Stable representation of convex Hamiltonians

Abstract : Existence and uniqueness of solutions to a Hamilton-Jacobi equation with the Hamiltonian H convex with respect to the last variable can be proved by associating to H either a Calculus of Variations or an optimal control problem. The data of the new problem should be so that its Hamiltonian coincides with H and should also inherit appropriate continuity/local Lipschitz continuity properties of H. In other words, H can be represented by functions describing an optimization problem. In this paper we provide further developments of representation theorems from Rampazzo (2005). In particular, our results imply continuous dependence of representations on the mapping H. We apply them to study existence of solutions to the Hamilton-Jacobi equation with H possibly discontinuous in t.
Type de document :
Article dans une revue
Nonlinear Analysis: Theory, Methods and Applications, Elsevier, 2014, 100, pp.30-42. 〈10.1016/j.na.2014.01.007〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00939497
Contributeur : Helene Frankowska <>
Soumis le : jeudi 30 janvier 2014 - 19:42:46
Dernière modification le : mercredi 21 mars 2018 - 18:56:45

Identifiants

Collections

Citation

Hélène Frankowska, Hayk Sedrakyan. Stable representation of convex Hamiltonians. Nonlinear Analysis: Theory, Methods and Applications, Elsevier, 2014, 100, pp.30-42. 〈10.1016/j.na.2014.01.007〉. 〈hal-00939497〉

Partager

Métriques

Consultations de la notice

309