Semi-Supervised Learning for Graph to Signal Mapping: a Graph Signal Wiener Filter Interpretation

Benjamin Girault 1, * Paulo Gonçalves 1, * Eric Fleury 1 Arashpreet Singh Mor 1
* Auteur correspondant
1 DANTE - Dynamic Networks : Temporal and Structural Capture Approach
Inria Grenoble - Rhône-Alpes, LIP - Laboratoire de l'Informatique du Parallélisme, IXXI - Institut Rhône-Alpin des systèmes complexes
Abstract : In this contribution, we investigate a graph to signal mapping with the objective of analysing intricate structural properties of graphs with tools borrowed from signal processing. We successfully use a graph-based semi-supervised learning approach to map nodes of a graph to signal amplitudes such that the resulting time series is smooth and the procedure efficient and scalable. Theoretical analysis of this method reveals that it essentially amounts to a linear graph-shift-invariant filter with the a priori knowledge put into the training set as input. Further analysis shows that we can interpret this filter as a Wiener filter on graphs. We finally build upon this interpretation to improve our results.
Type de document :
Communication dans un congrès
ICASSP 2014 - 2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, May 2014, Florence, Italy. 2014, 〈10.1109/ICASSP.2014.6853770〉
Liste complète des métadonnées

Littérature citée [4 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00942695
Contributeur : Benjamin Girault <>
Soumis le : mercredi 14 mai 2014 - 10:40:57
Dernière modification le : mercredi 31 octobre 2018 - 12:24:20
Document(s) archivé(s) le : jeudi 14 août 2014 - 11:25:25

Fichiers

Identifiants

Collections

Citation

Benjamin Girault, Paulo Gonçalves, Eric Fleury, Arashpreet Singh Mor. Semi-Supervised Learning for Graph to Signal Mapping: a Graph Signal Wiener Filter Interpretation. ICASSP 2014 - 2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, May 2014, Florence, Italy. 2014, 〈10.1109/ICASSP.2014.6853770〉. 〈hal-00942695v2〉

Partager

Métriques

Consultations de la notice

555

Téléchargements de fichiers

712