Mathematical analysis of a discrete fracture model coupling Darcy flow in the matrix with Darcy-Forchheimer flow in the fracture

Abstract : We consider a model for flow in a porous medium with a fracture in which the flow in the fracture is governed by the Darcy-Forchheimer law while that in the surrounding matrix is governed by Darcy's law. We give an appropriate mixed, variational formulation and show existence and uniqueness of the solution. To show existence we give an analogous formulation for the model in which the Darcy-Forchheimer law is the governing equation throughout the domain. We show existence and uniqueness of the solution and show that the solution for the model with Darcy's law in the matrix is the weak limit of solutions of the model with the Darcy-Forchheimer law in the entire domain when the Forchheimer coefficient in the matrix tends toward zero.
Type de document :
Article dans une revue
ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2014, pp.1451-1472
Liste complète des métadonnées

https://hal.inria.fr/hal-00945028
Contributeur : Jérôme Jaffré <>
Soumis le : mardi 11 février 2014 - 15:42:16
Dernière modification le : mardi 17 avril 2018 - 11:34:17

Identifiants

  • HAL Id : hal-00945028, version 1

Collections

Citation

Jean E. Roberts, Peter Knabner. Mathematical analysis of a discrete fracture model coupling Darcy flow in the matrix with Darcy-Forchheimer flow in the fracture. ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2014, pp.1451-1472. 〈hal-00945028〉

Partager

Métriques

Consultations de la notice

137