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Abstract—Multidimensional localization of multiple sources 

using BSS based TDOA estimators, requires the solution of 

global permutation ambiguity before fusing several TDOA 

estimations. Since the separation quality of BSS isn’t always 

perfect, it is not easy to decide which TDOA belongs to which 

source. Here we study the possibility of using several speaker 

specific features of speech signal in order to recognize  

perceptually dominant sources  in each one of moderately 

separated outputs of BSS algorithm. We compare the feasibility 

of different features in terms of validity rate of decisions and 

computational complexity.  

 

I. INTRODUCTION 

Fusing several TDOA estimates from multiple microphone 

arrays is a well known method for multidimensional 

localization of speech sources. Since traditional methods such 

as generalized cross correlation (GCC) are incapable of  

estimating TDOAs of multiple active sources in reverberant 

environments, the use of time domain BSS in TDOA 

estimation has introduced [1]. The BSS based TDOA 

estimation, not only provides robust TDOA estimates for 

multiple sources, but also separates original signals from the 

observed mixtures which can be used as a clue for the fusion 

of estimated TDOAs in order to accomplish spatial 

localization of active sources.  

In fact, even if traditional methods, like GCC, were capable 

of precise TDOA estimation of multiple simultaneous sources, 

they still couldn’t decide which TDOA from each array 

corresponds to which TDOA from other arrays. Although 

Some heuristic methods have been reported, like the outlier 

elimination in [2] and Inter-aural Time and level difference 

based method in [3], but they often suffer from algorithm 

complexity and the lack of generality. on the other hand,  the 

use of time domain BSS for TDOA estimation provides the 

separated sources as a by-product which is ultimately valuable 

in relating different TDOAs from several arrays to each other 

and solving the global permutation ambiguity. With perfect 

separation quality, we can relate outputs of different BSS 

algorithms executed on different arrays with simple cross 

correlations as reported in [4]. But, usually speech separation 

quality is not perfect and we often achieve just a moderate 

amount of gain in Signal to Interference Ratio (SIR). In 

practice, for a 2 � 2 mixture situation, both sources would be 

present on both outputs but only one of them would be 

perceptually dominant (to some extent). But this dominancy is 

not enough to let us use cross correlations for solving 

permutation ambiguity. 

Here, we assume the 2 � 2 mixture scenario and propose to 

use speaker specific features to qualify this relative 

dominancy for some moderately separated outputs of BSS 

algorithm. Our preliminary motivation for such approach was 

the fact that BSS is usually a pre-processing step for following 

actual speech processors such as speaker identification and 

speaker verification systems where these features are 

necessary to be extracted; based on source-filter model of 

speech production, we use some of the well known speaker 

specific features such as mel frequency cepsteral coefficients 

(MFCC), Perceptual linear prediction cepsteral coefficients 

(PLPCC), formant frequencies (F1, F2, F3, F4) and dynamic 

periodicity/aperiodicity information of speech frames. We 

also compare theses feature sets from computational 

complexity point of view.  

II. BSS BASED TDOA ESTIMATION 

Fig. 1. Shows a typical block diagram for mixing and 

unmixing systems, in which ���  and ���  are stand for the 

impulse response of corresponding FIR filters. It is easy to see 

that the prefect point of separation is met when following 

relations hold:    
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Fig. 1.  Block diagram of mixing and unmixing systems. 

 

If we write the TDOA of each source to the sensory array 

as[1]: 
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Using (1) and (2), it is easy to rewrite (3) and (4) as: 
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This way, we would have the TDOA estimates of both 

sources along with their separated version. However the 

separation quality is not perfect, but still the desired source is 

the perceptually dominant voice in BSS output.  

 

Fig 2. Shows the overall proposed block diagram for 

Localization of two speakers. Two sets of microphone arrays 

are used to record sounds. For each array, an independent BSS 

algorithm is executed and using resulted separation system, a 

pair of TDOA estimates are calculated. Consequently we have 

two pairs of TDOA estimates from each array. However as a 

result of BSS permutation ambiguity we don’t know which 

estimate of each TDOA pair belongs to which one of the 

sources. 

 

Fig. 2.  the proposed block diagram for Localization of two speakers. 

 

For example,  if we assume the TDOA estimate τ� from 

array number 1, belongs to source ��, we can’t determine if 

the other TDOA estimate of �� from array number two is �� or 

� . In fact we need some additional information to decide 

about the correct  pairing of estimated TDOAs from these two 

arrays. Fortunately BSS itself, provides separated output 

signals as of this required additional information. In fact, each 

TDOA estimate τ� corresponds with BSS output Yi .

Consequently, the correct pair of TDOAs for each speaker, 

corresponds with two separated outputs which are 

representative for the same speaker. If the separation quality 

was ideal, we could pair outputs with similar waveforms with 

basic time domain correlators. But, usually speech separation 

quality is not perfect and we often achieve just a moderate 

amount of gain in Signal to Interference Ratio (SIR). In 

practice, for a 2 � 2 mixture situation, both sources would be 

present on both outputs but only one of them would be 

perceptually dominant (to some extent). Although human 

auditory system might percept this dominancy, the domination 

is not enough to let us use cross correlations for solving this 

global permutation ambiguity.  

We propose to use speaker specific features to qualify this 

relative dominancy for these moderately separated outputs of 

BSS algorithms. Our preliminary motivation for such 

approach was the fact that BSS is usually a pre-processing 

step for following actual speech processors such as speaker 

identification and speaker verification systems where these 

features are necessary to be extracted. 

Separated signals from each BSS are segmented into 

frames of length 30 msec. For each frame, the feature vectors 

are extracted and their Euclidean distance from each other is 

calculated. In Fig. 2, feature vectors are shown as fi and the 

Euclidean distance between feature vectors fi and fj is shown 

as "�� . Consequently, two decision variables are defined as: 
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For each new frame, we calculate the above decision 

variables and decide the permutation of that frame as: 

 

() "#$� * "#$
 +�#�                                                        

,� - ,� , ,
 - , 
9� 

#01#                                                                                          

,� - , , ,
 - ,�

Finally, we use the majority vote to decide about the 

permutation of the whole separated signals; each decision 

resembles a vote for one of possible permutations. After 

calculating these votes for all of the available frames, we 

choose the permutation which attains most of the votes. 

The above discussion about solving permutation ambiguity 

was developed for 2 � 2 scenario. The same procedure might 

be easily generalized for 3 � 3  and 4 � 4  scenarios. We 

provide the simulation results for 3 � 3 scenario in section IV. 

Note that as the dimensionality of the problem increases the 

number of possible permutations are also increased. For 

example the two possible permutations for 2 � 2 scenario is 

increasing to 6 possible permutations for 3 � 3  scenario. 

Consequently we should define 6 decision variables like the 

ones in  (7) and (8). 

III. SPEAKER SPECIFIC FEATURES OF SPEECH SIGNALS 

In this section, we provide a brief review about the nature 

of investigated speech features. Most of these features are 

based on the source-filter model of speech production. The 

system comprises of the vocal tract and lip radiations and 
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depends on the physical attributes of the speakers while the 

source represents the pulses produced by the air flow through 

the vocal cords and includes such information as the 

fundamental frequency which is mostly influenced by the 

contents of the speech signal rather than physical 

characteristics of speakers. The speech production process is 

modelled as filtering of the source spectrum (glottal pulses) by 

the system (vocal tract) [12]. Depending on the nature of 

uttered sound, source might be composed of periodic pulses 

(for voiced sounds) or white noise (for unvoiced sounds). 

A. Source based features 

The source information of a speaker depends on factors 

such as the shape and timing of the glottal pulses, whether 

or not the vocal folds close completely and, the trade-off 

between the glottal source and supraglottal source during 

voiced obstruent sounds. Based on these factors, one can 

describe the way a speaker sounds in terms of the voice 

quality of the speaker. These speaker-specific 

characteristics determine (a) the high frequency roll off of 

the speech spectrum, (b) the relative amplitudes of the very 

low-frequency harmonics, and (c) the harmonic and in-

harmonic structure of the speech waveform respectively[5]. 

The most well known source based feature is the 

fundamental frequency of speech signals. Although this 

feature is useful for gender classification but it doesn’t 

provide enough distinctions between the members of the 

same gender. Although, this distinction would be met if we   

track the fundamental frequency changes over time instead 

of observing its statistical average over all of the frames. 

But still, since only voiced sounds are periodic, the 

voiced/unvoiced decision has to be made. Also, the methods 

of fundamental frequency estimation are mostly prone to the 

presence of co channel interference of simultaneous 

speakers which is the case for outputs off the BSS algorithm.  

For these reasons we used the A-Periodic Periodic 

detector (APP) introduced in  [6] in order to exploit source 

properties of speech signals. The summary measure defined 

in [6] provides a quantified index about the amount of 

periodic and a-periodic energy of speech frames. It doesn’t 

require deciding whether a given frame is voiced or 

unvoiced since it summarizes the amount of periodicity, i.e. 

the largest dip strength of Average Magnitude Difference 

Function (AMDF), of the envelopes of several sub-bands of 

speech signal (generated by auditory filter bank analysis) 

into summary measure index. For a strongly periodic frame, 

the summary measure will results in clusters across 

fundamental frequency and its integer multiplies; whereas 

for a strongly a-periodic (unvoiced) frame, the summary 

measure will result in dips that are randomly scattered over 

the range of the possible lag values with no prominent 

clusters. Fig. 3, presents summary measure for a strongly 

periodic and a strongly a-periodic frame. The use of 

auditory filter bank causes the summary measure to be an 

appropriate index which successfully reduces the effect of 

the non-dominant interfere in the final feature vector. 

However, since we expect simultaneous speakers to utter 

different sentences, we are sure that their corresponding 

summary measure would be absolutely different.  

B. system based features 

we have used several source based features such as 

formant frequencies, MFCCs and PLPCCs. The frequencies 

of the formants during sonorant sounds provide information 

about the length and shape of the vocal tract. Formants are 

the peaks of the spectral envelope of speech frames, which 

is calculated as frequency response of Linear Prediction 

Coefficients of order 12-14. Generally, F1 and F2 vary 

considerably due to the vowel being articulated, whereas F3 

and F4 change very little [5].  

 

Fig. 2.  The resultant summary measure for (up) a strongly periodic frame 

where it consists of strong clusters around fundamental frequency and its 
integer multiplies and (down) an strongly a-periodic frame where weak dips 

are randomly scattered over the range of all possible lag values [6]. 

Another feature set that represents the filter 

characteristics of the source-filter model is the MFCC 

feature set. The mel frequency scale is used in order to 

mimic the cochlear filtering processes in the ear which 

places more emphasis on certain frequencies. This emphasis 

is done by frequency wrapping of logarithmic spectrum to 

the mel scale. The reference point of the mel scale is at a 

tone of 1000Hz. Hereafter, the mel intervals become 

logarithmically distributed. The mel scale was 

experimentally derived by measuring the difference 

between a linear frequency scale and the perceived pitch 

that human listeners registered during a series of tests [7]. 

The MFCCs implicitly code the vocal tract information 

along with  some information about the source and they are 

the most popular feature set in speaker identification 

systems [5].  

An additional feature set that implements an 

approximation to the human auditory system is the 

Perceptual Linear Prediction Cepsteral coefficients [7]. PLP 
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analysis is a combination between spectral analysis and 

linear prediction analysis and gives rise to modified 

autocorrelation coefficients,  that correspond to the LPC 

analysis coefficients. PLP analysis consists of a 

preprocessing stage that not only warps the speech 

segments power spectrum to the Bark scale, but also applies 

other auditory approximations to obtain a more precise 

modeling of the processes in the ear such as equal loudness 

curve and power intensity normalization. In addition, the 

warping implemented here is done prior to the derivation of 

the AR coefficients and thus the input to the linear 

prediction analysis is speech that is already modified so that 

it contains perceptually significant information. This 

approximation to the biological processes that are executed 

in the human ear and the consequent smoothing of the 

spectrum is proven to be helpful in the effective 

discernment between different speakers. In fact, PLP is 

reported to be more robust against noisy observations [7]. 

 

IV. SIMULATION RESULTS 

In this section we compare the feasibility of using each 

feature set for resolving permutation ambiguity, on a large 

database of different speech sources. We use ROOMSIM [10] 

toolbox in order to simulate the configuration of 2 sources and 

two sets of microphone arrays as shown in Fig. 3. ROOMSIM 

provides us with the impulse responses between each source 

and microphone pairs. First, We apply the BSS algorithm of 

[8] to the observed mixtures of two speech signals in order to 

obtain the separation system impulse responses; then, we 

apply this exact separation system to all the other mixtures 

generated by different pairs of speech signals which are 

randomly selected from the database. The  reason for using 

these fixed impulse responses for all of the source pairs is to 

test them under equal conditions. Table I, summarizes the 

achieved SIR gains of obtained separating system.  

 

Fig. 3.  The configuration of two microphone arrays and a pair of active 
speakers simulated using RoomSim [10]. 

TABLE I
THE SIR GAINS FOR THE USED SEPARATING SYSTEM 

Array No. 1 
SIR CH1 10.04 dB 

SIR CH2 8.83 dB 

Array No. 2 
SIR CH1 7.41 dB 

SIR CH2 13.12 dB 

A comparative table of obtained SIR for different BSS 

algorithms is presented in [11] which implies that the reported 

SIR gains in table I are reasonable values for testing the 

ability of feature sets to resolve permutation ambiguity. Our 

database of speech signals consists of 15 male and 15 female 

voices of length 3 seconds.  

The frame length is chosen to be 30 milliseconds which is 

equal to the stationary period of speech signal and is an 

appropriate choice for periodic/a-periodic analysis of frames. 

We use summary measure, 13
th

order MFC and PLP 

coefficients and the first four formants: F1, F2, F3 and F4 as 

feature sets. Also the cross correlation decision making 

procedure introduced in [4] is used to compare its results with 

feature based ambiguity resolver for 250  different signal pairs 

which are randomly chosen from the database.  

Table II summarizes the averages precent of correct 

decisions for each one of these feature sets. Also in order to 

evaluate the stability of each feature set, the standard 

deviation of correct decisions is reported as well along with 

the total number of complete failures; by failure we mean the 

vote below 50% which implies the wrong choice of 

permutations. 

 

TABLE II 

THE RESULTED AVERAGE DECISION STATISTICS.

Feature set 
Correct 

votes 

Standard 

deviation 

Number of 

failures 

Cross correlation [4] 59% 10.4% 24 

MFCC 80.6% 6.2 % 0 

PLPCC    

Formants 62.41% 6.25% 4 

Summary measure 87.2% 4.47% 0 

Table II, reveals that the most robust feature set is the 

summary measure. This is because this measure explicitly 

tracks dynamics of speech signal which are mostly caused by 

source properties of speech production model. Also, this 

measure successfully reduces the effect of mask (interferer) 

signal by using auditory filter bank analysis.  

The same statement could be made for MFCC and PLPCC 

feature sets, since they also employ human like pre-processing. 

Although, they contain the information about both source and 

the vocal tract properties and this might be the reason for their 

suboptimal results compared to summary measure which 

solely represents source dynamics. In fact, the vocal tract filter 

properties (the spectral envelope of frames) are very likely to 

be overridden by frequency response of too many FIR filters 

(of mixing and unmixing systems) that are on the way of BSS 
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outputs. So we don’t expect system based features to be as 

distinctive as they are for pure speech signals.  

Specially, the obtained results of formant feature set proves 

this rationalization. Also, The cross correlation decision 

making obtained the worst results and we can say that it’s an 

completely inappropriate criteria for permutation ambiguity 

resolving. Practically, we observed that this criteria only 

works well when the mixed speeches are as non overlapping 

as possible in time domain. When high intensity portions of 

two speech signals occur simultaneously, this measure is very 

likely to fail. 

We must also mention the computational complexity of 

computing each feature set. Table III reports the average 

runtime for accomplishment of one decision (for one 30 ms 

frame). It reveals that, despite the very good performance of 

summary measure it’s runtime is several times of the other 

feature sets. If the runtime is an important design parameter, 

then one could prefer to use PLPCC or MFCC feature sets 

which are almost as distinctive as summary measure for our 

problem in hand. 

TABLE III 

AVERAGE RUNTIME FOR ACCOMPLISHMENT OF ONE DECISION.

Feature set Average runtime (seconds) 

Cross correlation [4] 0.0052 

MFCC 0.0077 

PLPCC 0.0071 

Formants 0.03 

Summary measure 4.95 

Also, another experiment was done for 3 � 3  scenario. 300 

different combinations of 3 speakers was chosen from the 

database.  Under the same conditions as previous experiment, 

the generalization of the decision logic in section IV was used 

to solve permutation ambiguity. Table VI summarizes the 

averages precent of correct decisions for each one of the 

feature sets.  

TABLE VI 

THE RESULTED AVERAGE DECISION STATISTICS IN 3 � 3 SCANARIO.

Feature set 
Correct 

votes 

Standard 

deviation 

Number of 

failures 

Cross correlation [4] 49% 7.1% 130 

MFCC 72.93% 7.73 % 1 

PLPCC 67.52% 6.48% 2 

Formants 33.5% 5.4% 295 

Summary measure 50.7% 7.16% 130 

Note that, since the number of possible permutations are 

increased from 2 in 2 � 2 scenario to 6 in 3 � 3 scanario, we 

expect the increase of false decisions. As table VI suggests, 

formants and cross correlations are completely wrong in their 

decisions because of their less than 50% average vote. Also, 

despite the very good performance of summary measure in 

2 � 2 scenario, it demonstrates very poor results in 3 � 3 case. 

But MFCC and PLPCC coefficients still show acceptable 

majority votes.  

 

V. CONCLUSION 

In order to solve global permutation ambiguity of 

moderately separated outputs of BSS, we used several speaker 

specific features of speech We employed some of the most 

popular feature sets which are used in system identification 

systems. Among them, 2 � 2 scenario the summary measure 

over performed other filter based features such as MFCC, 

PLPCC and formants, but if we take execution runtime into 

account, we may say that MFCC and PLPCC are the most 

preferred ones. But in 3 � 3  scenario, summary measure 

completely fails in making correct decisions just like the 

formants and cross correlations. However, PLPC and MFCC 

features are still reliable for solving the ambiguity problem. 
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