 in order to
determine if every cycle of length at least 6 in the graph is bridged. The following two lemmas
will show a way to combine the graph G[2] of Definition 10 with the graph powers of Definition 7,
in order to ensure that both Conditions 2 and 3 are satisfied as well.

Let us start with Condition 2:

Lemma 12. Let G = (V,E) be a δ-hyperbolic graph, for some δ ≥ 1
2 . Suppose G does not satisfy

Condition 2. Then G[2] is not C4-free, or there exists some positive integer i ≤ 2δ such that Gi

is not C4-free.

Proof. Let u, v ∈ V be such that N(u)∩ [u, v] is not a clique, and d(u, v) is minimum w.r.t. this
property. Let x1, y1 ∈ N(u) ∩ [u, v] such that x1 and y1 are not adjacent in G.

• Note that if d(u, v) = 2, then we are done as u, v, x1, y1 are the vertices of an induced C4

in G.

• Similarly, if d(u, v) = 3, then we have:

– d(u, x1) = d(u, y1) = 1;

– d(x1, y1) = d(v, x1) = d(v, y1) = 2;

as a consequence, (u, 0), (x1, 0), (y1, 0), (v, 1) are the vertices of an induced quadrangle in
the graph G[2].

In the sequel, we will assume d(u, v) ≥ 4. Let us define the two uv-shortest paths:

P1 = u, x1, x2, x3, . . . , xd(u,v)−1, v

and P2 = u, y1, y2, y3, . . . , yd(u,v)−1, v

Note that for every i ≤ j we have d(xi, yj) ≥ d(yi, yj) = j − i, and in the same way d(xj , yi) ≥
d(xj , xi) = j − i. We now claim that for every i ≤ j, the inequalities above are strict, or
equivalently d(xi, yj) > j − i and d(xj , yi) > j − i. By contradiction, suppose that there is some
i ≤ j satisfying d(xi, yj) = j−i. Then in such a case we have x1, y1 ∈ N(u)∩[u, yj ], contradicting
the minimality of d(u, v). The case when d(xj , yi) = j − i is dealt with similarly. To sum up, by
the minimality of d(u, v) we have that for any i ≤ j:

d(xi, yj) > d(yi, yj) = j − i and d(xj , yi) > d(xj , xi) = j − i.

In particular, for all i, j this yields that xi and yj are pairwise distinct.

Also, note that for all i, δ(u, v, xi, yi) =
d(xi,yi)

2 and so, we have that for every i:

d(xi, yi) ≤ 2δ.

Let l ≥ 3 be the least index greater than 2 such that d(xl, yl) ≤ l − 1. One has to observe
that since for all i, d(xi, yi) ≤ 2δ, it holds that l ≤ min{2δ + 1, d(u, v)− 1}. In such a case:

• d(x1, xl) = d(y1, yl) = l − 1;

• d(x1, y1), d(xl, yl) ≤ l − 1;

• d(x1, yl), d(xl, y1) > l − 1.

Consequently, x1, y1, xl, yl are the vertices of an induced quadrangle in Gl−1.
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H                    H²                   H 3

H[2]

Figure 6: A 1-hyperbolic graph whose powers are C4-free. A quadrangle in G[2] is drawn in bold.

Let us finally prove with Lemma 13 that we can verify whether Condition 3 is satisfied in the
same way as we verified Condition 2 in Lemma 12.

Lemma 13. Let G = (V,E) be a connected graph that does not satisfy Condition 3. Then there
is an induced C4 in the graph G[2], or there is an induced C4 in the square graph G2.

Proof. We proceed by contradiction. Let us assume that one of the graphs of Figure 1 is an
isometric subgraph of G. For each of the forbidden graphs of Condition 3, we will only consider
the 4-tuple of vertices that are drawn in bold in Figure 1, denoted by u, y, v, x.

Cases 1a and 1b One can easily check that in both cases, the four vertices in bold are the
vertices of an induced quadrangle in the square graph G2.

Case 1c Observe that d(u, x) = 1, d(u, y) = d(v, x) = 2, d(u, v) = d(x, y) = d(v, y) = 3. So,
(u, 0), (y, 1), (v, 1), (x, 0) are the vertices of an induced quadrangle in G[2]. A contradiction.

Case 1d We have that all distances but d(u, v) equal 2, and that d(u, v) = 4. Therefore,
(u, 1), (y, 0), (v, 1), (x, 0) are the vertices of an induced C4 in G[2]. Again, this is not possible.

Case 1e Observe that d(u, x) = d(u, y) = 2, d(x, y) = 4, and all the remaining distances
are equal to 3. As a consequence, (u, 0), (y, 1), (v, 1), (x, 1) are the vertices of an induced
quadrangle in G[2], which contradicts the fact that G[2] is C4-free.

Case 1f The vertices (u, 1), (y, 1), (v, 1), (x, 1) induce a C4 in G3, hence in G[2], that is once
more a contradiction.

To sum up, we obtain as a byproduct of our reduction, and especially of Lemmas 8, 9, 11, 12
and 13, the following new characterization of 1

2 -hyperbolic graphs:

Characterization 1. A connected graph G is 1
2 -hyperbolic if, and only if, every graph power

Gi, i ≥ 1, is C4-free, and the graph G[2] is C4-free.

The condition is necessary by Lemmas 8 and 11, and it is sufficient by Lemmas 9, 12 and 13.

Inria
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3.2.4 The reduction

Theorem 14. There is a subcubic reduction from the 1
2 -hyperbolic graph recognition problem to

the problem of detecting an induced quadrangle in a graph.

Proof. Let G = (V,E) be a connected graph. Since there exists a linear-time algorithm to
recognize 0-hyperbolic graphs5, we will assume for the proof δ(G) > 0, or equivalently δ(G) ≥ 1

2 .

Let us fix any c = logO(1) n, c ≥ 1, such that we can compute a c-factor approximation of the
hyperbolicity in subcubic-time. Three possible choices for c are given in Lemma 4, and two others
ones are discussed in Section 3.2.1.6. In the sequel, let δc(G) be a c-factor approximation of the
hyperbolicity. Recall that we have δ(G) ≤ δc(G) ≤ c.δ(G) by the hypothesis. So, if δc(G) > c

2 ,
then we are done as the graph G is not 1

2 -hyperbolic. Let us now assume that δ(G) ≤ δc(G) ≤ c
2 .

By Corollary 6, every isometric cycle of G has length upper-bounded by 4δc(G) + 3 ≤ 2c + 3,
which is polylogarithmically upper-bounded.

We then compute all the graph powers Gi, for 1 ≤ i ≤ 2δc(G) + 1. This can be done
in subcubic-time, by first computing the distance-matrix of G in O(nω(1) log n)-time (see [36]).
Moreover every Gi has to be C4-free by Lemma 8. If so, then by Lemma 9, there is no isometric
cycle Cl of length 6 ≤ l ≤ 4δc(G) + 3. Consequently, the graph G satisfies Condition 1. Finally,
let us build G[2], which can also be done in subcubic-time using the distance-matrix of G. By
Lemma 11, the graph G[2] has to be C4-free so that G is 1

2 -hyperbolic. If it is indeed the case,
then we have:

• G[2] and all of Gi, 1 ≤ i ≤ 2δc(G) are C4-free, hence G satisfies Condition 2 by Lemma 12;

• G[2] and the square graph G2 are both C4-free and so, G satisfies Condition 3 by Lemma 13.

Thus we can conclude by [1] that G is a 1
2 -hyperbolic graph.

Corollary 15. There is a subcubic equivalence between the 1
2 -hyperbolic graph recognition prob-

lem and the C4-free graph recognition problem.

4 Finding a quadrangle

We will conclude this paper with an improved algorithm for the C4-free graph recognition prob-
lem, that hence improves the best-known upper-bound on the time complexity of both Problem 1
and Problem 2 by the subcubic equivalence of Corollary 15. While the algorithm proposed in [37]
relies on transitive orientation, our algorithm merely reduces the whole Problem 2 to a fast rect-
angular matrix multiplication.

A quick reminding of the problem of matrix multiplication is given in Section 4.1, before we
present our algorithm to detect an induced quadrangle in Section 4.2.

4.1 Fast rectangular matrix multiplication

The study of fast matrix multiplication mainly focuses on the O(nω(1)) time complexity of mul-
tiplying two n× n matrices, also known as the square matrix product. Currently, ω(1) is known
to be less than 2.3727 [38]. The rectangular matrix multiplication problem has received less

5Recall that a graph is 0-hyperbolic if, and only if, it is a block-graph i.e., a graph whose biconnected compo-
nents are complete subgraphs [3, 24].

6A careful reader will remark that the choice of c determines the maximum number of calls in the reduction to
the algorithm for detecting an induced quadrangle. There is a trade-off between this number and the running-time
of the c-factor approximation algorithm.
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16 D. Coudert & G. Ducoffe

attention, maybe because the product of an n × m matrix with an m × p matrix is known
to be reducible to square matrix multiplications, yielding an O(qω(1)−2.max{mn,mp, np})-time
complexity, for q = min{m,n, p} [25].

On the other hand, there is evidence that faster methods for the rectangular matrix multipli-
cation which do not rely on the square matrix product may exist. This is known to be the case
even for truly practical improvements of the matrix multiplication such as the Strassen algorithm
and its variations [26, 28]. As stated below, the conjecture is (numerically) true w.r.t. the best
known algorithms for square and rectangular matrix multiplications.

Lemma 16 ([12, 25, 31, 38]). Let r ≥ 1 be a rational number. There exists a non-decreasing
function ω : [1; +∞[→ [2.3727;+∞[ such that multiplying an n×nr matrix with an nr×n matrix
can be done in O(nω(r))-time.

Furthermore, ω(2) ≤ 3.26, and for every r ≥ 1 we have ω(r) ≤ r + ω(1)− 1.

Note that reducing the rectangular matrix product to square matrix multiplications would
have only yielded ω(2) ≤ 3.3727.

A more efficient method is known for sparse matrices (e.g. see [41]).

4.2 An algorithm to count quadrangles in a graph

In this section, we essentially apply the local characterization of Fact 2. There are two main
steps of computation in our algorithm, that are described below.

Fact 17 ([36]). Given a graph G = (V,E), let A = (Au,v)u,v∈V be the adjacency matrix of G.
For every pair u, v ∈ V , we have A2

u,v = |N(u) ∩N(v)|.
Hence, d(u, v) = 2 if, and only if, u 6= v, Au,v = 0 and A2

u,v 6= 0.

Proof. By the definition of matrix multiplication, we have for every pair u, v ∈ V that:

A2
u,v =

∑

x∈V

Au,xAx,v =
∑

x∈V

I{{x,u}∈E}I{{x,v}∈E}

=
∑

x∈V

I{x∈N(u)}I{x∈N(v)} =
∑

x∈V

I{x∈N(u)∩N(v)}

= |N(u) ∩N(v)|.

Moreover, d(u, v) = 2 if, and only if, u 6= v, u and v are not adjacent in G (e.g. Au,v = 0),
and N(u) ∩N(v) 6= ∅. Clearly, we have that N(u) ∩N(v) 6= ∅ if, and only if, A2

u,v 6= 0.

Lemma 18. Given a graph G = (V,E), let T = (Tu,e)u∈V,e∈E be such that Tu,e = I{e⊆N(u)} for
every u ∈ V, e ∈ E.

For every pair u, v ∈ V , we have TT⊤
u,v = |{e ∈ E : e ⊆ N(u) ∩N(v)}|.

Proof. Similarly to the proof of Fact 17, we have by the definition of matrix multiplication that
for every pair u, v ∈ V :

TT⊤
u,v =

∑

e∈E

Tu,eT
⊤
e,v =

∑

e∈E

Tu,eTv,e =
∑

e∈E

I{e⊆N(u)}I{e⊆N(v)}

=
∑

e∈E

I{e⊆N(u)∩N(v)} = |{e ∈ E : e ⊆ N(u) ∩N(v)}|.
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Combining Fact 17 and Lemma 18, we can now rely on Fact 2 in order to detect, to count
and to output induced quadrangles in the graph as follows.

Proposition 19. Counting the number of induced quadrangles in a a graph G, and returning
an induced C4 of G if any, can be done in O(nω(logn m)) = O(n3.26)-time.

Proof. First, it is straightforward that we can compute the adjacency matrix A of G in quadratic-
time. Using A, we can compute the matrix T = (I{e⊆N(u)})u∈V,e∈E , hence the transpose matrix

T⊤ as well, as they are defined in Lemma 18, in O(nm)-time.
Let us now compute A2 and TT⊤. This can be done, respectively, in O(nω(1)) = O(n2.3727)-

time and in O(nω(logn m)) = O(nω(2)) = O(n3.26)-time by Lemma 16.
By Fact 2, G is C4-free if, and only if, for every pair u, v ∈ V of non-adjacent vertices, we

have that N(u) ∩N(v) is a clique, e.g. that:

|{e ∈ E : e ⊆ N(u) ∩N(v)}| =
|N(u) ∩N(v)|(|N(u) ∩N(v)| − 1)

2
.

This is equivalent to have that TT⊤
u,v =

A2
u,v(A

2
u,v−1)

2 by Fact 17 and Lemma 18. Hence, it
can be checked with an enumeration of all the possible pairs u, v ∈ V , in quadratic-time.

We actually note that if there is some pair u, v ∈ V of non-adjacent vertices such that TT⊤
u,v <

A2
u,v(A

2
u,v−1)

2 , then there are exactly
A2

u,v(A
2
u,v−1)

2 −TT⊤
u,v induced quadrangles of G which contain

this pair of vertices (that is one quadrangle for each of the missing edges in G[N(u) ∩ N(v)]).

Consequently, there are exactly 1
4

∑

u,v∈V (1−Au,v)(
A2

u,v(A
2
u,v−1)

2 −TT⊤
u,v) induced quadrangles in

the graph, which can also be computed in quadratic-time, by an enumeration of all the possible
pairs u, v ∈ V .

To conclude, observe that if TT⊤
u,v 6=

A2
u,v(A

2
u,v−1)

2 for some pair u, v ∈ V of non-adjacent
vertices, then it is straightforward to compute an induced quadrangle of G containing u, v in
quadratic-time.

We remind the reader that there is only evidence that a fast rectangular matrix product can
be computed faster than up to the reduction to fast square matrix multiplications. However, we
want to highlight that, from a theoretical point of view, our algorithm for detecting an induced
quadrangle is never slower than the algorithm of [37]. The dominant term for the complexity of
our algorithm is indeed the fast rectangular matrix multiplication TT⊤ (e.g. Lemma 18), which
can be computed in O(mnω(1)−1)- time in the worst-case, using the reduction to fast square
matrix products that we described earlier in Section 4.1. In comparison, the time complexity of
the algorithm of [37] is O(nω(1)+1).

Also, we emphasize that for graphs with few C3’s, a speed-up for the computation of TT⊤

can be achieved using the results from [41] for sparse matrix multiplication. Indeed, the number
of non-zero elements in the matrix T is exactly 3.t(G), where t(G) denotes the number of C3 in
the graph.

5 Conclusion

In this work, we proved an interesting equivalence between the complexity of the purely metric
problem of recognizing 1

2 -hyperbolic graphs, and the purely structural problem of detecting an
induced quadrangle in a graph. This shows a surprising gap in the complexity for recognizing
graphs with small hyperbolicity, as in comparison there is a linear-time algorithm to decide
whether a graph is 0-hyperbolic.
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Our reduction being subcubic, it remains open whether 1
2 -hyperbolic graphs can be recognized

in linear-time, for some classes of graphs for which detecting an induced quadrangle is easy, like
for instance planar graphs [20]. Also, it would be nice to extend our results to find a better upper-
bound on the complexity of the problem of deciding if a graph is 1-hyperbolic. Note that this
latter problem might be easier than the recognition of 1

2 -hyperbolic graphs, as the true difficulty
may only lie in the distinction between graphs with hyperbolicity exactly 1 and exactly 1

2 . Any
recognition algorithm in O(f(n))-time for 1-hyperbolic graphs would furthermore yield a 4-factor
approximation algorithm for the hyperbolicity that runs in Õ(f(n) + nω(1))-time.
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