Stability and Feasibility of State Constrained MPC without Stabilizing Terminal Constraints

Abstract : In this paper we investigate stability and recursive feasibility of a nonlinear receding horizon control scheme without terminal constraints and costs but imposing state and control constraints. Under a local controllability assumption we show that every level set of the infinite horizon optimal value function is contained in the basin of attraction of the asymptotically stable equilibrium for sufficiently large optimization horizon N. For stabilizable linear systems we show the same for any compact subset of the interior of the viability kernel. Moreover, estimates for the necessary horizon length N are given via an analysis of the optimal value function at the boundary of the viability kernel.
Type de document :
Article dans une revue
Systems & Control Letters, Elsevier, 2014, 72, pp.14-21. 〈10.1016/j.sysconle.2014.08.002〉
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00942897
Contributeur : Estelle Bouzat <>
Soumis le : jeudi 6 février 2014 - 16:36:56
Dernière modification le : vendredi 13 octobre 2017 - 17:08:16
Document(s) archivé(s) le : lundi 12 mai 2014 - 11:31:28

Fichier

Boccia_et_al_feasibility_2013....
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Andrea Boccia, Lars Grüne, Karl Worthmann. Stability and Feasibility of State Constrained MPC without Stabilizing Terminal Constraints. Systems & Control Letters, Elsevier, 2014, 72, pp.14-21. 〈10.1016/j.sysconle.2014.08.002〉. 〈hal-00942897〉

Partager

Métriques

Consultations de la notice

466

Téléchargements de fichiers

531