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Abstract

The concert harp is composed of a soundboard, a cavity with sound holes and 47 strings. When

one string is plucked, other strings are excited and induce a characteristic ‘halo of sound’. This

phenomenon, called sympathetic vibrations is due to a coupling between strings via the instrument’s

body. These sympathetic modes generate the presence of multiple spectral components in each

partial of the tone. Resolution of Fourier analysis does not permit their identification. A high

resolution Method, called ESPRIT, is used to separate the spectral components which are very close

one to another. Some of the measured spectral components in the analysed partials correspond

to the response of sympathetic modes. The eigenfrequencies and mode shapes of these modes

are investigated using a suitable model of the instrument : this model is based on a waveguide

approach in which bending and longitudinal motions of 35 strings connected to an equivalent beam

representing the soundboard are described. Identified experimental sympathetic modes are very

well captured by the model.

PACS numbers: 43.75.Gh
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I. INTRODUCTION

The harp is probably one of the oldest string instruments whose origin goes back to the

Prehistory where the first men were charmed by the sound produced by their bow’s string.

This chordophone was first composed of a few strings attached on an arched frame on one

side and on a soundboard on the other side. Then, with the increase of the number of

strings, a pillar was added between the neck and the soundboard to support the strings’

tension. This kind of harp was particularly used in Europe and marks the origin of the

current concert harp. Nowadays, the concert harp is composed of 47 strings, from Cb0

(of fundamental frequency 30.9 Hz) to Gb7 (of fundamental frequency 2960 Hz), attached

to the soundboard though an eyelet below which they are knotted. The soundboard is

designed to withstand the stress imposed by the strings, as for the Camac concert harp

used in this study, which is composed of multiple layers of different materials (aluminium,

carbon, woods). From an acoustical point of view, the role of the soundboard is to radiate

the sound produced by the vibrations of the strings. To some extent, this sound can also

be amplified by the soundbox and its five sound holes [1]. In spite of mechanical and

constructional improvements, musicians and harp makers alike are annoyed by the feeling

produced by the halo of sound when the instrument is played. Indeed, when one string

is plucked, in some tuning configurations some others are also excited by sympathetic

vibrations. Although this phenomenon is a fundamental characteristic of the instrument’s
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sound, the instrument maker has to design the harp so that sympathetic vibrations remain

reasonable.

The sympathetic couplings between strings lead to phenomena of aftersound and some-

times to beats. These phenomena are due to the fact that some partials of the sound may

contain several spectral components whose frequencies are very close one to another. Two

kinds of couplings are involved in this situation: couplings between different polarizations of

a same string due to the way it is fixed and sympathetic couplings between different strings

via the instrument’s body [2].

Considering the connection point between a single string and the soundboard as a point,

the string/structure interaction can be described by a 6 by 6 admittance matrix. In such a

description, three translational degrees of freedom and three rotational degrees of freedom are

involved [3]. As a consequence, for one single string, each mode can have up to 6 components,

their frequencies being very close one to another in the string’s response. However, in

practice, 2 components often overshadow the others and correspond to 2 polarizations of the

string. This has been shown for the guitar [4]. The strong anisotropy of the string/structure

interaction (for the out-of-plane and in-plane directions) is responsible for this effect. As a

consequence, the decay rates of the two polarizations of a single string are generally different

and lead to a double decay effect [2].
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The case of piano strings, which are grouped in pairs or triplet has often served as a

framework for the study of sympathetic couplings. These couplings occur because each

group of strings (pair or triplet) is practically tuned in unison. The case of two strings

tuned in unison having the same polarization, coupled by a bridge motion is studied in [2]:

normal modes for this configuration appear in pairs and depend on the strings mistuning

and bridge admittance. It is the presence of these two coupled modes that is responsible

for phenomena of beats and aftersound. The more complex case of a pair of piano strings

tuned in unison, each of them having two polarizations has been studied in [5].

Similar coupling mechanisms exist in string instruments which do not have pairs of strings

tuned in unison. This has been illustrated for the American five-string banjo: in [6], this

instrument is modelized by an assembly of one-dimensional sub-systems in which waves

propagation occur, allowing the time-domain response to be computed. It is shown that

when all the strings are incorporated to the model, the decay time is shorter than when only

one string is considered. This is explained by the presence of sympathetically driven strings,

even if it is difficult to find out how sympathetic vibrations occur with this model.

For the kantele, which is a Finnish plucked five-string instrument, sympathetic vibrations

are also identified in [7]. Through the experimental analysis of the total amount of energy

transferred from one string to all the others, it can be shown that the transfer of energy is

more pronounced between strings which have simple harmonic relationships.
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In a previous paper [8], it has been shown that the sympathetic phenomenon is due

to the presence of particular modes, called sympathetic modes, in the modal basis of the

system. These modes have been both theoretically and experimentally identified on a simple

academic configuration close to the harp: two strings tuned to the octave and connected to

a beam were considered and the modes of this assembly were investigated. The aim of the

present paper is to identify the sympathetic modes in the response of a real concert harp.

In the first part, an adequate experimental setup and an analysis based on a ‘High Reso-

lution’ method are carried out to identify frequency components present in one partial when

one string is plucked. Note that ‘High Resolution’ techniques are suitable for the spectral

analysis of signals having very close spectral components, which cannot be separated using

a Fourier analysis because of a lack of resolution. In the second part, the sympathetic vibra-

tions are investigated through the use of a physical model of a simplified concert harp. In the

final part, a comparison between theoretical and experimental results give an explanation

of the origin of the sympathetic phenomenon in the instrument.
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Strings

Soundboard

Accelerometer

located at point A

FIG. 1: Schematical representation of the experimental setup.

II. EXPERIMENTAL INVESTIGATION OF THE HARP’S SYMPATHETIC

MODES

A. Experimental setup

In order to experimentally highlight the presence of sympathetic modes in the concert

harp, the following experimental protocol has been set up: the harp is plucked whereas

an accelerometer is used to measure the vibratory signal on the soundboard at point A, as

shown in Figure 1. This point is located on the inner surface of the soundboard, between the

Db3-string and the Cb3-string, respectively labelled 30 and 31. The played string is string 31

and the other strings are either damped or stopped during oscillations. Eight experimental

configurations presented in Table I have been defined to investigate the characteristics of
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TABLE I: Characteristics of the experimental configurations. String 24 corresponds to Cb2 of

fundamental frequency 246.9 Hz, string 31 to Cb3 (123.5 Hz), string 35 to Fb3 (82.4 Hz), string 38

to Cb2 (61.7 Hz) and string 42 to Fb1 (41.2 Hz).

Configuration Description

(1) All strings free to vibrate

(2) All strings damped except string 31

(3) String 31 stopped during oscillations

(4) Strings 24, 31, 35, 38 and 42 stopped during oscillations

(5) Strings 31 and 24 stopped during oscillations

(6) Strings 31 and 35 stopped during oscillations

(7) Strings 31 and 38 stopped during oscillations

(8) String 31 and 42 stopped during oscillations

sympathetic vibrations.

All measured signals are sampled to 4096 Hz and last 8 seconds. The string is stopped

by the harp player a few seconds after the plucking of string 31. The temporal signals

measured following the eight configurations are shown in Figure 2. These signals highlight

a fact well-known by the harpists: the stopping of a string plucked does not necessarily

imply a fast decrease of the sound level. Indeed, as shown in configurations (3), (5), (6), (7)

and (8), the end signal amplitude is of the same order of magnitude that in the free-strings
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FIG. 2: Accelerometer signals measured at point A for the eight experimental configurations defined

in Table I.
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FIG. 3: Spectrum of the signal measured at point A when string 31 is plucked.

configuration.
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FIG. 4: Time waveform and spectrum of the first partial of the vibratory signal measured at point

A when string 31 is plucked. All strings are free to vibrate.

B. Method used for the extraction of modal parameters

1. Introduction: limit of the Fourier analysis

The Fourier spectrum of the accelerometer’s signal at point A is shown in Figure 3.

When string 31 is plucked, several coupled modes of the system respond to produce the

harp sound. This spectrum is composed of partials which are quasi harmonic. Using an

appropriate selective filter, a zoom on this spectrum in the vicinity of the first partial and its

corresponding time waveform are presented in Figure 4. This figure clearly shows that several

sinusoidal components are present in the vibratory signal. Indeed, since free oscillations of

the system occur, the response of the instrument to the plucking action measured by the
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accelerometer, corresponds to the superposition of several modes whose frequencies are very

close one to another. In the zoomed area of the spectrum, peaks of every component

cannot be clearly separated whereas in the time waveform several sinusoidal components

with different damping factors and frequencies appear. This shows the limit of the Fourier

analysis. The presence of several vibration modes having close frequencies is a common

characteristic for numerous free stringed instruments. Various methods, applied to musical

instruments, such as techniques based on the Hilbert transform [4, 9] or High Resolution

methods [4, 10, 11], allow the identification of spectral components.

For the identification of modes with close frequencies in the first partial, we choose to

use a High Resolution method: the ESPRIT algorithm (Estimation of Signal Parameters

via Rotational Invariance Techniques) [12]. A brief description of this technique and the

specificity of its implementation in our context are given in paragraphs IIB 2 to IIB 4. An

application to the harp’s signals is then presented in section IIC.

2. The ESPRIT method

Subspace-based High Resolution methods such as the ESPRIT algorithm are of major

interest for estimating mixtures of complex exponentials, because they overcome the spectral

resolution limit of the Fourier transform and provide very accurate estimates of the signal

parameters. These methods consist in splitting the observations into a set of desired and a
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set of disturbing components, which can be viewed in terms of signal and noise subspaces.

In this framework, the ESPRIT algorithm is based on a particular property of the signal

subspace, referred to as the rotational invariance. This property permits to extract the

model parameters from the eigenvalues of a so-called spectral matrix, which is obtained from

the estimated signal subspace.

The noiseless Exponential Sinusoidal Model (ESM) defines the discrete signal x(t) as a

sum of complex exponentials:

x(t) =
K
∑

k=1

ake
δktej(2πfk+ϕk), t ∈ [0, N − 1] (1)

where each frequency fk ∈ [−1
2
, 1

2
] is associated to a real magnitude (ak > 0), a phase

(ϕk ∈ [−π, π]) and a damping or amplification factor (δk ∈ R). The whole number K is

the number of complex exponentials, also called model order, and N is the number of the

signal’s samples. By defining the complex amplitudes αk = ake
jϕk and the complex poles

zk = eδk+j2πfk, which are supposed to be distinct, the signal model x(t) can be re-written in

the following form:

x(t) =

K
∑

k=1

αkz
t
k. (2)

For any time t, the data vector x(t) = [x(t), . . . , x(t + n − 1)]T of dimension n > K belongs
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to the K-dimensional signal subspace spanned by the Vandermonde matrix

Vn =































1 1 · · · 1

z1 z2 · · · zK

...
...

...

zn−1
1 zn−1

2 · · · zn−1
K































.

It can be noted that this Vandermonde matrix satisfies the following rotational invariance

property: V↑ = V↓D, where D = diag(z1 . . . zK), V↓ is the matrix extracted from V by

deleting the last row, and V↑ is the matrix extracted from V by deleting the first row.

In practice, the measured signal s(t) is corrupted by an additive noise: s(t) = x(t)+w(t),

where w(t) is assumed to be white. Although matrix V is unknown, the signal subspace

can still be estimated as the principal eigensubspace of the correlation matrix R̂ss of the

measured signal, defined as follows:

R̂ss =
1

N − n + 1
SSH , (3)

where

S =































s(0) s(1) · · · s(N − n)

s(1) s(2) · · · s(N − n − 1)

...
...

. . .
...

s(n − 1) s(n) · · · s(N − 1)































(4)

is the n× (N −n+1) Hankel data matrix which involves N successive samples of the signal

and the exponent H is the hermitian conjugate. Thus the n × K matrix W formed by the
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K first principal eigenvectors of R̂ss is an orthonormal basis of the signal subspace.

Since the matrices W and V span the same subspace, there exists a K ×K non-singular

matrix G such that V = WG. It can then be noted that W satisfies an invariance

property similar to that of the Vandermonde matrix: W↑ = W↓Φ, where the K ×K matrix

Φ = G D G
−1, referred to as the spectral matrix, is similar to the diagonal matrix D. In

particular, the eigenvalues of Φ are the complex poles zk.

Finally, the ESPRIT algorithm consists of the following steps:

1. compute the signal subspace basis W by means of an eigenvalue decomposition,

2. compute the spectral matrix Φ by means of the least squares method:

Φ = W+
↓ W↑, (5)

where the symbol + denotes the Moore-Penrose pseudo-inverse,

3. estimate the complex poles zk as the eigenvalues Φ.

It is proved that the best performance in terms of statistical efficiency is obtained for a

proper dimensioning of the data matrix S: n = N/3 or n = 2N/3 [11].

In a second stage, the complex amplitudes αk, grouped in a K × 1 vector denoted α, are

obtained thanks to the least squares method:

α = [VN ]+s. (6)
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In equation (6), s denotes the vector containing N successive samples of the signal and

VN is the N × K Vandermonde matrix defined by the poles estimated by the ESPRIT

method. Parameters ak and ϕk are directly deduced as the modulus and phase of the

complex amplitudes αk.

3. Estimation of the number of components

The main difficulty of the method consists in evaluating the number K of components

present in the signal. The technique commonly used is the over-estimation of this number

and the discrimination of spurious results by means of an indicator such as the components

energy or the error between the measured signal and the model. Other more effective

methods exist for estimating the model order K such as the ESTimation Error (ESTER)

method [11, 13] also used in the study. It consists in the computation of an inverse error

function,

J : p 7→
1

‖ E(p) ‖2
2

(7)

where

E(p) = W↑(p) − W↓(p)Φ(p), (8)

for all possible orders 0 < p < n−1. For determining the value of K, we choose the greatest

value of p for which the function J(p) reaches a maximum which is greater than a threshold

chosen arbitrarily above the noise level contained in the signal.
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4. ESPRIT method implementation

In order to minimize the computational time and increase the results accuracy [11], the

ESPRIT method implementation is carried out according to the following procedure: after

centering the studied partial around the null frequency, a finite impulse response (FIR) filter

selects the frequency range containing the partial to analyse. The filter is chosen with a linear

phase to keep the signal waveform. The filter is known to have a finite transitory response

which corresponds to the length of its impulse response. The first filtered signal points

belonging to this transitory phase are thus removed from the processing afterwards [4].

The filtered and centered signal is highly decimated to limit the computational time of

the ESPRIT method. After the estimation of the model order by the ESTER method, as

previously explained in section IIB 3, the ESPRIT algorithm is then applied. The final

validation of the model order is performed using a comparison between the measured and

synthesized signals. An illustration of the method implementation is shown in Figure 5.

Note that in the Exponential Sinusoidal Model, the signal is assumed to be complex. For

a musical sound, the signal is real and can be written as follows:

x(t) =

K
∑

k=1

Ake
δkt cos(2πfkt + ϕk) (9)

which can be re-written with exponential terms:

x(t) =
K
∑

k=1

Ak

2
eδktej(2πfkt+ϕk) +

K
∑

k=1

Ak

2
eδkte−j(2πfkt+ϕk) (10)
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FIG. 5: Summary of the implementation of the ESPRIT method on the studied partial.

Because of the filtering in the spectrum around the studied partial, the studied signal corre-

sponds to the first part (with positive frequency) of the equation (10). In order to find the

real amplitude of the measured signal, the amplitude Ak obtained by the ESPRIT method

has to be multiplied by two.

C. Results

The implemented ESPRIT method, as previously explained, is applied to the signals

measured on the concert harp in its final part, between 4s and 8s. The different experimental

conditions are described in Table I and the attention is focused on the first partial of string

31. The estimated components found for this partial are gathered in Table II. The model
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TABLE II: Frequencies and damping factors of identified components in the first partial of the

accelerometer signals in the eight experimental configurations defined in Table I. The reported

uncertainty is an uncertainty with a 95% confidence interval.

Configurations

C
om

p
on

en
ts

(1) (2) (3) (4) (5) (6) (7) (8)

123,49±0,01
123,54±0,01

-0,68±0,02
-0,57±0,01

123,34±0,01
123,35±0,00 123,34±0,00 123,34±0,00 123,30±0,01

-0,15±0,03
-0,11±0,01 -0,11±0,01 -0,11±0,01 -0,10±0,01

123,08±0,00
123,09±0,01 123,08±0,00 123,08±0,00 123,09±0,01

-0,26±0,01
-0,21±0,01 -0,22±0,03 -0,21±0,02 -0,22±0,07

123,78±0,02
123,71±0,03

-0,15±0,12
-0,54±0,06

order stretches from 0, for configuration (4), to 4, for configuration (1). Note that for each

configuration, coefficients are computed from 5 measurements for estimating a repeatability

uncertainty. In Table II, the components are classified in such a way that their amplitude

are in descending order from top to bottom. Moreover, they are aligned in order to facilitate
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the reading of the missing components.

From a general point of view, the repeatability uncertainties calculated for different pa-

rameters are extremely small, lower than 1% for the frequencies and around 10% for the

damping factors. Nevertheless, for some components the uncertainty can be important as

for the last component of the (1) configuration. This can happen for components not very

present, with a weak energy, and a weak signal-to-noise ratio.

When the instrument is not modified ((1) and (3) to (8) configurations) the components’

parameters slightly vary, less than 0,5% for the frequencies and, in a maximum of 30% of

variation for the damping factors. This result shows that the stopped string does not modify

the vibratory behavior of the instrument. Nevertheless, when paper is added to damp all

strings except string 31, in configuration (2), the components’ damping factors are modified

and a slight shift in frequency is caused. The instrument is slightly modified by the added

paper but not enough to allow the identification of the components’ nature.

Thanks to the developed experimental protocol and the identification method, the com-

ponents present in the first partial are obtained. The results show that the estimated

parameters are stable following the eight experiences. These results are compared in the

following section to the modal basis of a simplified harp.
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III. THEORETICAL STUDY OF THE HARP’S SYMPATHETIC MODES

A. Description of the model

Vibrations of the studied concert harp have been investigated in a previous paper [1]

thanks to an experimental modal analysis. In low frequencies, six consecutive modes have

been identified from 24 Hz to 181 Hz. The investigation of the mode shapes show two

particular characteristics: mode shapes are symmetric according to the strings plane and

for all modes, the bending motion of the soundboard is similar to the first mode shape of a

clamped-clamped beam. Thus, although the soundboard is a complex assembly, constituted

of a sandwich of several layers of different wood glued together reinforced by a central

aluminum bar and by two lateral stiffeners in wood, the soundboard can be described by

using an equivalent beam clamped at both ends. The typical first bending mode at 152.2 Hz

is shown in Figure 6-A and its corresponding mode shape can schematically be described as

an important deflection in the lower two thirds of the soundboard between the two clamped

points, one at the pillar level and the other one at the 11-string level. Indeed, on the treble

strings, the soundboard is rigidified by the proximity of the edge linked to the soundbox,

explaining the absence of movement in low frequencies. Thus, the beam length clamped at

both ends is limited to the distance included between the harp’s pillar and the 11-string.

According to this experimental result, the vibratory model is composed of a 1m-long beam
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Vibration cross profile

on the central axis of

the soundboard

Beam equivalent 

to the soundboard

Clamped

Fixed

(A) (B)

String 11

FIG. 6: (A) Modal shape associated to the fourth mode and description of the vibratory profile in

the central axis of the soundboard. (B) Model of the concert harp: beam-35 strings assembly.

on which 35 strings are attached as shown in Figure 6-B.

The mechanical properties of the equivalent beam and of each string have to be deter-

mined: for the strings, most parameters are directly measured on the harp [14] except for

the Young’s modulus and the density which are supposed to equal the data given in [15] and

[16]. Values of the tension are computed from the fundamental frequency of the tones, by

considering strings fixed at both ends. For the equivalent beam, the determination of its pa-

rameters is more complicated since the geometrical parameters are directly measured on an

isolated soundboard, allowing the evaluation of a mean density (ρ = 553 Kg/m3). The area

of the cross section A and the second moment of area J are measured at different positions
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along the axis. Average values of these two parameters are thus retained to characterize

the equivalent beam (Aeq = 38.3 cm2 and Jeq = 38.9 cm4). Finally, the Young’s modulus

E of the equivalent beam is determined so that the first bending mode of the beam in the

beam-35 strings assembly equals 150 Hz, the eigenfrequency of the fourth mode shown in

Figure 6-A (E = 5.9 GPa).

The vibratory model of the harp can thus be considered as an assembly of an equivalent

beam connected to 35 strings as described in Figure 6-B. This vibratory model is afterwards

named the simplified harp.

B. Harp’s sympathetic modes

The modal basis of the simplified harp is computed using the transfer matrix method,

which is appropriated for modeling assemblies of one-dimensional sub-structures. This com-

putation is based on a wave guide model for each sub-structure of the beam-strings assembly.

A brief summary of the different steps of the method is proposed in appendix and details

are developed in [8]. Eigenfrequencies are obtained for singularities of a characteristic ma-

trix labeled RR (see equation (15) page 31). Each drop of the logarithm of matrix RR’s

determinant, defined in equation (16), corresponds to an eigenfrequency.

Modes of the system are computed in the frequency range [0-500 Hz] by step of 0.01 Hz

and the logarithm of matrix RR’s determinant is shown in Figure 7 in the frequency range
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FIG. 7: Logarithm of the determinant of the characteristic matrix RR as function of frequency.

Each drop corresponds to an eigenfrequency of the beam-strings assembly.
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FIG. 8: Mode shapes associated to modes 26, 27, 28 and 33. The number indicated below the

harp’s arm points out the string number.
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[110-160 Hz], showing that modes have very close eigenfrequencies. Among the 151 modes

found in the range [0-500 Hz], examples of four modal shapes are presented in Figure 8.

These shapes clearly show that for each mode each substructure does not interact in the

same manner. To classify modes of the assembly, we use a criterion called Kinetic Energy

Ratio (KER) defined by

KERj(k) =

∫ lk

0

ρkΨ
T
j (x)Ψj(x) dx

∑

r

∫ lr

0

ρrΨ
T
j (x)Ψj(x) dx

. (11)

In this equation ρ is the mass per unit length of the sub-structure, Ψj is the mode shape of

mode j and x is the generic space variable defined in the Appendix. The KER corresponds

to the ratio of kinetic energy of one sub-structure k (of length lk) divided by the total

kinetic energy of the structure. Its value is a percentage and allows us to identify the

relative importance of each sub-structure displacement field. In the study, this percentage

is rounded to the nearest whole number. Thus, for a given mode, a null value of the KER

of a sub-structure indicates that this sub-structure is inactive. Values of KER on each

sub-structure are used to classify modes into four groups [8]: beam modes, string modes,

string-string modes, beam-string modes.

In Table III, the eigenfrequencies and KER of each sub-structure of modes 26, 27, 28 and

33 are reported. For these four modes, the KER is significant only for four sub-structures:

the beam and strings 31, 38 and 42. String 31 (Cb3 note of fundamental frequency 123.5 Hz)

corresponds to the upper octave of string 38 (Cb2 note at fundamental frequency 61.7 Hz)

24



Le Carrou et al.: Sympathetic modes in the concert harp

TABLE III: Eigenfrequencies and Kinetic Energy Ratio for each sub-structure (strings 42, 38, 35,

31, 24 and the beam). KER expressed in % and rounded to the nearest whole number.

Frequency KER (%)

Mode (Hz) string 42 string 38 string 35 string 31 string 24 Beam

26 122.95 0 99 0 1 0 0

27 123.29 97 1 0 2 0 0

28 123.48 1 2 0 97 0 0

33 149.91 0 0 1 0 0 73

which is the upper fifth of string 42 (Fb1 at fundamental frequency 41.2 Hz). The beam’s

KER nearly equals zero for modes 26 to 28, showing that mode shapes are dominated by

the string’s motion since the KER is distributed according to two or three strings, allowing

the definition of these modes as string-string modes or sympathetic modes [8]. Actually,

according to the modal superposition principle, if string 31 is plucked, modes 26 to 28 are

set into vibration and so are strings 38 and 42, generating the phenomenon of sympathetic

vibrations. Note that for these three sympathetic modes, modifications of the character-

istics of the equivalent beam only slightly modify the KER distribution, not altering our

conclusions. Nevertheless, it appears that for other vibratory modes the KER distribution

can be affected.
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TABLE IV: Comparison between experimental and theoretical results obtained from the vibratory

model of the concert harp.

Modal frequency

Experimental Theoretical Error

String 31 mode
123.49 Hz

123.78 Hz

123.48 Hz 0.01 %

Sympathetic mode 31-42 123.30 Hz 123.29 Hz 0.01 %

Sympathetic mode 31-38 123.09 Hz 122.95 Hz 0.11 %

IV. DISCUSSION

When string 31 of the concert harp is free to oscillate (configuration (1) in Table I), two

sinusoidal components are identified in the first partial. When this string is stopped (config-

urations (2), (3) and (4)), these two components disappear. In playing configuration, these

two sinusoids have close frequencies, separated by only 0.2 Hz, and have very different damp-

ing factors and amplitudes. This result thus points out that the string vibrates following

its two polarizations. These two polarizations are excited by the harp player in a different

way depending on the string plucking, involving different initial amplitudes (showed by the

difference of energy of each component). Moreover, as for the piano, one of the polarizations

seems to be favored for transmitting its energy to the soundboard, implying a rapidly de-
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caying component at the plucking moment [2]. This result shows that for a good modeling

of the strings’ modal behavior, the two polarizations of string vibrations have to be taken

into account. In the simplified harp, only one polarization is considered, which constitutes

a limitation.

When the string is stopped during the oscillations, modes present in the instrument

response are selected. In configurations (3), (5) and (6), the same components are present,

showing that modes implying strings 24 and 35 do not participate in the first partial of the

instrument response. By stopping strings 31 and 38, one vibrating component disappears

and by stopping strings 31 and 42, another one is absent from the instrument’s response.

With configurations (7) and (8), we can deduce that strings 38 and 42 participate in the

sound radiated by the instrument.

When the harpist plucks string 31, four modes are set into vibrations at the same time:

two modes involving string 31 (one mode per polarization), one mode involving strings 31-38

and one mode involving strings 31-42. These last two modes are thus sympathetic modes.

The stopping of string 31 does not necessary lead to the weakening of these modes, proving

that the kinetic energy present in strings 42 and 38 is definitely more important than in

string 31. Moreover, these results show that the sympathetic modes coming from each

polarization of string 31 are not visible in the response. This fact can be explained by the

weak energies of these modal components, not allowing them to emerge from the noise.
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These experimental results can be compared to those obtained from the theory. Experi-

mentally, we found two modes which mostly involve string 31 at 123.59 Hz and at 123.78 Hz.

With the vibratory model, the string mode associated to string 31 is found at 123.48 Hz.

Note that the model takes only one string polarization into account. The agreement between

model and measurement is, as expected, very good since the tension value of each string

of the simplified harp has been fixed in such a way that the eigenfrequencies of uncoupled

strings correspond to those of the real instrument.

For sympathetic modes 31-42 and 31-38, their eigenfrequencies are measured at 123.28 Hz

and at 123.08 Hz. It should be noticed that the theoretical eigenfrequencies of these modes

are found at 123.29 Hz and at 122.95 Hz, coinciding almost perfectly with experimental

results. Apart from the fact that the vibratory model of the concert harp does not take the

two polarizations of the string into account, results obtained from the model are in very good

agreement with those obtained during experiments, thus validating the vibratory model of

the beam-35 string assembly of the concert harp.

V. CONCLUSION

The numerous strings of the concert harp induce sympathetic vibrations, which are re-

sponsible for the feeling of halo of sound. This characteristic is important and constitutes a

signature of the instrument. In this paper, experimental and theoretical investigations have
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been carried out to understand this phenomenon. The following conclusions can be drawn.

(a) It has been shown that sympathetic modes, responsible of the sympathetic vibrations,

are present in the instrument’s response. These sympathetic modes are due to the coupling

between different strings via the soundboard. With a waveguide model of the harp, their

eigenfrequencies and mode shapes can be accurately determined. This model describes bend-

ing and longitudinal motions in the strings, connected to an equivalent beam representing

the soundboard and allows the modal basis of the strings-beam assembly to be computed.

(b) In the time domain, sympathetic vibrations generate multiple components in the

string’s partials. Resolution of the Fourier analysis does not permit their identification.

This identification is performed using the ESPRIT method, which is a High Resolution

method. The determination of the number of elementary spectral components, which is the

main difficulty in the implementation of High Resolution methods is successfully performed

using the ESTER method.

(c) Several components are identified in the first partial of string 31: two of them corre-

spond to two strings modes having different polarizations. Other components correspond to

sympathetic modes. In the analysed example, two sympathetic modes are involved. Their

number and their eigenfrequencies are very well captured by the proposed model.

Although the model of the instrument suits the identification of sympathetic modes, it

can be extended in order to take into account two polarizations per strings. Moreover,
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from an experimental point of view, the analysis of partials of higher order, where other

phenomena such as octave vibrations can be present, could also be performed.

Appendix: determination of the beam-strings assembly modes

In this appendix, we summarize the method for computing normal modes of the beam-

strings assembly, illustrated in Figure 9. The detailed method is published in [8].
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FIG. 9: Diagram of a clamped-clamped beam connected to several fixed strings. It includes local

coordinate systems.

In harmonic regime, the vibratory state of each sub-structure (string and beam) of the

assembly is described at any point of its neutral line by a state vector X (x) whose compo-
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nents are kinematic and force variables. Variable x is the spatial coordinate describing the

current point on the sub-structure. For the string, the state vector is the following vector:

X s(x) =

(

us(x) ws(x) Ns(x) Qs(x)

)T

, (12)

where us, ws are longitudinal and transversal displacements and Ns, Qs are the longitudinal

and transversal forces. In the beam, the state vector is written as follows:

X b(x) =

(

ub(x) wb(x) θb(x) Nb(x) Qb(x) Mb(x)

)T

, (13)

where ub, wb and θb are respectively the longitudinal and transversal displacements and the

slope of the beam cross section, and where Nb, Qb and Mb are respectively the longitudinal

and transversal forces and the bending moment. With the transfer matrix method, it can

be shown that the vibratory state of each sub-structure at any point x can be expressed in

function of the vibratory state at another point x0 with the following expression:

X (x) = T(x, x0)X (x0), (14)

where T(x, x0) is the transfer matrix of the sub-structure (beam or string) between the

state vector at point x0 and the state vector at point x. By using coupling equations at

beam-string connection [8], it can be shown that the force components of state vectors on

boundary X
f verify the following equation:

RR(ω)X f = 0, (15)
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where RR is defined as a characteristic matrix of the assembly. In the case of free vibrations,

vector X
f is not equal to zero and the matrix RR is not invertible, implying:

det (RR(ω)) = 0. (16)

The angular eigenfrequencies ωi of the system are obtained as the solutions of equa-

tion (16). For each ωi, relation (15) provides the components of X
f from which we can

calculate all state vector components at any point on the assembly.
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