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Abstract: This paper presents a new round-based asynchronous coassgerithm that copes with up to< n/3 Byzantine
processes, wherneis the total number of processes. In addition of being signeatree and optimal with respect to the value of
this algorithm has several noteworthy properties: the edggenumber of rounds to decide is four, each round is contpafisgvo or
three communication steps and involvg&:?) messages, and a message is composed of a round number pigiedii To attain
this goal, the consensus algorithm relies on a common calefazed by Rabin, and a new extremely simple and powerful lmaxstd
abstraction suited to binary values. The main target wheigulieg this algorithm was to obtain a cheap and simple allyori This
was motivated by the fact that, among the first-class pr@gsedimplicity —albeit sometimes under-estimated or égeored—is a
major one.
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Résumé : Cet article présente un algorithme de consensus binaire ésgnrce de processus Byzantins. Cet algorithme satisfait
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2 A. Mostéfaoui & H. Moumen & M. Raynal

1 Introduction

Distributed computing Distributed computing occurs when one has to solve a probleterins of physically distinct entities
(usually called nodes, processors, processes, agenserseatc.) such that each entity has only a partial knowlefigfee many
parameters involved in the problem. In the following, we usetitrmprocesdo denote any computing entity. From an operational
point of view this means that the processes of a distributettm need to exchange information, and agree in some wayother,

in order to cooperate to a common goal. If processes do ngierate, the system is no longer a distributed system. Hence, a
distributed system has to provide the processes with conuation and agreement abstractions.

Understanding and designing distributed applications tsamoeasy task [3, 10, 26, 33, 34, 35]. This is because, dueeto th
very nature of distributed computing, no process can caphsgtantaneously the global state of the application itaig pf. This
comes from the fact that, as processes are geographicedijded at distinct places, distributed applications haveope with the
uncertainty created by asynchrony and failures. As a simyaengle, it is impossible to distinguish a crashed process fa very
slow process in an asynchronous system prone to proce$esras

As in sequential computing, a simple approach to facilifa¢edesign of distributed applications consists in desigajppropriate
abstractions. More generally, computer science is a seiehabstraction and distributed computing is the scienadistfibuted
abstractions [18]. With such abstractions, the applicadiesigner can think about solutions to solve problems ajlaghniconceptual
level than the basic send/receive communication level.

Communication and agreement abstractions Broadcast abstractions are among the most important abstra encountered
in fault-tolerant distributed computing [3, 10, 12, 26, 3R oughly speaking, these abstractions allow processesserdinate
information in such a way that specific provable propert@mscerning this dissemination are satisfied. One of the mqsilpo of
these abstractions is reliable broadcast [8, 12].

As far as agreement abstractions are concemmeakblocking atomic commj23, 27] andconsensufl?7, 31] are certainly the
most important abstractions of fault-tolerant distritlitmmputing. Assuming that each process proposes a valueptisensus
abstraction allows the non-faulty processes to agree oratine salue, which has to satisfy some validity condition dejpenon
both the proposed values and the failure model [3, 26, 33, 34]

Consensus in asynchronous Byzantine systemsThis paper is on the consensus problem in asynchronousbdisill systems
where processes can commit Byzantine failures [25]. Thlgriaitype has first been introduced in the context of synatusn
distributed systems [25, 31, 34], and then investigatetiércbntext of asynchronous distributed systems [3, 26,8focess has

a Byzantinebehavior when it arbitrarily deviates from its intended baba it then commits a Byzantine failure (otherwise we say
it is correcl). This bad behavior can be intentional (malicious) or sintpe result of a transient fault that altered the local stéte
a process, thereby modifying its behavior in an unpredietalay. Let us notice that process crashes (unexpecteddgadtefine a
strict subset of Byzantine failures.

Related work Let ¢ denote the model upper bound on the number of processesathéiiawe a Byzantine behavior. It is shown
in several papers (e.g., [15, 25, 31, 38]) that Byzantinesensus cannot be solved wheir n/3, be the system synchronous or
asynchronous, be the algorithm allowed to use cryptographg or be the algorithm allowed to use random numbers or/Amt.
far as synchronous systems are concerned, it has been b®en ish[16] that(¢ + 1) rounds is a lower bound on the number of
communication steps needed to solve Byzantine consenswss also been shown in [22] that, using randomization, s can
be improved to an expecté¥(log n) value in synchronous full-information systems where 77. ande > 0.

As far as asynchronous systems are concerned, it is well-krtoatrittere is no deterministic consensus algorithm as soon as
one process may crash [17], which means that Byzantine cemse&annot be solved either as soon as one process can lye fault
Said another way, the basic asynchronous Byzantine systaelrhas to be enriched with additional computational powachS
an additional power can be obtained by randomization (edg13, 21, 32]), assumption on message delivery schedu/&S8]8
failure detectors suited to Byzantine systems (e.g., [2]), 2dditional —deterministic or probabilistic— synchyassumptions (e.g.,

[8, 15, 28]), or restrictions on the vectors of input valuesgmsed by the processes [19, 29].

This paper is on binary consensus algorithms in asynchBgmantine systems where the additional computational pswer
supplied by acommon coin Such an object, introduced by Rabin [32], is a distributbgbct that delivers the same sequence of
random bitshy, bo, ... ,b,,... to each process. Some of the first randomized algorithms @sithe ones of Ben-Or [4] or Bracha
[6]) use local coins. As a consequence they have an expectebarof rounds which is exponential (unlgss: O(+/n)), which
makes them of theoretical interest, but of limited pradticse. As randomized algorithms based on a common coin candrave
expected number of rounds which is constant, this paper ésonisly on such algorithms.
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Consensus Byzantin Asynchrone 3

| Protocol | n > | signatures| msgs/round] bits/msg | steps/round|

| Rabin 1983 [32] 10t ] yes | O@) | o1 ] 2 |
Berman Garay 1993 [5] 5t no O(n?) o(1) 2
Friedman Mostefaoui Raynal 2005 [2]] 5¢ no O(n?) O(1) 1
Bracha 1987 [7] 3t no O(n®) O(log(n)) 9
Srikanth Toueg 1987 [37] 3t no O(n®) O(log(n)) 5
Toueg 1984 [38] 3t yes O(n?) O(n) 3
Canetti Rabin 1993 [11] 3t yes O(n?) poly(n) 9
Cachin Kursawe Shoup 2000 [9] 3t yes O(n?) o(0) 2

| This paper | 3t ] no | Ow*) | o1 | 2or3 |

Table 1: Cost and constraint of different Byzantine binagsensus algorithms

Round-based asynchronous Byzantine algorithms based omman coin are listed in Table 1. All these algorithms, which
address binary consensus, are round-based, and, in eduénoféach message carries a round number. Hence, when cagnparin
their message size, we do not consider round numbers. We tade lbwing.

e The first algorithm is such that < 10¢, has anO(n?) message complexity, and requires signatures.

e The algorithms of the two next lines are such that. n/5, and their message complexity @(n?). These algorithms
are simple, signature-free, and use one or two communitat&ps per round, but none of them is optimal with respect to
t-resilience.

¢ The algorithms of the next three lines are optimal with respet, but have arO(n?®) message complexity. Moreover, [38]
uses signed messages, while [7] does not use a common coimggrzbnsequently execute an exponential number of rounds.
Due to their message complexity, and their number of comnatinic steps per round, these algorithms are costly.

e The algorithm proposed in [11], although polynomial, hasigehbit complexity. The algorithm presented in [9] is optima
with respect ta, uses onlyO(n?) messages per round, has two communication steps per routhdisas signed messages
(the valuef in the bit complexity corresponds to the size of RSA sigregurHowever, as noticed by its authors, “because of
public key operations, the computational complexity o$ {riotocol is typically higher than those using autheniicetodes”.

Content of the paper The paper first introduces a simple broadcast abstractitedsio binary values, that we call BV-broadcast.
This broadcast focuses on values and not on processes, wkahsnthat it does not consider the fact that “this” value renb
broadcast by “this” process. BV-broadcast, whose impleatamt is particularly simple, reduces the power of Byzanfirecesses,
in such a way that a value broadcast only by Byzantine presdssnever delivered to the correct processes. This valeated
broadcast abstraction is then used to solve asynchronozenBge binary consensus is asynchronous systems ennigtted
common coin. The resulting consensus algorithm is a rowasdh asynchronous algorithm that has the following notdwort
features.

e The algorithm requires < n/3 and is consequently optimal with respectto

e The algorithm uses 2 or 3 communication steps per round (% stden the correct processes start a round with the same
estimate of the decision value).

e The expected number of rounds to decide is 4.

The message complexity €3(n?) messages per round.

Each message carries its type, a round number plus a singlitda
Finally, the algorithm does not require signed messages.

Hence, contrarily to what one could believe from existing afyanous Byzantine binary consensus algorithms, the flaamu
[quadratic message complexity} [(use of signaturesy (¢ < n/5)] is false. The proposed algorithm shows that n/3 (as
in [9]), quadratic message complexity (as in [5, 9]), andealos of signatures (as in [5, 21]) are not incompatible.

Collection des Publications Internes de I'lIr@IRISA



4 A. Mostéfaoui & H. Moumen & M. Raynal

Simplicity is a first class property When designing this algorithm, an important issue was taialasimpleByzantine consensus
algorithm. Our guiding mantra while designing the proposeo@hm was the famous sentence of Einstein “make it as sirapl
possible, but not simpler”. This was not an easy task as gitypis rarely obtained for free. Let us also remember thofang
sentence written by Pascal at the end of a letter to a frienddlamize for having written such a long letter, | had not erfotige
to write a shorter one”. The implication “simple easy” is rarely true for non-trivial problems [1]. Simptigrequires effort, but is
very rewarding. It is a first class scientific property whichtjgépates in the beauty of sciencand makes pedagogy easier.

Roadmap The paper is composed of 5 sections. Section 2 presentsitifgutation model. Section 3 presents and proves correct
the binary-value broadcast abstraction, while Section 4qmes and proves correct the consensus algorithm. Fitgsigtion 5
concludes the paper.

2 Computation Model

Asynchronous processes The system is made up of a finite détof n > 1 asynchronous sequential processes, narieky
{p1,...,pn}. “Asynchronous” means that each process proceeds at its avenwhich may vary arbitrarily with time, and remains
always unknown to the other processes.

Communication network The processes communicate by exchanging messages thnoaghrachronous reliable point-to-point
network. “Asynchronous” means that a message that has baeissaventually received by its destination process, itete is
no bound on message transfer delays. “Reliable” means libatatwork does not loss, duplicate, modify, or create ngessa
“Point-to-point” means that there is a bi-directional coomitation channel between each pair of processes. Hence, witeness
receives a message, it can identify its sender.

A processp; sends a message to a procgsdy invoking the primitive $end TAG(m) to p;”, where TAG is the type of the
message andh its content. To simplify the presentation, it is assumed @harocess can send messages to itself. A process receives
a message by executing the primitiveceive()”.

The operatiorbroadcast TAG(m) is a macro-operation which stands fdor'each j € {1,...,n} send TAG(m) to p; end
for”.This operation is usually callednreliablebroadcast (if the sender crashes in the middle ofdhdoop, it is possible that only
an arbitrary subset correct processes receives the mgssage

Failure model Up tot processes may exhibitByzantinebehavior. A Byzantine process is a process that behavesaaillgi it
may crash, fail to send or receive messages, send arbitesyages, start in an arbitrary state, perform arbitraty snsitions, etc.
Hence, a Byzantine process, which is assumed to send a mesgagsl the processes, can send a messagéo Some processes,
a different message.» to another subset of processes, and no message at all thdrgpodcesses. Moreover, Byzantine processes
can collude to “pollute” the computation. A process thatibith a Byzantine behavior is callddulty. Otherwise, it icorrect

Let us notice that, as each pair of processes is connectedgrael, no Byzantine process can impersonate anothezgsoc
Byzantine processes can modify the message delivery skehéx cannot affect network reliability.

Notation This computation model is denotétiZ_.AS,, ;[0]. In the following, this model is both restricted with a consttan ¢
and enriched with an object providing processes with additioomputational power. More precisel§Z_.AS,, ;[n > 3t] denotes
the modelBZ_AS,, (0] where the number of faulty processes is smaller thé) andBZ_AS,, :[n > 3t, CC| denotes the model
BZ_AS,, :[n > 3t] enriched with the common coin (CC) abstraction as definedah [3

3 The Binary-Value Broadcast Abstraction

3.1 Binary-value broadcast

Definition This communication abstraction (in short, BV-broadcastam all-to-all abstraction that provides the processes with
a single operation denotd8V_broadcast(). When a process invokd®V_broadcast TAG(m), we say that it “BV-broadcasts the
messagerAG(m)”. The content of a message is 0 or 1 (hence the term “binary-value” in the name of this commuiica
abstraction).

1To quote Dijkstra: “When we recognize the battle against chaess, and unmastered complexity as one of computing sSemajor callings, we must admit
that “Beauty is our Business”.” [14].
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Consensus Byzantin Asynchrone 5

In a BV-broadcast instance, each correct proge®V-broadcasts a binary value and obtains binary valuestodre she values
obtained by each process, BV-broadcast provides eachctpneces; with a read-only local variable denotéth_values;. This
variable is a set, initialized t@, which increases when new values are received. VB-broadcdsfirsed by the four following
properties.

e BV-Obligation. If at leastt+1) correct processes BV-broadcast the same vialués eventually added to the det_values;
of each correct procegs.

e BV-Justification. Ifp; is correct and € bin_values;, v has been BV-broadcast by a correct process.

e BV-Uniformity. If a valuewv is added to the séiin_values; of a correct procesg;, eventuallyv € bin_values; at every
correct process; .

e BV-Termination. Eventually the séin_values; of each correct procegs is not empty.
The following property is an immediate consequence of theipus properties.

Property 1. Eventually the setsin_values; of the correct processgs become non-empty and equal, contain all the values broad-
cast by correct processes and no value broadcast only byrliyegprocesses.

3.2 A BV-broadcast algorithm

A simple algorithm implementing the BV-broadcast abstoacts described in Figure 1. This algorithm is based on aiq4atrly
simple “echo” mechanism. Differently from previous echaéd algorithms (e.g., [7, 37]), echo is used here with regpesach
value that has been received (whatever the number of prectsstebroadcast it), and not with respect to each pair conapafsa
value plus the identity of the process that broadcast tHigevdn the algorithm of Figure 1, a value entails a singlecgethatever
the number of processes that have broadcast this value.

When a process invok&V_broadcast MSG(v), v € {0, 1}, it broadcast8_vAL (v) to all the processes (line 01). Then, when a
proces; receives (from any process) a messageaL (v), (if not yet done) it forwards this message to all the proesgkne 03)
if it has received the same message from at I&ast 1) different processes (line 02). Moreoverpif has received from at least
(2t + 1) different processes, the valugs added tdin_values;.

operation BV_broadcast MSG(v;) is
(01) broadcast B_VAL (v;).

whenB_VAL (v) is received

(02) if (B_vAL (v) received from(t + 1) different processes ar&l VAL (v) not yet broadcagt
(03) thenbroadcast B_VAL (v) % a process echoes a value only once %

(04) endif;

(05) if (B_VAL (v) received from(2¢ + 1) different processés

(06)  thenbin_values; <+ bin_values; U{v} % local delivery of a value %

(07) end if.

Figure 1: An algorithm implementing BV-broadcast£_AS,, ;[n > 3t]

Remark Itis important to notice that no correct processan know when its sétin_values; has obtained its final value. (Other-
wise, consensus will be directly obtained by directing eadegss; to deterministically extract the same value fréin_values;).
This impossibility is due to the net effect of asynchrony anacess failures [17].

3.3 Proof and cost of the algorithm

Theorem 1. The algorithm described in Figurg implements th&V-broadcastabstraction in the system modBZ_AS,, ;[t <
n/3.

Proof Proof of the BV-Obligation property. Letbe a value such thdt + 1) correct processes involB/_broadcast MSG(v). It
follows from the predicate of line 02 that each correct prea@eentually receives the¢e+ 1) messages, and consequently each
correct process broadcasts exactly once the message. (v) to all the processes. As the channels are reliable, it follbasthe
predicate of line 05 is eventually satisfied at each corremtgss, and consequently, the property follows.

Proof of the BV-Justification property. To show this progente prove that a value BV-broadcast only by faulty procesaesot
be added to the séin_values; of a correct process;. Hence, let us assume that only faulty processes BV-broadcétsollows
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6 A. Mostéfaoui & H. Moumen & M. Raynal

that a correct process can receive the messageL (v) from at mostt different processes. Consequently the predicate of line 02
cannot be satisfied at a correct process. Hence, the predfdate 05 cannot be satisfied either at a correct processheproperty
follows.

Proof of the BV-Uniformity property. If a value is added to the sétin_values; of a correct process; (local delivery), this
process has received vAL (v) from at leas{2t+ 1) different processes (line 05), i.e., from at le@st 1) different correct processes.
As each of these correct processes has sent this messagéhi @lbcesses, it follows that the predicate of line 02 is madly
satisfied at each correct process, which consequently bastsgc VAL (v) to all. Asn — ¢ > 2t + 1, the predicate of line 05 is then
eventually satisfied at each correct process, and the B\etnify property follows.

Proof of the BV-Termination property. As (a) there are ati€as- ¢) correct processes, (b) each of them invoR¥s broadcast
MSG(), (c)n—t >2t+ 1= (t+ 1)+, and (d) onlyd and1 can be BV-broadcast, it follows that there is a value {0, 1} that is
BV-broadcast by at least + 1) correct processes. The proof of the BV-Termination prgpierthen an immediate consequence of
the BV-Obligation property. OTheorem 1

Cost of the algorithm  As far as the cost of the algorithm is concerned, we have theWolg for each BV-broadcast instance.
o If all correct processes BV-broadcast the same value, tiwitim requires a single communication step. Otherwisegrit ¢
reguire two communication steps.
e Letc > n — t be the number of correct processes.

The correct processes send messages if they BV-broadcast the same value, andxsendnessages otherwise.
e In addition to the control tag_VAL, a message carries a single bit. Hence, message size isrgonsta

4 The Byzantine Consensus Algorithm

4.1 Byzantine consensus and enriched model

Binary Byzantine consensus The Byzantine consensus problem has been informally statdée Introduction. Assuming that
each correct procegs proposes a valug, € {0, 1}, each of them has to decide a value such that the followinggptppre satisfied.
e BC-Validity. A decided value was proposed by a correct pssce
e BC-Agreement. No two correct processes decide differenegalu
e BC-One-shot. A correct process decides at most once.
e BC-Termination. Each correct process decides.

The BC-Validity property states that no value proposed tylyaulty processes can be decided. As we consider binary gonse
sus, it is equivalent to the following property: if all cort@rocesses propose the same vaiue values cannot be decided (where
7 is the other binary value).

From binary to multivalued Byzantine consensus Interestingly, asynchronous multivalued Byzantine cosss (i.e., when
more than two values can be proposed) can be solved on tomafybByzantine consensus. Such constructions are dedcribe
in [13, 30, 36] (see [39] for synchronous systems).

Enriching the basic asynchronous model: Rabin’s common coin As indicated in the Introduction, the basic system model
BZ_AS, [t < n/3] has to be enriched so that Byzantine consensus can be solteladditional computational power we
consider here is aommon coif{CC) as defined by Rabin [32]. As already indicated, the cpoerding enriched system model is
denotedBZ_AS,, ;[t < n/3,CC]. A common coin can be seen as a global entity that deliversghesame sequence of random
bitsby, b, ... , b, ... to processes, each bit has the valu@ or 1 with probability1/2.

More precisely, this oracle provides the processes withraitive denotedandom() that returns a bit each time it is called by a
process. In addition to being random, this bit has the follgglobal property: thet invocation ofrandom() by a correct process
p; returns it the bit,.. This means that thefhinvocations ofrandom() by any pair of correct processgsandp; return themb,..

A common coin is built in such a way that the processes needdperate to compute the value of eachbhit This is required to
prevent Byzantine processes from computing bit values vaack and exploit these values to produce message delisleegsle
that would prevent terminati@nThe reader interested in the implementation of such a cameoin can consult [2, 9].

2As just indicated, this assumption on the common coin contipatas due to the fact that Byzantine processes are not pretefrom controlling message
delivery schedule, thereby rendering random numbersédssplt would be possible to let Byzantine processes knowhiarece the sequence of random bits, as long
as they cannot control message delivery schedules (thisngs®n corresponds to thablivious schedulemodel [2]).
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Consensus Byzantin Asynchrone 7

On randomized consensus When using additional computing power provided by commongdhe consensus termination prop-
erty can no longer be deterministiRandomized consensissdefined by BC-Validity (Obligation), BC-Agreement, plustfol-
lowing BC-Termination property [4, 32]: Every non-faultyqmess decides with probability For round-based algorithms, this
termination property is re-stated as follows: For any cdnpeaces;: lim,_, | (Probability[pi decides by round]) =1.

4.2 Randomized Byzantine consensus algorithm

Principles and description of the algorithm The consensus algorithm is described in Figure 2. It require. n/3 and is
consequently optimal with respect to the maximal numbef Byzantine processes that can be tolerated. A progggsvokes
propose(v; ) wherev; € {0, 1} is the value it proposes. It decides when it executes thenségtelecide(v) at line 08.

The local variablesst; of a proces®; keeps its current estimate of the decision (initiadl¢;, = v;). The processes proceed
by consecutive asynchronous rounds and a BV-broadcaahiresis associated with each round. The local variaptienotes the
current round of process;, while the local variabléin_values;[r;] denotes the local read-only varialté:_values; associated
with the BV-broadcast instance used at routnd

operation propose(v; )
est; «— vi;r; «— 0;
repeat forever
01) r;«—mri+1;
(02) BV_broadcast EST[r;](est;);
(03) wait until (bin_values;[r;] # 0);
% bin_values;|[r;] has not necessarily obtained its final value when the wairsiat terminates %
(04) broadcast AUX[r;](w) wherew € bin_values;[r;];
(05) waituntil (3 asetof(n — t) Aux[r;](z) messages delivered from distinct processes such that
values; C bin_values;[r;] wherevalues; is the set of values carried by thesén — t) messag@s
(06) s« random();
(07) if (values; = {v}) %i.e.|values;| =1%
(08) then if (v = s) then decide(v) if not yet doneend if;
(09) est; «— v
(20) else est; «— s
(11) endif
end repeat

Figure 2: A BV-broadcast-based algorithm implementingibyrconsensus iBZ_AS,, +[n > 3t, CC|

The behavior of a correct processduring a round-; can be decomposed in three phases.

e Phase 1: lines 01-03. This first phase is an exchange phaséngluroundr;, a proces®; first invokesBV_broadcast
EST[r;](est;) (line 02) to inform the other processes of the value of itsenirestimatest;. This message is taggedTand
associated with the round numbei(hence the notatioesTr;]()). Then,p; waits until its underlying read-only BV-broadcast
variablebin_values;[r;] is nolonger empty (line 03). Due to the BV-Termination prdapghis eventually happens. When the
predicate becomes satisfiédn_values;[r;] has not yet necessarily its final value, but it contains atleae values {0, 1}.
Moreover, due to the BV-Justification property, the valuelsin_values;[r;] were BV-broadcast by correct processes.

e Phase 2: lines 04-05. The second phase is also an exchamggegring which each correct processinvokesbroadcast
AUX[r;](w) wherew is a value that belongs tein_values;[r;] (line 04). Let us notice that all the correct procesges
broadcast a value of their skin_values;[r;] (i.e., an estimate value of a correct process), while a Byzeugrocess can
broadcast an arbitrary binary value. To summarize, thedwasts of the second phase inform the other processes obgsti
values that have been BV-broadcast by correct processes.

A processp; then waits until the predicate of line 05 becomes satisfiglds Predicate is used to discard values sent only
by Byzantine processes. From an operational point of viegtaites that there is a setlues; containing only the values
broadcast at line 04 byn — ¢) distinct processes, and these values originated from agorecesses (which BV-broadcast
them at line 02). Said in another way, thesetues; of a correct procegs cannot contain an estimate value broadcast only by
Byzantine processes. Hence, after line 05, we havees; € {0, 1}, and for any € values;, v is an estimate VB-broadcast
by a correct process.

e Phase 3: lines 06-11. This last phase is a local computatiasey A correct procesgs first obtains the common coin valye
associated with the current round (line 06).

— If |Jvalues;| = 2, both the valué and the valud are estimate values of correct processes. In this caseslopts the
values of the common coin (line 10).
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8 A. Mostéfaoui & H. Moumen & M. Raynal

— If jvalues;| = 1, p; decidew (the single value present trulues;) if additionally s = v (line 08). Otherwise it adopts
as its new estimate (line 09).

The statemendecide() used at line08 allows the invoking processto decide but does not stop its execution. A process
executes round forever. This facilitates the descriptimhthe understanding of the algorithm.

4.3 Proof and cost of the algorithm

Notation Letp, be a correct processalues;] denotes the value of the local variabl@ves; which makes satisfied the predicate
of line 05 at round-.

Lemma 1. Letn > 3t. Consider the situation where, at the beginning of a roundll the non-faulty processes have the same
estimate value. These processes will never change their estimates, thereaf

Proof If all the correct processes (which are at least ¢ > t + 1) have the same estimate valuat beginning of a round, they
all BV-broadcasesTr](v) at line 02. It follows that the sétin_values;[r] of each correct procegs containsv (BV-Obligation
property) and only (BV-Justification property). Hence, due to the lines 04, @id @9, the estimatest; of any correct process;
is set tov, which concludes the proof of the lemma. OLemma 1

Lemma 2. Letn > 3t, andp; andp; be two correct processefualues] = {v}) A (values] = {w}) = (v =w).

Proof Let us consider a correct procgssand assume thatalue] = {v}. It follows from the predicate of line 05 that has
received the same messagex [r](v) from at leastn — ¢) different processes. As at masprocesses can be Byzantine, it follows
thatp; has receivedux [r](v) from at leas{n — 2t) different correct processes, i.e.,;as- 2t > ¢ + 1, from at leas{¢ + 1) correct
processes.

Let us consider another correct procgssuch thatalue’, = {w}. This process received the message [r|(w) from at least
(n—t) different processes. A —t)+ (t+1) > n, it follows that one correct process sentaux [r](v) to p; andAUX [r](w) tO p;.

As p, is correct, it sent the same message to all the processese Hena), which concludes the proof of the lemmal 1 ¢,ima 2

Lemma 3. Letn > 3t. A decided value is a value proposed by a correct process.

Proof Let us consider the round = 1. It follows from (a) the BV-Justification property of the B\¥dadcast (line 02), (b) the
wait statement at line 03, and (c) the broadcast by eachat@recesg; of a value taken from its sétn_values;[1], that, the set
values; computed at line 05 by any correct procgsgontains only estimate values of correct processes. Thenjies; = {v}
andv is equal to the value of the common coiny is decided. Be the valuedecided or notp; adopts it as new estimate (line 09).
If values; = {0, 1}, both values have been proposed by correct processes addpts the one defined by the common coin as its
new estimate (line 10). In all cases, the estimate value of@gct process is equal to a proposed value. Then the sas@nieg
applies to all other rounds, from which it follows that a dedidalue is an estimate value that was proposed by a correcegso

DLemma 3

Lemma 4. No two non-faulty processes decide different values.

Proof Letr be the first round at which processes decide. If two corredgssey; andp; decide at round, they decide the same
value, namely, the value of the common coin associated withde, and update their estimates to the value of the common coin.
Moreover, due to Lemma 2, jf; decidesy during roundr, there is no correct proceps such thavalue] = {w}, with w # v.
Hence, if a process; does not decide during we necessarily havenlues’; = {v,w} = {0, 1}. It follows that such a procegs
executes line 10, and assigns the value of the common cais ¢stimatest ;.

Hence, at the beginning of rourid + 1), the estimates of all the correct processes are equal tmthmon coin, which is itself
equal to the decided value It then follows from Lemma 1 that they keep this value forevi&s a decided value is a an estimate
value, onlyv can be decided. OLemma 4

Lemma 5. Each non-faulty process decides with probability

Proof Let us first prove that no correct process remains blockesl@rduring a round. There are twavait statements. Due to
the BV-Termination property, no correct process can blackyer at line 03. To show that no correct process can bloekér at
line 05, we have to show that the predicate of line 05 becomesteally true at every correct procgss This follows from the
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following observations: during round (a) the sebin_values;[r] of each correct process contains only values BV-broadgast b
correct processes (BV-Justification), and eventually #ige of all the correct processes are equal (BV-Uniformity);gach of the

at least(n — t) correct processes broadcasts a messagex [r](w) such thatw € bin_values;[r]; (c) each of these messages is
eventually received by each correct process.

Claim. With probability1, there is a round at the end of which all the correct processes have the samesg¢stvalue. (End of the
claim.)

Assuming the claim holds, it follows from Lemma 1 that all therecot processes; keep their estimate valuest; = v and
consequently the predicatelues; = {v} at line 07 is true at every round. Due to the common coin CC,libvis that, with
probability 1, there is eventually a round in whiehndom() outputsv. Then, the predicates of the lines 07 and 08 evaluate to true,
and all the correct processes decide.

Proof of the claim. We need to prove that, with probabilifyhere is a round at the end of which all the correct procesmes the
same estimate value. Let us consider a round
o If all the correct processes execute line 10, they all adupvtalue of the common coin at the end of roufh@nd the claim
directly follows.
e Similarly, if all the correct processes execute line 09y th@opt the same valueas their new estimate, and the claim follows.

e The third case is when some correct processes execute lined0@dapt the same valug while others execute line 10 and
adopt the same value

Due to the properties of the common coin, the value it compattasgiven round is independent from the values it computes
at the other rounds (and also from the Byzantine processkethametwork scheduler). Thusis equal tov with probability
p = 1/2. Let P(r) be the following probability (where” is the value ofr at roundr): P(r) = Probability3r’ : v/ < r:
v" =s""]. We haveP(r) = p+ (1 —p)p+---+ (1 —p)"1p. S0,P(r) = 1 — (1 — p)". Aslim,_, 1o P(r) = 1, the claim
follows. (End of the proof of the claim.)

DLemma 5

Theorem 2. The algorithm described in Figusolves the randomized binary consensus problem in the systei@l3Z_AS,, ,[t <
n/3,CC].

Proof BC-Validity follows from Lemma 3. BC-Agreement follows from trena 4. BC-One-shot follows from line 08. BC-
Termination follows from Lemma 5. OTheorem 2

Theorem 3. Letn > 3t. The expected decision time is constant (four rounds).

Proof As indicated in the proof of Lemma 5, termination is obtainetio phases. First, all the correct processes must adopt the
same value. Second, the outcome of the common coin has to be the same esrttmonly adopted value

It follows from the proof of Lemma 5 that there is only one sitoa in which the correct processes do not adopt the same.value
This is when the predicate of line 07 is satisfied for a subsebokect processes and not for the other correct processes, the
expected number of rounds for this to happe®.ié\s for the second phase, here again, the probability thatahe output by the
common coin is the same as the value held by all the correcepses id /2. Thus, the expected time for this to occur is atso
Combining the two phases, the expected termination tiaasinds (i.e., a small constant). O T heorem 3

Cost of the algorithm  As far as the cost of the algorithm is concerned, we have thefolg, where: > n —t denotes the number
of correct processes.

o If the correct processes propose the same value, each reguilgs two communication steps (one in the BV-broadcast an
one broadcast), and the expected number of rounds to dedide.i Moreover, the total number of messages sent by correct
processes is thehc n.

o If the correct processes propose different values, eaahdroequires three communication steps (two in the BV-braatc
and one broadcast), and the expected number of rounds ededbur. Moreover, the total number of messages sent by the
correct processes is thdre n per round.

¢ In addition to a round number, both a message[r|() and a messageux [r]() sent by a correct process carry a single bit.
An underlying message VAL () has to carry a round number and a bit.

¢ The total number of bits exchanged by the correct procesgegir log r) wherer is the number of rounds executed by the
correct processes. Hence, the expected bit complexityig ).
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10 A. Mostéfaoui & H. Moumen & M. Raynal

5 Conclusion

This paper has presented a new consensus algorithm suitsyehronous systems composechgirocesses, and where up to
t < m/3 processes may have a Byzantine behavior. This algorithesreh Rabin’'s common coin and an underlying binary-value
broadcast algorithm which guarantees that a value broadehsby Byzantine processes is never delivered to the coprecesses.

In addition to being-resilient optimal, the algorithm, which is round-based aighature-free, uses two or three communication
steps per round (this depends on the estimate values of trectprocesses at the beginning of a round), @(d?) messages per
rounds. Moreover, each message carries a round number andla lsit, and the expected number of rounds to decide is four
Finally, as claimed in the Introduction, and in additiont®efficiency-related properties, a very important firssslproperty of the
proposed algorithm lies in itdesign simplicity
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