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Ordonnancement de liste sous contraintes
m�emoire pour plateformes hybrides

R�esum�e : Ce rapport fournit des heuristiques d'ordonnancement de graphes
de tâches sur des ressources h�et�erog�enes avec contrainte m�emoire, telles les clus-
ters �equip�es de multicores et d'acc�el�erateurs d�edi�es (F PGA ou GPU). Chaque
tâche a un temps de traitement di��erent sur chaque ressource. L'objectif est
d'ordonnancer le graphe de fa�con �a minimiser le temps d'ex�ecution, �etant donn�e
la quantit�e de m�emoire disponible pour chaque ressource. En plusde l'ordre
dans lequel les tâches doivent être accomplies, il faut aussi d�ecider sur quelle
ressource elles seront ex�ecut�ees. Les contributions majeuresde ce rapport sont:
(i) la formulation d'un programme lin�eaire en nombres entiers pour ceprobl�eme
d'ordonnancement; et (ii) la conception d'heuristiques prenant en compte la
m�emoire plus performantes que les heuristiques de r�ef�erence HEFT et MinMin
sur une grande vari�et�e d'instances du probl�eme. Les performancesabsolues de
ces heuristiques sont �evalu�ees sur de petits graphes, allant jusqu'�a 30 tâches,
grâce au programme lin�eaire.

Mots-cl�es : Ordonnancement, Contrainte M�emoire, Travers�ee de graphes,
Programme lin�eaire, Ressources h�et�erog�enes
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1 Introduction

Modern computing platforms are heterogeneous: a typical node is composed of
a multi-core processor equipped with a dedicated accelerator, such as a FPGA
or a GPU. These two computational units (cores and accelerator) are strongly
heterogeneous. To complicates matters, each unit comes with its dedicated
memory. Altogether, such an architecture with two computational resources
and two memory types, which we call adual memory systemhereafter, leads to
new challenges when scheduling scienti�c work
ows on such platforms.

In recent work [10], we have introduced a simpli�ed model to assess the
complexity of scheduling for dual-memory systems. We have studied various
traversals of tree-shaped task graphs, where each task was pre-assignedto one
resource type, and where the optimization goal was to minimize the amountof
memory of both types. In real-life, there are several complications: (i) tasks are
not pre-assigned but can be dynamically assigned to either resource; (ii) task
graphs are general DAGs rather then trees; and (iii) one aims at optimizing
total execution time (or makespan) while minimizing memory usage. However,
the simpli�ed model was useful to assert the intrinsic di�cult y of the problem:
it is NP-complete to decide whether there exists a tree traversal that satis�es
bounds on each memory usage: worse, it is impossible to approximate within a
constant factor pair both absolute minimum memory amounts. Here the abso-
lute minimum memory of a given type is computed when assuming an in�nite
amount of memory of the other type. All theses results, although negative,have
laid the foundations of scheduling for dual-memory systems.

In this report, we adopt a pragmatic approach and address the general prob-
lem, that of scheduling general tasks graphs on dual-memory systems. The
objective is makespan minimization, while enforcing that memory capacities of
each type are not exceeded. Given the negative results listed above, there is
little hope to derive approximation algorithms. We lower our ambition and aim
at designing e�cient heuristics for this problem, which we validat e through an
extensive set of simulations for a variety of scienti�c benchmarks.However, one
major theory-oriented contribution of this report is the derivation of an Integer
Linear Program (ILP) formulation for the general problem. This linear program
turns out very intricate, due to expressing all constraints related to memory us-
age, and it has a large number of variables and constraints. Still, it enables us
to determine the optimal solution for small-size problems, up to 30 tasks, and
thereby to assess the optimal performance of our heuristics for small instances.

HEFT [17] is widely used for scheduling scienti�c work
ows on heteroge-
neous resources. It is an extension of critical-path list-scheduling that schedules
the current ready task on the resource that will complete its execution as soon as
possible (given already taken scheduling decisions). By considering task comple-
tion instead of task initiation, HEFT is able to take CPU speed heterogeneity
into account. However, HEFT has no provision to optimize memory usage,
even for a single-memory system, and a fortiori for a dual-memory one. An-
other main contribution of this report is to introduce a memory-aware variant of
HEFT for dual-memory systems. Similarly, we design a memory-aware variant
of MinMin [4], another reference heuristic for DAGs where the next task to be
executed is selected dynamically (rather than according to some static criteria
as in HEFT ): MinMin picks the ready task which has the smallest completion
time and executes it on the best available processor.
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The rest of the report is organized as follows. We start with a brief overview
of related work in Section 2. Then we detail the model and framework in
Section 3. Section 4 is devoted to expressing an optimal schedule in terms of
the solution of a complex ILP. We introduce the new heuristics in Section 5, and
assess their performance through an extensive set of simulations in Section 6.
Finally, we provide concluding remarks in Section 7.

2 Related work

2.1 Task graph scheduling

Computations with dependencies are naturally modeled through task graphs,
where nodes represent computational tasks and edges represent dependencies.
Task graph scheduling has been the subject of a wide literature, ranging from
theoretical studies to practical ones. On the theoretical side, themost used
techniques are list scheduling [6], clustering [15], and task duplication [2]. On the
practical side, task graphs have been widely used to model complex work
ows
in grid computing [8]. Scheduling task graphs on grids is the subject ofa wide
literature, and many tools exist to manage and schedule such work
ows,such as
MOTEUR [9]. These tools usually include scheduling heuristics to map work
ow
tasks onto available resources. These heuristics were often inherited from the
task graph scheduling literature, and were more or less adapted to cope with
the intrinsic heterogeneity of grid environments. The most famous task graph
scheduling algorithm for grids and heterogeneous platforms is HEFT [17], which
we use and adapt to our dual-memory context.

2.2 Scheduling with memory constraints

The problem of scheduling a task graph under memory constraints appearsin
the processing of scienti�c work
ows whose tasks require large I/O �les. Such
work
ows arise in many scienti�c �elds, such as image processing, genomics or
geophysical simulations. The problem of task graphs handling large data has
been identi�ed in [16] which proposes some simple heuristic solutions. Most
existing theoretical studies are restricted to tree-shaped taskgraphs, that arise
in some application domains such as the factorization of sparse matrices using
the multifrontal method [13, 12]. We refer the interested reader to our recent
paper [10] for an extended bibliography on adding memory constraints to the
problem of scheduling tree-shaped task graphs.

2.3 Hybrid computing

Hybrid computing consists in the simultaneous use of CPUs and GPUs to opti-
mize performance for high performance computing. Since CPUs and GPUs are
powerful for speci�c and di�erent tasks, its is natural to schedule tasks on their
\favorite" resource, that is, the resource where their execution time is minimal.
This has successfully been achieved to increase performance in linear algebra
libraries [1, 11]. There also exist software tools that schedule an application
composed of tasks with both CPU and GPU implementations on hybrid plat-
forms: for instance, StarPU [3] optimizes the execution time of an application

RR n ° 8461
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BLUE MEMORY

Proc
1

Proc
P 1

: : :

RED MEMORY

Proc
P 1 + 1

Proc
P 1 + P 2

: : :

Communications

P1 blue processors P 2 red processors

Figure 1: Description of the dual-memory platform.

by scheduling its tasks on multiple kinds of resources, based on predictions of
execution and data transfer times.

3 Model and framework

As stated above, we deal with general task graph traversals on a dual-memory
system, where each task can be executed on either of the two processing units,
that is, with its associated data in one of either memory. Dependencies are
in the form of input and output �les: each task accepts a set of �les as input
from each of its parent nodes in the DAG, and produces a set of �les tobe
consumed by each child node. We start this section by formally writing all the
constraints that need to be satis�ed during a traversal. Finally, we state the
target optimization problem in Section 3.3.

3.1 Flow and resources constraints

We consider, in this report, a dual-memory heterogeneous platform with P1

identical processors which share the �rst memory and with P2 identical pro-
cessors which share the second memory. For clarity, in the rest of thereport,
the �rst memory will be referred to as the blue memory and the P1 processors
sharing it will be called the blue processors. Similarly, the second memory and
its processors will be associated to the colorred as depicted in Figure 1.

The application is described by a Directed Acyclic GraphD = ( V; E) com-
posed ofjV j = n nodes, or tasks, numbered from 1 ton. We let Children(i ) =
f j 2 V s.t. (i; j ) 2 Eg denote the set of the children ofi and Parents(i ) = f j 2
V s.t. (j; i ) 2 Eg denotes the set of the parents ofi . Dependencies imply a
topological order, where a parent node has to be processed before its children.
Here are some de�nitions:

ˆ Each task i in the DAG requires a processing time ofW (1)
i on one of the

blueprocessors and a processing time ofW (2)
i on one of thered processors.

ˆ Each communication (i; j ) 2 E is instantaneous if nodesi and j are exe-
cuted on processors that belong to the same memory. Otherwise, the �le
produced by nodei and needed as input by nodej has to be sent from
one memory to the other. This transfer takesCi;j time units.

RR n ° 8461
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For example, consider the toy example DAGDex depicted in Figure 2. Task
T1 can be processed inW (1)

1 = 3 time units on a blue processor and inW (2)
1 =

1 time unit on a red processor. If tasksT1 and T2 are not executed on the
same memory, the communication (T1; T2) will take C1;2 = 1 time unit to be
processed. We point out that all communication times are set arbitrarily to 1
in this example (e.g., to account for a high start-up cost). Of course, ana�ne
formula (such asCi;j = � + �F i;j ), or even arbitrary values, can be used in the
model.

T 1 :

T 2 : : T 3

T 4 :

W (1)
1 = 3

W (2)
1 = 1

W (1)
3 = 6

W (2)
3 = 3

W (1)
2 = 2

W (2)
2 = 2

W (1)
4 = 1

W (2)
4 = 1

F1;2 = 1

C1;2 = 1

F1;3 = 2

C1;3 = 1

F2;4 = 1

C2;4 = 1

F3;4 = 2

C3;4 = 1

Figure 2: Description of Dex .

Given an application DAG, our goal is to determine where each task should
be executed (the allocation) and at what time each task and communication
may be started (the starting times). The allocation is described by function
proc : V ! J1; P1 + P2K where 8i 2 V , proc(i ) represents the index of the
processor that processes taski . proc(i ) � P1 represents ablue processor while
proc(i ) > P 1 represents ared processor. The starting times are expressed as
two functions � : V ! R+ and � : E ! R+ where 8i 2 V , � (i ) represents
the starting time of task i and 8(i; j ) 2 E , � (i ) represents the starting time of
communication (i; j ).

Let Wi be the actual processing time of taski in the schedules = ( �; �; proc):

Wi =

(
W (1)

i if proc(i ) � P1

W (2)
i otherwise

We note COMM i;j the actual time taken by communication (i; j ) in the schedule
s = ( �; �; proc):

COMM i;j =

8
<

:

0 if proc(i ) � P1 and proc(j ) � P1

0 if proc(i ) > P 1 and proc(j ) > P 1

Ci;j otherwise

A schedules = ( �; �; proc) of D is a valid scheduleif it respects:
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Figure 3: Representation of schedules1 for Dex .

ˆ 
ow dependencies,8(i; j ) 2 E :
�

� (i ) + Wi � � (i; j )
� (i; j ) + COMM i;j � � (j )

ˆ resource constraints,8(i; j ) 2 V 2:

proc(i ) = proc(j ) =)

8
<

:

� (i ) � � (j ) + Wj

or
� (j ) � � (i ) + Wi

The makespan of the schedule is the �nish time of the last task:

Makespan= max
i 2 V

(� (i ) + Wi )

Back to the example Dex , on a dual-memory platform with one blue pro-
cessor and onered processor (P1 = P2 = 1), consider the following schedules1

depicted in Figure 3 for :
8
>><

>>:

� 1(T1) = 0 ; � 1(T2) = 2 ; � 1(T3) = 1 ; � 1(T4) = 5
� 1(T1; T2) = 1 ; � 1(T2; T4) = 4
proc1(T1) = 2 ; proc1(T2) = 2 ; proc1(T3) = 1
proc1(T4) = 2

Schedules1 = ( � 1; � 1; proc1) is a valid schedule forDex , with Makespan= 6.

3.2 Memory constraints

As stated above, in our model, the dependencies are in the form of input and
output �les. Each node i in the DAG has an input �le of size Fj;i for each
j 2 P arents(i ). If i is not the root, its input �le is produced by its parents;
if i is the root, then Parents(i ) = ; and its input �les may be of null size, or
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it may receive input from the outside world. Each non-terminal node i in the
DAG, when executed, produces a �le of sizeFi;j for each j 2 Children(i ). If i
is a terminal node, then Children(i ) = ; and i produces a �le of null size (we
consider that terminal data produced by terminal nodes are directly sent to the
outside world).

During the processing of a taski on one of the processors, the memory on
which this processor operates must contain all the input and output �les. The
amount of memory MemReq(i ) that is needed for this processing is thus:

MemReq(i ) =

0

@
X

j 2 Parents ( i )

Fj;i

1

A +

0

@
X

j 2 Children ( i )

Fi;j

1

A

For instance, in Dex , MemReq(T3) = F1;3 + F3;4 = 4. Note that the memory
needed for the execution of the task itself can easily be accounted for,by adding
a �ctitious parent task. After task i has been processed, its input �les are
discarded, while its output �les are kept in memory until the proc essing of its
children. Thus, for a schedules = ( �; proc) of D , if a node i is processed by a
blueprocessor, the actual amount ofbluememory used to process the nodei is:

BlueMemUsed(s; i) =

0

@
X

j 2 Children ( i )

Fi;j

1

A +
X

e2 Sblue

Fe

where Sblue denotes the set of �les (represented by the edges ofD ) stored in
the blue memory, when the scheduler decides to execute taski . Note that Sblue

must contain the input �les of task i . After the processing of nodei , we have:

Sblue  (Sblue nf (j; i ); j 2 P arents(i )g)

[ f (i; j ); j 2 Children(i )g

Of course, the same holds forRedMemUsedand Sred is i happens to be processed
by a red processor. Initially, the input �le of the root is arbitrarily locat ed in
Sblue .

Consider the schedules1 depicted in Figure 3. The execution of taskT1

usesRedMemUsed(T1) = F1;2 + F1;3 = 3 units of red memory. The execution
of task T2 usesBlueMemUsed(T2) = F1;2 + F2;4 = 2 units of blue memory. The
execution of taskT3 usesRedMemUsed(T3) = F1;2 + F1;3 + F3;4 = 5 units of red
memory. And the execution of taskT4 usesRedMemUsed(T4) = F2;4 + F3;4 = 3
units of red memory.

Each time there is a data dependence between two tasks assigned to dif-
ferent memories, the output �le of the source task has to be loaded from one
memory into the other. During the processing of the communication (i; j ), both
memories contains the �le of sizeFi;j being copied. Thus, for instance, ifi has
been assigned on ablue processor andj has been assigned on ared processor,
the amount of blue and red memory needed for this processing isFi;j :

BlueMemReq(i; j ) = Fi;j ; RedMemReq(i; j ) = Fi;j

After the communication has been processed, the input �le from theblue
memory is discarded, while the output �le is kept in the red memory until the
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processing ofj . Thus, for a schedules = ( �; proc) of T , the actual amounts of
memory used to process the communication (i; j ) are:

BlueMemUsed(s; (i; j )) = Fi;j +
X

e2 Sblue nf ( i;j )g

Fe

RedMemUsed(s; (i; j )) = Fi;j +
X

e2 Sred

Fe

Note that Sblue must contain the input �le of task i . After the processing of the
communication (i; j ) we have:

Sblue  Sblue nf (i; j )g

Sred  Sred [ f (i; j )g

It is important to state that communication ( i; j ) does not need to be �red
right after the execution of task i . The only constraint is that the processing of
communication (i; j ) must follow the execution of i and precede the execution
of j . This 
exibility in the schedule severely complicates the search for e�cient
traversals.

3.3 Optimization problem

As stated above, we face an optimization problem under memory constraints.
The memory peakis the maximum usage of each memory over the whole schedule
s = ( �; proc) of the DAG D , and is de�ned for the blueand the red memory by:

M s
blue (D) = max

i
BlueMemUsed(s; i)

M s
red (D) = max

i
RedMemUsed(s; i)

In practical settings, the amount of memory at disposal is limited. Let note
M (blue ) and M ( red ) the bounds on the blue and the red memories. We aim at
�nding the optimal schedule sopt (M (blue ) ; M ( red ) ) of the DAG D , de�ned as the
schedule with minimal makespan among all scheduless that does not require
more memory than available, i.e., that enforce the bounds on memory peaks:
M s

blue (T ) � M (blue ) and M s
red (T ) � M ( red ) . From [10], we know that this

problem is NP-complete, even without any makespan constraint.
Back to the schedules1 described in Figure 3, assume a dual-memory plat-

form with one blue processor and onered processor. We compute thats1 uses
M s1

blue (Dex ) = 2 units of blue memory and M s1
red (Dex ) = 5 units of red memory.

If we set the memory boundsM (blue ) = M ( red ) = 5, it is clear that s1 is the
optimal schedule. But if we setM (blue ) = M ( red ) = 4, s1 is no longer an accept-
able schedule. In this case, the optimal schedule forDex will be s2, the schedule
depicted in Figure 4. Schedules2 has a smaller memory peak thans1 but has
a larger Makespan = 7. This small example illustrates the necessary tradeo�
between memory and makespan.
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Figure 4: Representation of schedules2

4 ILP formulation

In this section, we describe how to compute an optimal schedule� opt through
a computationally expensive ILP (Integer Linear Program). The objective is
twofold: (i) to provide an optimal solution for small instances and (ii) t o compare
the heuristics presented in the following section with the optimal schedule, to
evaluate their absolute quality.

Our approach is motivated by the successful attempt to derive such anILP
formulation for several variants of the DAG scheduling problems, suchas [18,
7]. However, to the best of our knowledge, none of the existing ILP handles
the memory usage of the schedule. A major contribution of this report isthe
introduction of additional constraints that enforce memory constraints, as those
described in Section 3.2.

The variables used by our linear program are listed in Figure 5. Thet i 's
and � ij 's variables represent the starting time of the tasks and of the commu-
nications. M is the makespan value to minimize. Thepi 's and bi 's variables
describe the allocation of taski on the resources and are used to compute the
value of the wi 's variables, which represent the actual computing time of taski .
The � ij 's and � ij 's variables are used to enforce resources constraints. Finally,
to compute the amount of memory used by the schedule at any time, we need
to know the order in which all tasks and communications are processed.This
is achieved through variables� ij , � 0

kij , mij , m0
kij , cijk , c0

ijkp , dijk and d0
ijkp .

These numerous variables are needed to ensure that the schedule isproperly
de�ned, and that we precisely know which tasks are processed and which data
are present in a given memory at any time, to ensure that the memory usage is
kept below the prescribed bound.

Due to the numerous variables that describe a schedule, the linearprogram
counts a large number of constraints to ensure that these variables correspond
to their de�nition given in Figure 5. For the sake of completeness, we give the
whole linear program in Figure 6, and we detail the most signi�cant constraints
below.

Constraints (1) to (25) describes a schedule of the DAG onto the heteroge-
neous platform, and have nothing to do with memory constraints. They also
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M makespan of the corresponding schedule
t i starting time of task i
� ij starting time of communication ( i; j )
pi index of the processor where the task i is to be executed
bi equal to 0 if task i is executed on thered memory and 1 if it is executed on theblue memory
wi actual computing time of task i in the corresponding schedule
� ij equal to 1 if the processor index of taski is strictly less than that of task j and 0 otherwise
� ij equal to 1 if task i and task j are executed on the same memory and 0 otherwise
� ij 1 if task i �nishes before task j starts and 0 otherwise
� 0

kij equal to 1 if task k �nishes before communication (i,j) starts and 0 otherwise
mij equal to 1 if task i starts before task j starts and 0 otherwise
m0

kij equal to 1 if task k starts before communication (i,j) starts and 0 otherwise
cijk equal to 1 if communication (i; j ) starts before task k starts and 0 otherwise
c0

ijkp equal to 1 if communication (i; j ) starts before communication (k; p) starts and 0 otherwise
dijk equal to 1 if communication (i; j ) �nishes before task k starts and 0 otherwise
d0

ijkp equal to 1 if communication (i; j ) �nishes before communication (k; p) starts and 0 otherwise

Figure 5: Variables of the linear program

ensure that communication times are respected when a data needs to be moved
from one memory to another. Here is a short description of these constraints:

ˆ Constraint (1) ensures that variable M representing the makespan will be
larger than or equal to the completion time of the last task.

ˆ Constraint (2) ensures that communication (i; j ) starts after the comple-
tion of task i .

ˆ Constraints (3) ensures that task j starts after the completion of every
possible communication (i; j ). We can note that, since� ij = 1 if and only
if task i and j are executed on the same memory, (1� � ij )Cij is the actual
processing time of communication (i; j ).

ˆ In Constraints (4a) and some of the following ones, we need an upper
bound M max on the possible value ofM . This bound is set arbitrarily
to M max =

P
i 2 V W (1)

i +
P

i 2 V W (2)
i +

P
( i;j )2 E Ci;j . Constraints (4a),

(4b) and (14) ensure that mi;j and mj;i are correctly de�ned: mi;j = 1 if
t j > t i , mi;j = 0 if t j > t i and if t j = t i , at least one betweenmij and mji

is equal to 1. This is important when computing the amount of memory
in Constraint (26).

ˆ Similarly Constraints (5a) to (18) ensure that m0
kij 's, � ij 's, � 0

kij 's, cijk 's,
c0

ijkp 's, dijk 's, d0
ijkp 's, � 0

ij 's and bi 's variables are well de�ned.
ˆ Constraint(19) ensures that task ordering is de�ned consistently, even for

tasks with zero processing time (such tasks will appear when pipelining
communications in Section 6).

ˆ Constraint (20) ensures that if communication (i; j ) starts before task
k starts, task i must �nish before task k starts. Similarly Constraints
(21) and (22) ensure that the linear program de�nes a valid schedule for
communications and tasks.

ˆ Constraints (23) ensures that � ij 's variables are well de�ned, i.e., � ij = 1
if and only if bi = bj .

ˆ Constraints (24a) and (24b) ensure that wi 's variables are well de�ned,
i.e., wi = W (1)

i if and only if bi = 0 and wi = W (2)
i if and only if bi = 1.

ˆ Constraint (25) represents resource constraints as seen in Section 3.1:if
two tasks are running at the same time, they are not on the same processor.

Finally, Constraint (26) deals with memory constraints, and ensures that
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mint;p;�;� M
8i 2 V; ti + wi � M (1)

8(i; j ) 2 E; t i + wi � � ij (2)
8(i; j ) 2 E; � ij + (1 � � ij )Cij � t j (3)
8i 6= j 2 V; tj � t i � mij M max � 0 (4a)
8i 6= j 2 V; tj � t i + (1 � mij )M max � 0 (4b)

8k 2 V;8(i; j ) 2 E; � ij � tk � m0
kij M max � 0 (5a)

8k 2 V;8(i; j ) 2 E; � ij � tk + (1 � m0
kij )M max � 0 (5b)

8i 6= j 2 V; tj � t i � wi � � ij M max � 0 (6a)
8i 6= j 2 V; tj � t i � wi + (1 � � ij )M max � 0 (6b)

8k 2 V;8(i; j ) 2 E; � ij � tk � wk � � 0
kij M max � 0 (7a)

8k 2 V;8(i; j ) 2 E; � ij � tk � wk + (1 � � 0
kij )M max � 0 (7b)

8k 2 V;8(i; j ) 2 E; t k � � ij � cijk M max � 0 (8a)
8k 2 V;8(i; j ) 2 E; t k � � ij + (1 � cijk )M max � 0 (8b)
8(k; p) 6= ( i; j ) 2 E; � kp � � ij � c0

ijkp M max � 0 (9a)
8(k; p) 6= ( i; j ) 2 E; � kp � � ij + (1 � c0

ijkp )M max � 0 (9b)
8k 2 V;8(i; j ) 2 E; t k � � ij � (1 � � ij )Cij � dijk M max � 0 (10a)
8k 2 V;8(i; j ) 2 E; t k � � ij � (1 � � ij )Cij + (1 � dijk )M max � 0 (10b)
8(k; p) 6= ( i; j ) 2 E; � kp � � ij � (1 � � ij )Cij � d0

ijkp M max � 0 (11a)
8(k; p) 6= ( i; j ) 2 E; � kp � � ij � (1 � � ij )Cij + (1 � d0

ijkp )M max � 0 (11b)
8i; j 2 V; pj � pi � � ij jP j � 0 (12a)

8i 6= j 2 V; pj � pi � 1 + (1 � � ij )jP j � 0 (12b)
8i 2 V; pi � j P0j � j P jbi � 0 (13a)
8i 2 V; pi � j P0j � 1 + (1 � bi )( jP j + 1) � 0 (13b)

8i; j 2 V; mij + mji � 1 (14)
8i; j 2 V; � ij + � ji � 1 (15)

8(i; j ) 2 E; 8k 2 V; m0
kij + cijk � 1 (16)

8(i; j ); (k; p) 2 E; c0
ijkp + c0

kpij � 1 (17)
8(i; j ); (k; p) 2 E; d0

ijkp + d0
kpij � 1 (18)

8i 2 V;8k 2 V; mik � � ik (19)
8(i; j ) 2 E; 8k 2 V; � ik � cijk (20)
8(i; j ) 2 E; 8k 2 V; cijk � dijk (21)
8(i; j ) 2 E; 8k 2 V; dijk � mjk (22)

8i; j 2 V; � ij � 1 + bi � bj ; � ij � 1 + bj � bi ;
� ij � bi + bj � 1 and � ij � 1 � bi � bj (23)

8i 2 V; wi � bi W
(2)
i + (1 � bi )W

(1)
i (24a)

8i 2 V; wi � bi W
(2)
i + (1 � bi )W

(1)
i (24b)

8i 6= j 2 V; � ij + � ji + � ij + � ji � 1 (25)
8i 2 V;

P
(k;p )2 E (� ik (mki � dkpi ) + � ip (ckpi � � pi ))Fkp

� bi M blue + (1 � bi )M red (26)
8(i; j ) 2 E;

P
(k;p )2 E (� kj (m0

kij � d0
kpij ) + � pj (c0

kpij � � 0
pij ))Fkp

� bj M (blue ) + (1 � bj )M ( red ) + � ij M max (27)

Figure 6: Constraints of the ILP.
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the model de�ned in Section 3.2 is observed at the beginning of each task i .
Speci�cally, bi M blue + (1 � bi )M red is the memory bound on the memory on
which task i is executed. Wheni is started, we ensure that the sum of the
�les stored in the corresponding memory when we start taski is smaller than
this bound. We claim that 8(k; p) 2 E , the �le of size Fkp will be in the
corresponding memory when taski starts if and only if either "task i and task
k are in the same memory and we started taskk but communication (k; p)
is not �nished yet" or "task i and task p are in the same memory and we
started communication (k; p) but task p is not �nished yet". This explains
Constraint (26). Similarly Constraint (27) ensures that the memory constraint
is respected at the beginning of every communication (i; j ).

Constraints (26) and (27) are not linear. However, they can be linearized
using the technique presented in [18, 7]. To do so, we introduce the variables
� kpi = � ik (mki � dkpi ), � kpi = � ip (ckpi � � pi ), � 0

kpi = � kj (m0
kij � d0

kpij ) and
� 0

kpij = � pj (c0
kpij � � 0

pij ). Constraints (26) and (27) are then replaced by the
constraints in Figure 7.

8i 2 V;
P

(k;p )2 E (� kpi + � kpi )Fkp

� bi M ( red ) + (1 � bi )M (blue ) (26)
8i 2 V;8(k; p) 2 E; � kpi � � ik + mki � dkpi � 1 (26a)
8i 2 V;8(k; p) 2 E; 2� kpi � � ik + mki � dkpi (26b)
8i 2 V;8(k; p) 2 E; � kpi � � ip + ckpi � � pi � 1 (26c)
8i 2 V;8(k; p) 2 E; 2� kpi � � ip + ckpi � � pi (26d)

8(i; j ) 2 E;
P

(k;p )2 E (� 0
kpij + � 0

kpij )Fkp

� bi M ( red ) + (1 � bi )M (blue ) + � ij M max (27)
8(i; j ) 2 E; 8(k; p) 2 E; � 0

kpij � � kj + m0
kij � d0

kpij � 1 (27a)
8(i; j ) 2 E; 8(k; p) 2 E; 2� 0

kpij � � kj + m0
kij � d0

kpij (27b)
8(i; j ) 2 E; 8(k; p) 2 E; � 0

kpij � � pj + c0
kpij � � 0

pij � 1 (27c)
8(i; j ) 2 E; 8(k; p) 2 E; 2� 0

kpij � � pj + c0
kpij � � 0

pij (27d)

Figure 7: Linearization of the last two constraints of the ILP.

For an arbitrary DAG D = ( V; E) with jV j = n nodes andjE j = m edges,
the ILP has O(m2 + mn) variables and O(m2 + mn) constraints.

5 Heuristics

Given the complexity of optimizing the makespan under memory constraints,
we propose two heuristics in this section,MemHEFT and MemMinMin . The
key idea is to add memory awareness to the design of traditional scheduling
heuristics.

5.1 The MemHEFT algorithm

MemHEFT is based onHEFT (Heterogeneous Earliest Finish Time) [17]. The
HEFT algorithm is highly competitive and widely used to schedule static DAGs
on heterogeneous platforms with a low time complexity.HEFT has two major
phases: atask prioritizing phase for computing the priorities of all tasks , and a
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processor selection phasefor allocating each task (in the order of their priorities)
to their best processor, de�ned as the one which minimizes the task �nish time.

The MemHEFT algorithm follows the same pattern asHEFT . In our model,
there are only two processor types, hence each selected task will be mapped on
one of two candidates, namely the processors with earliest available time in
each type. In other words, the processor selection phasecan be renamed as
the memory selection phase. In addition, MemHEFT checks memory usage, as
explained below.

Task prioritizing phase. This phase is the same as in HEFT and requires
the priority of each task to be set with the upward rank value, rank (i ), which
is based on mean computation and mean communication costs:

8i 2 V; rank (i ) =
W ( red )

i + W ( blue )
i

2
+ max

j 2 Children ( i )
f rank (j ) +

Ci;j

2
g

where � + (i ) denotes the immediate successors of taski . The task list is gen-
erated by sorting the tasks by non-increasing order ofrank (i ). Tie-breaking is
done randomly.

Memory selection phase. For each selected taski and for each memory
� 2 f red; blueg, we have to computeEST ( � ) (i ) the earliest execution start time
of task i on memory � (derived from a given partial schedule). This earliest
execution start time has to take into account (i) resource, (ii) precedence, and
(iii) memory constraints.

From a resource perspective, taski can not be executed on memory� before
one of the processors operating on memory� is available. Thusresource EST ( � ) (i ),
the earliest start time of task i on memory � from a resource point of view, can
be expressed as:

resource EST ( � ) (i ) = min
proc in � mem

f avail [proc]g

whereavail [proc] is the �nish time of the last task assigned toproc in the partial
schedule.

From a precedence perspective, all immediate predecessorsj 2 Parents(i ) of
task i must have been scheduled. ThusprecedenceEST ( � ) (i ) , the earliest start
time of task i on memory � from a precedence point of view, can be expressed
as:

precedenceEST ( � ) (i ) = max
j 2 Parents ( i )

f AF T (j ) + � ( � )
j Cj;i g

where � ( � )
j = 0 is task j is executed on memory� , 1 otherwise, andAF T (j ) is

the actual �nish time of task j in the partial schedule.
From a memory perspective, we have to keep trace of the memory consump-

tion of our schedule to ensure that it does not violate the memory constraints.
Thus, the MemHEFT algorithm maintains for each memory � the function
free mem( � ) (t) that represents the amount of the � memory available at time t
in the partial schedule. Herefree mem( � ) is a staircase function (the de�nition
spaceR can be partitioned in a �nite number of intervals where free mem( � )

is constant) that can be stored as a list of couples [(x1; val1); ::; (x ` ; val` )] such
that:

8i 2 [1; ` � 1]; 8t 2 [x i ; x i +1 [; free mem( � ) (t) = vali

and 8t � x ` ; free mem( � ) (t) = val` . Note that val` can be non-zero since the
partial schedule may keep some �lesFi;j stored in the memories if task i has
been scheduled but taskj has not.
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Thus, to process taski on memory � at time t without violating memory
constraints, there must be enough available memory to store all the input �les
of task i that were not stored on memory � yet, and all its output �les. Thus,
the earliest start time of task i on memory � from the memory point of view
can be expressed as:

task mem EST ( � ) (i ) = min f t; such as8t0 � t;

free mem( � ) (t0) �
X

j 2 Parents ( i )

(1 � � ( � )
j )Fj;i +

X

j 2 Children ( i )

Fi;j g

If free mem( � ) is stored as a list of sizè , task mem EST ( � ) (i ) can be computed
in time O(`).

The MemHEFT algorithm enforces that when a task i is assigned to the
memory � , every communication (j; i ) 2 E such as� ( � )

j = 0 will start as late as

possible, and will all have a processing timeC( � )
i = max ( j;i )2 E f (1 � � ( � )

j )Ci;j g.
Thus, to process taski on memory � , the earliest start time of every communi-
cation (j; i ) 2 E from the memory point of view can be expressed as:

comm mem EST ( � ) (i ) = min f t; such as8t0 � t;

free mem( � ) (t0) �
X

j 2 Parents ( i )

(1 � � ( � )
j )Fj;i g

If free mem( � ) is stored as a list of sizè , comm mem EST ( � ) (i ) can be com-
puted in time O(`).

Finally, the earliest execution start time of task i on memory � will be
expressed as:

EST ( � ) (i ) = max f resource EST ( � ) (i );

precedenceEST ( � ) (i );

task mem EST ( � ) (i );

comm mem EST ( � ) (i ) + C( � )
i g

The selected taski is assigned to the memory� min that minimizes its earliest
�nish time EFT ( � ) (i ) = EST ( � ) (i )+ W ( � )

i and then, to the proc that minimizes
the idle time EST(i; � min ) � avail proc(proc).

5.2 The MemMinMin algorithm

The MemMinMin algorithm does not include a task prioritizing phase but dy-
namically decides the order in which tasks are mapped onto resources.It is
the memory-aware counterpart of the MinMin heuristic [4]. Indeed, at each
step, MemMinMin maintains the set available tasks representing the tasks
whose predecessors have already been scheduled. Then it selectsthe task
i min in available tasksand the memory� min 2 f red; blueg that minimizes EFT ( � ) (i )
as de�ned in Section 5.1 (computed from a partial schedule). For a DAGD with
jV j = n nodes andjE j = m edges, both heuristics have a worst-case complexity
of O(n2(n + m)).
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Algorithm 1: MemHEFT

Data : task graph (V; E), processing times (W ( red )
i ; W (blue )

i ), data sizesFi;j ,
communication times Ci;j , and memory bounds (M (blue ) ; M ( red ) )

Result : A mapping of the tasks onto the processors

foreach task i in a reverse topological order of the graphdo
rank i  1

2 (W ( red )
i + W (blue )

i ) + max j 2 � + ( i ) (rank j + C i;j

2 )
end
sorted tasks  sorted list of tasks by non-increasing order ofrank i values
free mem( red )  M ( red ) , free mem(blue )  M (blue )

foreach processorp do avail proc(p)  0
while sorted tasks is not emptydo

index  0
while index < size ofsorted tasks do

i  sorted tasks[index]
for � 2 f red; blueg do

Compute resource EST ( � ) (i ), precedenceEST ( � ) (i ),
task mem EST ( � ) (i ), comm mem EST ( � ) (i ), and EFT ( � ) (i )

end
if EFT (red) (i ) < + 1 or EFT (blue) (i ) < + 1 then

Assign task i to the memory � that minimizes EFT ( � ) (i ) and, then,
to the processorp that minimizes EFT (i; � ) � avail proc(p)

Schedule communications (j; i ) to start at EFT (i; � ) � W ( � )
i � C( � )

i
Remove taski from sorted tasks
Update free mem( red ) , free mem(blue ) , and avail proc
break

else
if index < size of sorted tasks - 1 then

index + +
continue

else
Error("The graph can not be process within the memory
bounds")

end
end

end
end

6 Simulation results

In this section, we conduct several simulations to compare the two heuristics
MemHEFT and MemMinMin proposed in Section 5, and to assess their ab-
solute performance w.r.t. to the (optimal) ILP solution (Section 4). For each
heuristic, we compute its makespan for various amounts of the availableblue
and red memories. The heuristics have been implemented in Python 2.7. Source
code for all the algorithms, heuristics and simulations is publicly available at
http://perso.ens-lyon.fr/julien.herrmann/ . The optimal makespan for
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Algorithm 2: MemMinMin

Data : task graph (V; E), processing times (W ( red )
i ; W (blue )

i ), data sizesFi;j ,
communication times Ci;j , and memory bounds (M (blue ) ; M ( red ) )

Result : A mapping of the tasks onto the processors

available tasks  list of sources of graph (V; E)
�nished tasks  ;
free mem( red )  M ( red ) , free mem(blue )  M (blue )

foreach processorp do avail proc(p)  0
while available tasks is not emptydo

foreach task i in available tasks do
for � 2 f red; blueg do

Compute resource EST ( � ) (i ), precedenceEST ( � ) (i ),
task mem EST ( � ) (i ), comm mem EST ( � ) (i ), and EFT ( � ) (i )

end
end
if for each taski in available tasks; EFT (red) (i ) = + 1 and
EFT (blue) (i ) = + 1 then

Error("The graph can not be process with this memory bounds")
else

Let i min be the task with minimal value of EFT ( � ) (i ) and � min

corresponding memory
Assign task i min to the memory � min and, then, to the processorp that
minimizes EFT (i min ; � min ) � avail proc(p)
Schedule communications (j; i min ) to start at
EFT (i min ; � min ) � W ( � min )

i � C( � )
i

�nished tasks  �nished tasks[ f i min g
Add in available tasks all tasks not in �nished tasks and whose
predecessors are all in�nished tasks
Update free mem( red ) , free mem(blue ) , and avail proc

end
end

small graphs has been computed by solving the ILP using the IBMr ILOG r

CPLEX r Interactive Optimizer 12.5.0.0.

6.1 Experimental setup

We use four di�erent sets of DAGs: (i) two synthetic sets (randomly gener-
ated) of di�erent sizes ,SmallRandSet , and LargeRandSet ; and (ii) two
applicative sets (from linear algebra benchmarks),LUSet and CholeskySet .

6.1.1 Random task graphs

The �rst and second sets are random DAGs, generated using the Directed
Acyclic Graph GENerator (DAGGEN) 1. DAGGEN uses four popular parame-
ters to de�ne the shape of the DAG: size, width, density and jumps.

1The code for the generator is publicly available at https://github.com/frs69wq/daggen .
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ˆ The size determines the number of node in the DAG. Nodes are organized
in levels.

ˆ The width determines the maximum parallelism in the DAG, that is the
number of tasks in the largest level. A small value leads to "chain" graphs
and a large value to "fork-join" graphs.

ˆ The density denotes the number of edges between two levels of the DAG,
with a low value leading to few edges and a large value to many edges.

ˆ Finally random edges are added that go from levell to levels l + 1 : : : l +
jumps.

The �rst two parameters take values between 0 and 1. This DAG generation
procedure is similar to the one used in [14].

SmallRandSet is a set of 50 randomly generated DAGs using valuessize =
30, width = 0 :3, density = 0 :5 and jumps = 5. Then, for each node, the values
W (1)

i and W (2)
i are randomly chosen between 1 and 20 and, for each edge, the

values Ci;j and Fi;j are randomly chosen between 1 and 10. One graph of
SmallRandSet is depicted in Figure 8.

LargeRandSet is a set of 100 randomly generated DAGs using values
size = 1000, width = 0 :3, density = 0 :5 and jumps = 5. Then, for each node
and each edge, the valuesW (1)

i , W (2)
i , Ci;j and Fi;j are randomly chosen between

1 and 100. One graph ofLargeRandSet is depicted in Figure 9.

6.1.2 Linear algebra task graphs

The third and four sets contain representative DAGs from dense linear algebra
kernels.

LUSet contains DAGs representing the task graph of the LU factorization
of a tiled square matrix. At each step of this factorization, the diagonal tile
is factored with a GETRF kernel, the �rst row and the �rst column of t iles
are eliminated with a TRSM kernel, and the remaining tiles are updated with
a GEMM kernel. Another step of the LU factorization is then applied on the
trailing matrix involving a work
ow dependencies among the kernels working
on the same tiles.

CholeskySet contains DAGs representing the task graph of the Cholesky
factorization of tiled symmetrical matrix. At each step of this factoriz ation,
the diagonal tile is factored with a POTRF kernel, the �rst column and t he
diagonal of tiles are processed with respectively a TRSM and a SYRK kernel,
and the remaining tiles are updated with a GEMM kernel. Another step of
the Cholesky factorization is then applied on the trailing matrix invol ving a
work
ow dependencies among the kernels working on the same tiles.

More details on the tiled LU and Cholesky factorizations can be found in [5].
The classic DAGs of both factorizations do not exactly �t our model, as the
output of a node (typically the kernel used for factoring a diagonal tile) may
be used as an input for several other tasks. Hence we add a linear pipeline of
�ctitious null-size tasks that models the broadcast of the output to t he target
tasks. The DAG for the LU factorization of a n � n tiled matrix has 4

3 n3 nodes,
whereas the DAG for the Cholesky factorization has2

3 n3 nodes (and there are
O(n2 �ctitious tasks).
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Figure 8: One DAG in SmallRandSet .
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Figure 9: One DAG in LargeRandSet .
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Kernels getrf gemm trsm l trsml u potrf syrk
Running time in ms 450 1450 990 830 450 990

Table 1: Average performance of the linear algebra kernels on a 192� 192 tile

The running times of the linear kernels have been measured on themirage
platform, an heterogeneous system composed of two Intel hexacore processors
X5650 at 2.67 GHz having 12 MB of L3 cache for a total of 12 cores and 36
GB of main memory, equipped with three NVIDIA Tesla M2070 GPUs having
6 GB of memory each. We associate theblue processors to the CPUs and the
red processors to the GPUs. The running times were estimating by performing
measurement with the MAGMA library [1] (using tiles of size 192� 192 in double
precision) and are given in Table 1.

For communication costs, the average observed time to send one tile froma
CPU to a GPU was approximatively 50 ms, thus all Ci;j have been set to this
value. The �les sent and received by the tasks contain the value of thetiles.
Since all tiles have the same size, we consider that for each edge (i; j ) in the
DAG, Fi;j = 1, one unit of memory corresponding to one tile.

6.2 Results

6.2.1 SmallRandSet

To assess the absolute performance of the heuristics, we compare themto the
optimal schedule found by the ILP described in Section 4. Note thatSmall-
RandSet is the only set for which the ILP is able to compute a solution in a
reasonable time. We aim at �nding a schedule for each DAGs inSmallRand-
Set with the smallest makespan as possible and under the same memory bound
for each memoryM (blue ) = M ( red ) = M (bound ) .

First, we compute for each DAG D the makespanMakespanHEFT returned
by the classical memory-obliviousHEFT algorithm and its maximum usage
of each memoryM HEFT

blue (D) and M HEFT
red (D). The idea is that the classical

HEFT algorithm will not be able to schedule D on a platform with less than
these amounts ofblueand red memory. It is also clear that if the memory bounds
respectM (blue ) � M HEFT

blue (D) and M ( red ) � M HEFT
red (D), MemHEFT will take

exactly the same decisions asHEFT . Thus if M (bound ) � max(M HEFT
blue (D); M HEFT

red (D)),
the performance of MemHEFT will be the same as that of HEFT . Figure 10
reports the performances ofMemHEFT and MemMinMin if M (bound ) = � �
max(M HEFT

blue (D); M HEFT
red (D)) with � 2 [0; 1] being the relative memory com-

pared to the amount needed byHEFT . Plain lines show the ratio of the average
makespan of our heuristics, and of the solution returned by the ILP, over the
makespan ofHEFT . The average is computed over all DAGs successfully sched-
uled with the given memory bounds (to be read on the left scale). Dotted lines
show the fraction of DAGs in SmallRandSet that our heuristics manage to
schedule with the given memory bounds (to be read on the right scale).

We see that MemHEFT and MemMinMin are really close to the optimal
makespan when large amounts of memory are available.MemMinMin provides
better results with a makespan overhead smaller than 50% w.r.t.HEFT , even
when memory becomes critical. The dotted lines forMemHEFT and Mem-
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Figure 10: Results forSmallRandSet .

Figure 11: Makespan for the DAG in SmallRandSet depicted in Figure 8.

MinMin in Figure 10 are indistinguishable, which means that both heuristics
roughly fail on the same instances when memory becomes critical.MemHEFT
and MemMinMin both fail to provide a feasible schedule when the memory
bounds is smaller to 35% of the amount required byHEFT . However, the ILP
shows that there exists a feasible schedule for approximately 70% of the DAGs
in SmallRandSet with this memory bound. Our heuristics can provide a fea-
sible schedule for every DAGs inSmallRandSet when the memory bound is
greater than 75% of the amount required byHEFT , whereas, in theory, every
DAGs can be scheduled down to 60% of this amount. In addition to the global
view for SmallRandSet , detailed results for the DAG of Figure 8 are provided
in Figure 11.

6.2.2 LargeRandSet

The same experimental procedure has been applied toLargeRandSet , except
that the optimal schedule cannot be computed in reasonable time anymore.The
average relative makespan of our heuristics are depicted in Figure 12. Wesee
that both MemHEFT and MemMinMin succeed to schedule all the DAGs in
LargeRandSet with only 30% of the memory required by the classicalHEFT
algorithm. The average makespan of the schedules returned byMemHEFT de-
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Figure 12: Results forLargeRandSet .

Figure 13: Makespan for the DAG in LargeRandSet depicted in Figure 9.

creases almost linearly with the amount of available memory. Furthermore, for
large amounts of memory,MemHEFT provides slightly better results, while
MemMinMin is clearly the best heuristic when memory is critical. MemMin-
Min provides only a 20% makespan overhead compared toHEFT while us-
ing 5 times less memory. Finally both heuristics can schedule every DAGs in
LargeRandSet when the memory bounds is larger than 30% of the amount re-
quired by HEFT . Finally, speci�c results for the one DAG depicted in Figure 9
are provided in Figure 13.

6.2.3 LUSet and CholeskySet

We provide results for numerical algebra sets corresponding to a 13� 13 tiled ma-
trix. Figure 14 depicts the results for LU factorization, whereas Figure 15 deals
with Cholesky factorization. Contrarily to the previous section, MemMinMin
seems to be the best heuristic when large amounts of memory are available.
For both applications, MemHEFT has a 10% makespan overhead compared
to MemMinMin when large amounts of memory are available, but it requires
far less memory to provide a feasible schedule. Indeed, Figure 14 shows that
MemMinMin fails to schedule the LU factorization when each memory does not
have enough space to store 155 tiles. However,MemHEFT can still provide
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Figure 14: MemHEFT and MemMinMin results on the DAG representing an
LU factorization of a 13 � 13 tiled matrix.

Figure 15: MemHEFT and MemMinMin results on the DAG representing an
Choleski factorization of a 13� 13 tiled matrix.

a feasible schedule with half available memory. This comes from the fact that
in numerical algebra DAGs, a lot of non critical tasks are released early in the
process and will eventually be immediately scheduled byMemMinMin , thereby
�lling up the memory. On the contrary, MemHEFT will focus on the critical
path of the DAG. Actually MemHEFT fails whenM (bound ) � 85 which approx-
imately corresponds to the amount needed to store all the 13� 13 = 169 tiles
of the matrix on both memories. Since Cholesky factorization is performed on
the lower half of the matrix (94 tiles), the results for the Cholesky factorization
lead to similar conclusions.

Overall, both memory-aware heuristics achieve quite satisfactory trade-o�s.
In most cases, they are able to drastically reduce the amount of memory needed
by HEFT or MinMin , at the price of a relatively small increase in execution
time. For small graphs, their absolute performance is close to the optimum as
soon as half the memory required byHEFT is available.
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7 Conclusion

We have investigated the problem of scheduling a task graph on a dual-memory
system, i.e. an heterogeneous platform made of two types of memories, with
several processors attached to each memory. Dual-memory systems include
emerging hybrid computing platforms, which usually includes one or several ac-
celerators (such as GPU) in addition to multicore CPUs. Our �rst contri bution
is to propose a simple model that captures the complexity of the problem. Given
the NP-hardness of the problem (which follows from the complexity of the prob-
lem on trees, investigated in [10]), we have proposed several approaches. We
�rst provide an exact resolution through the design of an intricate ILP wh ich is
able to compute an optimal schedule for medium-size instances (up to30 tasks).
Then, we propose two memory-aware heuristics for larger instances, which are
the counterparts of the classicalHEFT and MinMin algorithms. We have
studied the performance of these new heuristics through extensive simulations
on di�erent task graphs, and compared them to the optimal solution for small
instances.

An interesting future work would be to include some of the proposed heuris-
tics in an actual runtime toolkit for hybrid platform such as StarPU [3]. It
would also be of interest to adapt the heuristics to more complex platforms,
such as hybrid platforms with several types of accelerators, and/or including
more than two memories.
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