
HAL Id: hal-00945262
https://hal.inria.fr/hal-00945262

Submitted on 13 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fault-Tolerant Rendezvous in Networks
Jérémie Chalopin, Yoann Dieudonné, Arnaud Labourel, Andrzej Pelc

To cite this version:
Jérémie Chalopin, Yoann Dieudonné, Arnaud Labourel, Andrzej Pelc. Fault-Tolerant Rendezvous in
Networks. [Research Report] 2014. <hal-00945262>

https://hal.inria.fr/hal-00945262
https://hal.archives-ouvertes.fr

Fault-Tolerant Rendezvous in Networks

Jérémie Chalopin1, Yoann Dieudonné2, Arnaud Labourel1, and Andrzej Pelc3⋆

1 LIF, CNRS & Aix-Marseille University, Marseille, France
2 MIS, Université de Picardie Jules Verne, France

3 Département d’informatique, Université du Québec en Outaouais,
Gatineau, Québec, Canada

Abstract. Two mobile agents, starting from different nodes of an un-
known network, have to meet at the same node. Agents move in syn-
chronous rounds using a deterministic algorithm. Each agent has a dif-
ferent label, which it can use in the execution of the algorithm, but it
does not know the label of the other agent. Agents do not know any
bound on the size of the network. In each round an agent decides if it
remains idle or if it wants to move to one of the adjacent nodes. Agents
are subject to delay faults: if an agent incurs a fault in a given round, it
remains in the current node, regardless of its decision. If it planned to
move and the fault happened, the agent is aware of it. We consider three
scenarios of fault distribution: random (independently in each round and
for each agent with constant probability 0 < p < 1), unbounded adver-
sarial (the adversary can delay an agent for an arbitrary finite number of
consecutive rounds) and bounded adversarial (the adversary can delay
an agent for at most c consecutive rounds, where c is unknown to the
agents). The quality measure of a rendezvous algorithm is its cost, which
is the total number of edge traversals.
For random faults, we show an algorithm with cost polynomial in the
size n of the network and polylogarithmic in the larger label L, which
achieves rendezvous with very high probability in arbitrary networks.
By contrast, for unbounded adversarial faults we show that rendezvous
is not feasible, even in the class of rings. Under this scenario we give
a rendezvous algorithm with cost O(nℓ), where ℓ is the smaller label,
working in arbitrary trees, and we show that Ω(ℓ) is the lower bound
on rendezvous cost, even for the two-node tree. For bounded adversarial
faults, we give a rendezvous algorithm working for arbitrary networks,
with cost polynomial in n, and logarithmic in the bound c and in the
larger label L.

Keywords: rendezvous, deterministic algorithm, mobile agent, delay
fault.

⋆ Partially supported by NSERC discovery grant and by the Research Chair in Dis-
tributed Computing at the Université du Québec en Outaouais.

1 Introduction

1.1 The background

Two mobile entities, called agents, starting from different nodes of a network,
have to meet at the same node. This task is known as rendezvous and has been ex-
tensively studied in the literature. Mobile entities may represent software agents
in computer networks, mobile robots, if the network is composed of corridors in
a mine, or people who want to meet in an unknown city whose streets form a
network. The reason to meet may be to exchange data previously collected by
the agents, or to coordinate a future network maintenance task. In this paper we
study a fault-tolerant version of the rendezvous problem: agents have to meet
in spite of delay faults that they can incur during navigation. Such faults may
be due to mechanical reasons in the case of robots and to network congestion in
the case of software agents.

1.2 The model and the problem

The network is modeled as an undirected connected graph. We seek deterministic
rendezvous algorithms that do not rely on the knowledge of node identifiers, and
can work in anonymous graphs as well (cf. [3]). The importance of designing such
algorithms is motivated by the fact that, even when nodes are equipped with
distinct identifiers, agents may be unable to perceive them because of limited
sensory capabilities (a robot may be unable to read signs at corridor crossings),
or nodes may refuse to reveal their identifiers to software agents, e.g., due to
security or privacy reasons. Note that, if nodes had distinct identifiers visible
to the agents, the agents might explore the graph and meet at the node with
smallest identifier, hence rendezvous would reduce to graph exploration. On the
other hand, we assume that edges incident to a node v have distinct labels (visible
to the agents) in {0, . . . , d−1}, where d is the degree of v. Thus every undirected
edge {u, v} has two labels, which are called its port numbers at u and at v. Port
numbering is local, i.e., there is no relation between port numbers at u and at
v. Note that in the absence of port numbers, edges incident to a node would
be undistinguishable for agents and thus rendezvous would be often impossible,
as the adversary could prevent an agent from taking some edge incident to the
current node. Security and privacy reasons for not revealing node identifiers to
software agents are irrelevant in the case of port numbers, and port numbers in
the case of a mine or labyrinth can be made implicit, e.g., by marking one edge
at each crossing (using a simple mark legible by the robot), considering it as
corresponding to port 0 and all other port numbers increasing clockwise.

Agents start at different nodes of the graph and traverse its edges in syn-
chronous rounds. They cannot mark visited nodes or traversed edges in any way.
The adversary wakes up each of the agents in possibly different rounds. Each
agent starts executing the algorithm in the round of its wake-up. It has a clock
measuring rounds that starts at its wake-up round. In each round an agent de-
cides if it remains idle or if it chooses a port to move to one of the adjacent nodes.

Agents are subject to delay faults in rounds in which they decide to move: if an
agent incurs a fault in such a round, it remains at the current node and is aware
of the fault. We consider three scenarios of fault distribution: random (indepen-
dently in each round and for each agent with constant probability 0 < p < 1),
unbounded adversarial (the adversary can delay an agent for an arbitrary finite
number of consecutive rounds) and bounded adversarial (the adversary can delay
an agent for at most c consecutive rounds, where c is unknown to the agents).
Agents do not know the topology of the graph or any bound on its size. Each
agent has a different positive integer label which it knows and can use in the ex-
ecution of the rendezvous algorithm, but it does not know the label of the other
agent nor its starting round. When an agent enters a node, it learns its degree
and the port of entry. When agents cross each other on an edge, traversing it
simultaneously in different directions, they do not notice this fact. We assume
that the memory of the agents is unlimited: from the computational point of
view they are modeled as Turing machines.

The quality measure of a rendezvous algorithm is its cost, which is the total
number of edge traversals. For each of the considered fault distributions we are
interested in deterministic algorithms working at low cost. For both scenarios
with adversarial faults we say that a deterministic rendezvous algorithm works
at a cost at most C for a given class of graphs if for any initial positions in
a graph of this class both agents meet after at most C traversals, regardless
of the faults imposed by the adversary obeying the given scenario. In the case
of random faults the algorithm is also deterministic, but, due to the stochastic
nature of faults, the estimate of its cost is with high probability.

1.3 Our results

For random faults, we show an algorithm which achieves rendezvous in arbitrary
networks at cost polynomial in the size n of the network and polylogarithmic in
the larger label L, with very high probability. More precisely, our algorithm
achieves rendezvous with probability 1, and its cost exceeds a polynomial in n
and logL with probability inverse exponential in n and logL. By contrast, for
unbounded adversarial faults, we show that rendezvous is not feasible, even in
the class of rings. Under this scenario we give a rendezvous algorithm with cost
O(nℓ), where ℓ is the smaller label, working in arbitrary trees, and we show that
Ω(ℓ) is the lower bound on rendezvous cost, even for the two-node tree. For
bounded adversarial faults we give a rendezvous algorithm working for arbitrary
networks, with cost polynomial in n, and logarithmic in the bound c and in the
larger label L.

1.4 Related work

The problem of rendezvous has been studied both under the randomized and the
deterministic scenarios. An extensive survey of randomized rendezvous in various
models can be found in [3], cf. also [1, 2, 4, 8, 24]. Deterministic rendezvous in
networks has been surveyed in [31]. Several authors considered the geometric

scenario (rendezvous in an interval of the real line, see, e.g., [8, 9], or in the
plane, see, e.g., [5, 6]). Gathering more than two agents has been studied, e.g.,
in [22, 24, 29, 34].

For the deterministic setting many authors studied the feasibility of syn-
chronous rendezvous, and the time required to achieve this task, when feasible.
For instance, deterministic rendezvous of agents equipped with tokens used to
mark nodes was considered, e.g., in [28]. Deterministic rendezvous of two agents
that cannot mark nodes but have unique labels was discussed in [17, 26, 33].
Since this is our scenario, these papers are the most relevant in our context. All
of them are concerned with the time of rendezvous in arbitrary graphs. In [17]
the authors show a rendezvous algorithm polynomial in the size of the graph,
in the length of the shorter label and in the delay between the starting times
of the agents. In [26, 33] rendezvous time is polynomial in the first two of these
parameters and independent of the delay.

Memory required by the agents to achieve deterministic rendezvous has been
studied in [23] for trees and in [12] for general graphs. Memory needed for ran-
domized rendezvous in the ring is discussed, e.g., in [27].

Apart from the synchronous model used in this paper, several authors investi-
gated asynchronous rendezvous in the plane [11, 22] and in network environments
[7, 13, 16, 20]. In the latter scenario the agent chooses the edge which it decides
to traverse but the adversary controls the speed of the agent. Under this as-
sumption rendezvous in a node cannot be guaranteed even in very simple graphs
and hence the rendezvous requirement is relaxed to permit the agents to meet
inside an edge.

Fault-tolerant aspects of the rendezvous problem have been investigated in
[10, 14, 15, 19, 21]. Faulty unmovable tokens were considered in the context of the
task of gathering many agents at one node. In [14, 21] the authors considered
gathering in rings, and in [15] gathering was studied in arbitrary graphs, under
the assumption that an unmovable token is located in the starting node of each
agent. Tokens could disappear during the execution of the algorithm, but they
could not reappear again. Byzantine tokens which can appear and disappear ar-
bitrarily have been considered in [18] for the related task of network exploration.
A different fault scenario for gathering many agents was investigated in [19]. The
authors assumed that some number of agents are Byzantine and they studied
the problem of how many good agents are needed to guarantee meeting of all
of them despite the actions of Byzantine agents. To the best of our knowledge
rendezvous with delay faults considered in the present paper has never been
studied before.

2 Preliminaries

Throughout the paper, the number of nodes of a graph is called its size. In this
section we recall two procedures known from the literature, that will be used
as building blocks in some of our algorithms. The aim of the first procedure is
graph exploration, i.e., visiting all nodes and traversing all edges of the graph by

a single agent. The procedure, based on universal exploration sequences (UXS)
[25], is a corollary of the result of Reingold [32]. Given any positive integer
m, it allows the agent to traverse all edges of any graph of size at most m,
starting from any node of this graph, using P (m) edge traversals, where P is
some polynomial. (The original procedure of Reingold only visits all nodes, but
it can be transformed to traverse all edges by visiting all neighbors of each visited
node before going to the next node.) After entering a node of degree d by some
port p, the agent can compute the port q by which it has to exit; more precisely
q = (p+ xi) mod d, where xi is the corresponding term of the UXS.

A trajectory is a sequence of nodes of a graph, in which each node is adjacent
to the preceding one. Given any starting node v, we denote by R(m, v) the
trajectory obtained by Reingold’s procedure followed by its reverse. (Hence the
trajectory starts and ends at node v.) The procedure can be applied in any graph
starting at any node, giving some trajectory. We say that the agent follows a
trajectory if it executes the above procedure used to construct it. This trajectory
will be called integral, if the corresponding route covers all edges of the graph.
By definition, the trajectory R(m, v) is integral if it is obtained by Reingold’s
procedure applied in any graph of size at most m starting at any node v.

The second auxiliary procedure is the Algorithm RV-asynch-poly from [20]
that guarantees rendezvous of two agents under the asynchronous scenario. Un-
like in the synchronous scenario used in the present paper, in the asynchronous
scenario each agent chooses consecutive ports that it wants to use but the adver-
sary controls the speed of the agent, changing it arbitrarily during navigation.
Rendezvous is guaranteed in the asynchronous scenario, if it occurs for any be-
havior of the adversary. Under this assumption rendezvous in a node cannot
be guaranteed even in very simple graphs and hence the rendezvous require-
ment is relaxed to permit the agents to meet inside an edge. Recall that in our
synchronous scenario, agents crossing each other on an edge traversing it simul-
taneously in different directions, not only do not meet but do not even notice
the fact of crossing.

Algorithm RV-asynch-poly works at cost polynomial in the size n of the
graph in which the agents operate and in the length of the smaller label. Let A
be a polynomial, such that if two agents with different labels λ1 and λ2 execute
Algorithm RV-asynch-poly in an n-node graph, then the agents meet in the
asynchronous model, after at most A(n,min(log λ1, log λ2)) steps.

3 Random faults

In this section we consider the scenario when agents are subject to random and
independent faults. More precisely, for each agent and each round the probability
that the agent is delayed in this round is 0 < p < 1, where p is a constant, and
the events of delaying are independent for each round and each agent. Under
this scenario we construct a deterministic rendezvous algorithm that achieves
rendezvous in any connected graph with probability 1 and its cost exceeds a

polynomial in n and logL with probability inverse exponential in n and logL,
where n is the size of the graph and L is the larger label.

The intuition behind the algorithm is the following. Since the occurrence of
random faults represents a possible behavior of the asynchronous adversary in
Algorithm RV-asynch-poly from [20], an idea to get the guarantee of a meeting
with random faults at polynomial cost might be to only use this algorithm.
However, this meeting may occur either at a node or inside an edge, according
to the model from [20]. In the synchronous model with random faults considered
in this section, the second type of meeting is not considered as rendezvous, in fact
agents do not even notice it. Hence we must construct a deterministicmechanism
which guarantees a legitimate meeting at a node, with high probability, soon
after an “illegitimate” meeting inside an edge. Constructing this mechanism and
proving that it works as desired is the main challenge of rendezvous with random
faults.

3.1 The algorithm

Before describing the algorithm we define the following transformation of the
label λ of an agent. Let Φ(0) = (0011) and Φ(1) = (1100). Let (c1 . . . ck) be the
binary representation of the label λ. We define the modified label λ∗ of the agent
as the concatenation of sequences Φ(c1), . . . , Φ(ck) and (10). Note that if labels
of two agents are different, then their transformed labels are different and none
of them is a prefix of the other.

We first describe the procedure Dance (λ, x, y) executed by an agent with
label λ located at node y at the start of the procedure. Node x is a node adjacent
to y.
Procedure Dance (λ, x, y)
Let λ∗ = (b1, . . . , bm).
Stage 1.
Stay idle at y for 10 rounds.
Stage 2.
for i = 1 to m do

if bi = 0
then stay idle for two rounds
else go to x and in the next round return to y.

Stage 3.
Traverse the edge {x, y} 12 times (i.e., go back and forth 6 times across the edge
{x, y}). ⋄

Note that procedure Dance (λ, x, y) has cost O(log λ).
We will also use procedure Asynch(λ) executed by an agent with label λ

starting at any node x0 of a graph. This procedure produces an infinite walk
(x0, x1, x2, . . .) in the graph resulting from applying Algorithm RV-asynch-poly

by a single agent with label λ.
Using these procedures we now describe Algorithm RV-RF (for rendezvous

with random faults), that works for an agent with label λ starting at an arbitrary
node of any connected graph.

Algorithm RV-RF

The algorithm works in two phases interleaved in a way depending on faults
occurring in the execution and repeated until rendezvous. The agent starts exe-
cuting the algorithm in phase Progress.
Phase Progress

This phase proceeds in stages. Let (x0, x1, x2, . . .) be the infinite walk pro-
duced by the agent starting at node x0 and applying Asynch(λ). The ith stage of
phase Progress, for i ≥ 1, is the traversal of the edge {xi−1, xi} from xi−1 to xi,
followed by the execution of Dance (λ, xi−1, xi). The agent executes consecutive
stages of phase Progress until a fault occurs.

If a fault occurs in the first round of the ith stage, then the agent repeats
the attempt of this traversal again, until success and then continues with Dance

(λ, xi−1, xi). If a fault occurs in the tth round of the ith stage, for t > 1, i.e.,
during the execution of procedure Dance (λ, xi−1, xi) in the ith stage, then this
execution is interrupted and phase Correction is launched starting at the node
where the agent was situated when the fault occurred.
Phase Correction

Let e denote the edge {xi−1, xi} and let w be the node at which the agent was
situated when the last fault occurred during the execution of Dance (λ, xi−1, xi).
Hence w is either xi−1 or xi.
Stage 1.
Stay idle at w for 20 rounds.
Stage 2.
Traverse edge e 20 times.
Stage 3.
If the agent is not at w, then go to w.

If a fault occurs during the execution of phase Correction, then the execution
of this phase is dropped and a new phase Correction is launched from the begin-
ning, starting at the node where the agent was situated when the fault occurred.
Upon completing an execution of the phase Correction without any fault the
agent is at node w. It resumes the execution of the tth round of the ith stage of
phase Progress. ⋄

3.2 Correctness and analysis

This section is devoted to the proof of correctness and analysis of performance of
Algorithm RV-RF. It is split into a series of lemmas. The first lemma is straight-
forward.

Lemma 1. In every segment of 10 consecutive rounds without any faults of
execution of Stage 2 of procedure Dance the agent is idle at least once and moves
at least once.

Lemma 2. In every segment of 20 consecutive rounds without any faults of
execution of procedure Dance the agent moves at least once.

Proof. Since Stage 1 of procedure Dance consists of 10 rounds in which the agent
is idle and in Stage 3 the agent is never idle, the lemma follows from the second
part of Lemma 1. �

In our reasoning we will consider an auxiliary model M of the behavior of
agents and of the type of faults. Agents move in synchronous rounds of constant
duration T. An edge traversal is always performed at a constant speed and so
that the destination node is reached exactly at the end of the round involving the
traversal. The agents do not notice when they meet, neither at a node nor inside
an edge. Hence, when they execute Algorithm RV-RF, they do so indefinitely
in an independent way. Faults in model M are unbounded adversarial, i.e.,
the adversary can delay an agent at a node for an arbitrary finite number of
consecutive rounds. When an agent executes procedure Asynch(λ) in model M,
it attempts to make the next step of the procedure in each round, but can be
delayed by the adversary at each step. For rounds t < t′ we denote by [t, t′] the
time interval between the beginning of round t and the end of round t′. We use
(t, t′) instead of [t+1, t′ − 1]. For convenience, we will sometimes use the phrase
“in round t” instead of “at the end of round t” and “by round t” instead of “by
the end of round t”. Considerations in this auxiliary model will serve us to draw
conclusions about rendezvous in the random fault model.

A meeting in model M is defined as both agents being at the same node at
the same time or being in the same point inside an edge at the same time. We use
the word meeting in the auxiliary model M to differentiate it from rendezvous in
our principal model: the first may occur at a node or inside an edge and agents
do not notice it, and the second can occur only at a node, agents notice it and
stop. Notice that five types of meetings are possible in model M.

Type 1. The agents cross each other inside an edge {u, v} in some round, one
agent going from u to v and the other going from v to u.

Type 2. The agents stay together inside an edge during its traversal in the
same round in the same direction.

Type 3. The agents meet at node v coming from the same node u, not nec-
essarily in the same round.

Type 4. The agents meet at node v coming from different nodes u and w,
not necessarily in the same round.

Type 5. The agents meet at node v, such that one of them has never moved
from v.

Hence when there is a meeting in model M, only one of the following 9
situations can occur:

Situation A1. The agents cross each other inside an edge {u, v} in some
round, one agent going from u to v and the other going from v to u.

Situation A2. Agents meet at a node v, such that one of them has never
moved yet.

Situation A3. Agents meet at a node v, both coming from the same node u
in different rounds.

Situation A4. Agents a and b meet at a node v, such that:

1. agent a comes from a node u to v in round k1,a and after the meeting goes
to a node w 6= u in round k2,a;

2. agent b comes from node w to v in round k1,b and after the meeting goes to
node u in round k2,b.

3. rounds k1,a and k1,b are not necessarily the same; rounds k2,a and k2,b are
not necessarily the same.

Situation A5. Agents a and b meet at a node v, such that:

1. agent a comes to v from u in its rth edge traversal and goes to node w 6= u
in its (r + 1)th edge traversal;

2. agent b comes to v from w in its sth edge traversal and goes to a node z 6= u
in its (s+ 1)th edge traversal;

3. the rth edge traversal of agent a and the sth edge traversal of agent b are
executed not necessarily in the same round;

4. agent a makes its (r + 1)th edge traversal in the same round or before the
round when b makes its (s+ 1)th edge traversal.

Situation B1. Agents meet at a node v, both coming from the same node u
in the same round.

Situation B2 Agents meet inside an edge {u, v}, both coming from u and
going to v in the same round. Since they move at the same constant speed, they
are simultaneously at each point inside the edge {u, v} during the traversal. We
will consider this as a single meeting.

Situation B3. Agents meet at a node v, such that:

1. agent a comes from a node u to v in round k1,a and after the meeting goes
to a node w in round k2,a;

2. agent b comes from node p to v in round k1,b and after the meeting goes to
node q in round k2,b,

3. p 6= w, q 6= u; rounds k1,a and k1,b are not necessarily the same; rounds k2,a
and k2,b are not necessarily the same.

Situation B4. Agents meet at node v such that

1. agent a comes to v from u in its rth edge traversal and goes to node w 6= u
in its (r + 1)th edge traversal;

2. agent b comes to v from w in its sth edge traversal and goes to a node z 6= u
in its (s+ 1)th edge traversal;

3. the rth edge traversal of agent a and the sth edge traversal of agent b are
executed not necessarily in the same round;

4. agent a makes its (r + 1)th edge traversal after the round when b makes its
(s+ 1)th edge traversal.

The next lemma shows that one of the situations A1 – A5 is unavoidable
when applying Asynch in the model M.

Lemma 3. Consider two agents a and b, with different labels λ1 and λ2, re-
spectively, starting at arbitrary different nodes of an n-node graph, where n is
unknown to the agents. In the model M, if agent a applies procedure Asynch(
λ1) and agent b applies procedure Asynch(λ2), then, for every behavior of the
adversary at least one of the situations A1 – A5 must occur after a total of at
most A(n,min(log λ1, log λ2)) steps of both agents.

Proof. Suppose, for contradiction, that there exists a behavior of the adversary
in model M such that all situations A1 – A5 can be avoided during the first
A(n,min(log λ1, log λ2)) steps of both agents. Denote by S the scenario trun-
cated to the first A(n,min(log λ1, log λ2)) steps of both agents resulting from
the above behavior. Since Algorithm RV-asynch-poly guarantees a meeting un-
der any behavior of an adversary in the asynchronous model after a total of at
most A(n,min(log λ1, log λ2)) steps of both agents (cf. [20]), this means that in
scenario S, which takes place in the model M, at least one of the situations B1 –
B4 must occur. We will show that based on scenario S in model M it is possible
to construct a scenario AS in the asynchronous model from [20] with no meet-
ings after a total of at most A(n,min(log λ1, log λ2)) steps, which contradicts the
result from [20].

Consider the first meeting ρ in scenario S. This meeting cannot be in situation
B1 or B2 because then the agents would meet previously at node u. Hence either
situation B3 or B4 must occur.

First suppose that situation B4 occurred during the meeting ρ. Split the
scenario S into two parts S1 and S2, such that S2 is the part of scenario S that
consists of all rounds after the round in which agent b makes its (s+ 1)th edge
traversal. In particular, in the beginning of S2 agent a has already made its rth
edge traversal but not yet its (r+ 1)th edge traversal. S1 is the part of scenario
S preceding S2. Notice that S1 contains only one meeting, the meeting ρ.

We can modify the behavior of the adversary in scenario S1 to produce
scenario S′

1 in which there is no meeting. In order to do so, consider 3 cases.

Case 1. The meeting ρ occurs in the round when both a and b arrive at v.

In the round preceding the execution of its rth edge traversal agent a is at
node u, while b is at node w 6= u. According to scenario S1, in the next round
both agents go to v. The modification to obtain scenario S′

1 is as follows. The
adversary delays agent a at u for one round and releases agent b to make its sth
edge traversal to v. Then the adversary releases agent a to go to v and agent b
to make its (s+ 1)th edge traversal to z. This avoids the meeting.

Case 2. The meeting ρ occurs in a round in which b is idle at v (it came there
in a previous round) and a comes to v from u executing its rth edge traversal.

In the round preceding this traversal agent a was at u. The modification to
obtain scenario S′

1 is as follows. The adversary releases b to make its (s+1)th edge
traversal to z and in the same round releases a to make its rth edge traversal.
This avoids the meeting.

Case 3. The meeting ρ occurs in a round in which a is idle at v (it came there
in a previous round) and b comes to v from w executing its sth edge traversal.

Let t be the round in which agent a makes its rth edge traversal and t′ > t
the round in which agent b makes its sth edge traversal. In the time interval
[x, y], where x is the beginning of round t and y is the end of round t′ − 1, agent
b does not traverse edge {u, v} because otherwise the agents would previously
meet inside this edge or at v. The modification to obtain scenario S′

1 is as follows.
The adversary starts moving agent a from u to v in the beginning of round t, but
blocks it inside the edge {u, v} until the end of the round t′ in which b makes
its sth edge traversal to v, which it is released to do. In the next round the
adversary releases b to make its (s + 1)th edge traversal to z and releases a to
finish its rth edge traversal to v (these two actions finish simultaneously). This
avoids the meeting.

Hence in all cases we obtain a scenario S′

1 which does not contain any meeting.
Notice that scenario S′

1 is still a scenario in model M in cases 1 and 2, but is not
a scenario in this model in case 3. Indeed, in this case agent a does not travel with
constant speed inside the edge {u, v}. However, in all cases this is a legitimate
scenario for the asynchronous adversary. It ends at the end of a round when a
has made its rth edge traversal and when b has made its (s+1)th edge traversal
but before b has started its (s+2)th edge traversal. Hence scenario S′ consisting
of scenario S′

1 followed by S2 is possible for the asynchronous adversary, has one
fewer meeting than scenario S and all situations A1 – A5 are still avoided.

In a similar way it can be shown that if situation B3 occurred during the
meeting ρ, then a scenario avoiding the first meeting of S can be produced.
Notice that scenario S2 remained unchanged and it is still a scenario in model
M. The same reasoning can be now applied to scenario S2, again transforming
it into a scenario with one fewer meeting (avoiding the first meeting in S2), the
last part of which (containing other meetings, if any, except the first meeting of
scenario S2) is still a scenario in model M.

By induction on the number of meetings it follows that a scenario AS for some
behavior of the asynchronous adversary (not for model M any more) without
any meeting after a total of A(n,min(log λ1, log λ2)) steps can be produced.
This, however, contradicts the fact that Algorithm RV-asynch-poly guarantees
a meeting under any behavior of the asynchronous adversary after a total of at
most A(n,min(log λ1, log λ2)) steps of both agents. �

Lemma 4. Consider two agents a and b, with different labels λ1 and λ2, re-
spectively, starting at arbitrary different nodes of an n-node graph, where n is
unknown to the agents. In the model M, if the agents have executed at least
A(n,min(log λ1, log λ2)) stages of phase Progress of Algorithm RV-RF, then at
least one of the following events must have occurred:

Event 1. There exists a round k during which the agents cross each other
inside an edge {u, v}, one agent going from u to v and the other going from v
to u, each of the agents applying a step of procedure Asynch.

Event 2. There exists a round k during which one agent arrives at node v
applying a step of procedure Asynch and the other agent has never moved yet.

Event 3. There exists a round k during which one agent arrives at node v
from u applying a step of procedure Asynch, and the other agent has also arrived

at v from u applying a step of procedure Asynch in some round k′ < k and has
not made any further step of procedure Asynch until the end of round k.

Event 4. There exists a round k during which agent b arrives at node v from
w applying a step of procedure Asynch and such that:

– agent a has arrived at v from u 6= w applying a step of procedure Asynch in
some round k′ ≤ k and has not made any further step of procedure Asynch

during the time interval [k′, k];
– the next step of procedure Asynch after round k brings agent a to node w;
– the next step of procedure Asynch after round k brings agent b to node u.

Event 5. There exists a round k1 during which agent a arrives at node v from
u applying a step of procedure Asynch and such that:

– the next step of procedure Asynch after round k1 performed by agent a in a
round k2 > k1, brings agent a to node w 6= u;

– agent b arrives at v from w applying a step of procedure Asynch in some
round p1 < k2 and goes from v to some node z 6= u applying the next step of
procedure Asynch in some round p2 ≥ k2.

Proof. Consider a scenario S in model M in which none of the events 1 – 5
occurred by the time the agents completed A(n,min(log λ1, log λ2)) stages of
phase Progress of Algorithm RV-RF. Replace in scenario S each action that does
not correspond to a step of procedure Asynch by (a tentative of) performing
by the agent the next step of procedure Asynch and imposing in this round a
delay fault by the adversary. The obtained scenario S′ is a legitimate scenario
in the execution of procedure Asynch in model M by agents with labels λ1 and
λ2 in which, after A(n,min(log λ1, log λ2)) steps of both agents executed in this
procedure none of the situations A1 – A5 took place. This contradicts Lemma 3.
�

In the sequel we will need the following notions. The home of an agent is the
last node at which it arrived applying procedure Asynch and the cottage of an
agent is the previous node that it reached applying procedure Asynch (or the
starting node of the agent, if the home is reached in the first step of procedure
Asynch). The home of an agent a is denoted by Home(a) and its cottage by
Cot(a). Hence if agent a arrives at y from x applying a step of procedure Asynch,
then x = Cot(a) and y = Home(a).

We say that a fault occurring during the execution of Algorithm RV-RF is
repaired if either the execution of phase Correction following this fault has been
completed without any occurrence of a fault, or the execution of phase Correc-
tion following this fault has been interrupted by a fault that has been repaired.
Intuitively, this recursive definition says that a fault is repaired if it is followed
by a series of partial executions of phase Correction, each except the last one
interrupted by a fault, and the last one not interrupted by a fault and executed
completely.

The following two lemmas show that after the occurrence of event 1 or event
3 from Lemma 4 a meeting of the agents at some node must happen within
O(max(log λ1, log λ2)) steps in phase Progress.

Lemma 5. Consider two agents a and b, with different labels λ1 and λ2, respec-
tively, starting at arbitrary different nodes of an n-node graph, where n is un-
known to the agents. Suppose that in some round t′ of the execution of Algorithm
RV-RF in the model M we have Home(a) = Cot(b) and Home(b) = Cot(a).
Then a meeting occurs at some node after O(max(log λ1, log λ2)) steps of the
phase Progress executed after round t′.

Proof. Suppose, without loss of generality, that round t′ is the first round for
which Home(a) = Cot(b) = y and Home(b) = Cot(a) = x. This implies that in
some round t ≤ t′ one of the agents, say a, came from x to y by applying a step
of procedure Asynch and the following conditions are satisfied:

– agent a has not performed the next step of procedure Asynch in the time
interval [t, t′];

– agent b came from y to x by applying a step of procedure Asynch in round
t′.

If agent a completed the procedure Dance following its last step of Asynch before
round t′, then a meeting occurs in round t′ − 1, as both agents are at node y in
this round. Hence in the sequel we suppose that agent a has not yet completed
this procedure Dance in round t′ − 1.

Let t′′ ≥ t′ be the first round in which one of the agents completes its
procedure Dance. First suppose that t′ and t′′ are rounds in which none of the
agents is subject to a fault and in which none of the agents executes a step of
phase Correction. This means that if a fault occurred in the time interval (t, t′),
then it must have been repaired in this time interval.
Claim 1. If no fault occurs in the time interval (t′, t′′), then a meeting occurs
at some node by round t′′.

In order to prove the claim, first suppose that t = t′. In this case the agents
start executing procedure Dance simultaneously. By the definition of modified
labels, there is an index i such that bits at position i of the modified labels of
the agents differ. Hence by round t′′ one of the agents is inert at one of the nodes
x or y while the other traverses the edge {x, y}. This implies a meeting at x or
at y.

Next suppose that t < t′ and consider 3 cases.
Case 1. In round t′ agent a has not yet finished Stage 1 of procedure Dance.
In round t′ − 1 both agents were at node y, hence the meeting occurred.
Case 2. In round t′ agent a has already finished Stage 1 of procedure Dance

but has not yet finished Stage 2.
Between round t′+1 and round t′+10 agent b executes Stage 1 of procedure

Dance and hence is inert at x.
Subcase 2.1. Agent a spends all the time interval [t′ + 1, t′ + 10] in Stage 2

of procedure Dance.
By Lemma 1, in at least one of these rounds agent a traverses the edge {x, y},

while agent b is inert at x during all these rounds. Hence the meeting must occur
at x.

Subcase 2.2. Agent a starts Stage 3 of procedure Dance in the time interval
[t′ + 1, t′ + 10].

Hence during round t′ +10 agent a executes Stage 3 of procedure Dance and
hence traverses edge {x, y}, while agent b is inert at x during this round. Hence
the meeting must occur at x.

Case 3. In round t′ agent a has already finished Stage 2 of procedure Dance.

Subcase 3.1. In round t′ agent a has not yet finished Stage 3 of procedure
Dance.

If in round t′ agent a is at x, then the meeting occurs in this round. Otherwise,
agent a moves to x in round t′ + 1 ≤ t′′ and the meeting occurs at x in this
round.

Subcase 3.2. In round t′ agent a finished Stage 3 of procedure Dance.

Agent b started Stage 3 of its preceding procedure Dance at node y one round
before agent a started Stage 3 at y. When agent b starts treating the last bit 0
of its transformed label and hence waits at node y in round t′ − 13, agent a has
not finished treating its penultimate bit 1 and hence traverses edge {x, y} in this
round. If agent a is at x in round t′ − 14, this implies a meeting at y in round
t′ − 13. If agent a is at y in round t′ − 14, this implies a meeting at y in round
t′ − 14, as b was at y in this round.

This concludes the proof of Claim 1.

Claim 2. If some faults occur in the time interval (t′, t′′), then a meeting occurs
at some node by round t′′.

Consider two cases.

Case 1. If an agent is subject to a fault in some round in the time interval
(t′, t′′), then the other agent is also subject to a fault in this round.

In this case the rounds of executing the phase Correction are the same for
both agents, hence we can “delete” them and reduce the situation to the case
when no faults occur in the time interval (t′, t′′). The claim follows from Claim 1.

Case 2. There exists a round in the time interval (t′, t′′), in which exactly one
agent is subject to a fault.

Let r be the last round in the time interval (t′, t′′), in which exactly one agent
is subject to a fault. Denote by B the time interval [r + 1, r + 20] and let f be
the agent subject to a fault in round r. Note that B is necessarily included in
the time interval (t′, t′′), since we first assume in the beginning of the proof of
this lemma that if a fault occurred in the time interval (t, t′), then it must have
been repaired in this time interval.

During the time interval B the agent f is inert because these are the first 20
rounds of phase Correction, and hence it is not subject to any faults.B is included
in the time interval (t′, t′′) because any fault occurring in the time interval (t′, t′′)
must be repaired in this time interval. If the other agent f ′ executes procedure
Dance during all rounds of B, then a meeting must occur at some node, because
this agent must move at least once in the time interval B by Lemma 2. Hence we
may assume that there exist rounds in B in which f ′ does not execute procedure
Dance.

Agent f ′ cannot be subject to a fault in the time interval B because it
would be subject to such a fault alone, contradicting the definition of round r.
Moreover, agent f ′ cannot be subject to a fault in round r by the definition
of this round. Hence agent f ′ must execute during some rounds of B a part of
phase Correction caused by a fault occurred before round r. This implies that
agent f ′ executes some round of Stage 2 or Stage 3 of phase Correction during
the time interval B. Since Stage 2 and Stage 3 contain only steps consisting in
traversing edge {x, y}, the agents must meet at some node by the end of time
interval B.

This concludes the proof of Claim 2.

The two claims imply that if t′ and t′′ are rounds in which none of the agents
is subject to a fault and in which none of the agents executes a step of phase
Correction, then a meeting must occur at some node by round t′′. It remains
to consider the case when this condition is not satisfied. Note that in rounds t′

and t′′ at least one of the agents moves. Hence if a fault occurs in one of these
rounds, this means that one of the agents traverses edge {x, y} while the other
agent is idle at x or at y. This implies a meeting at some node by round t′′.

Hence we may assume that an agent executes a step of phase Correction
either in round t′ or in round t′′.

Case 1. An agent executes a step of phase Correction in round t′.

In this case agent a executes a step of phase Correction in round t′ while
agent b comes to x from y executing a step of procedure Asynch. Suppose, for
contradiction, that the agents do not meet at some node by round t′′. In round t′

agent amust move, otherwise a meeting occurs at some node either in round t′−1
or in round t′. Moreover, in round t′ +1 agent a must attempt to move. Indeed,
either agent a has not finished the phase Correction in round t′, in which case it
continues a moving attempt in round t′ + 1, or it finished the phase Correction
in round t′, in which case in round t′+1 it resumes phase Progress where it was
interrupted by the last fault, i.e., it also attempts to move.

If agent a is not subject to a fault in round t′+1, then it traverses edge {x, y}
in this round. In round t′+1 agent b executes the first round of procedure Dance,
hence it is idle at x. This implies that a meeting occurs at some node either in
round t′ or in round t′ + 1. Hence we may assume that agent a is subject to a
fault in round t′+1. In the time interval [t′+2, t′+21] agent a executes the first
20 rounds of phase Correction following this fault, i.e., it remains idle. On the
other hand, agent b completes Stage 1 of procedure Dance (which is a waiting
period) in round t′ + 10 and makes an attempt to move in round t′ + 11. If it is
not subject to a fault in this round, a meeting at some node must occur. Hence
we may assume that agent b is subject to a fault in round t′ + 11. This implies
that in the time interval [t′ + 12, t′ + 31] agent b executes the first 20 rounds
of phase Correction following this fault, i.e., it remains idle. On the other hand
agent a completes Stage 1 of phase Correction in round t′ + 21 and makes an
attempt to move in round t′ + 22. If it is not subject to a fault in this round,
a meeting at some node must occur, because b is idle in this round. Hence we
may assume that a is subject to a fault in round t′+22 and executes the first 20

rounds of phase Correction following this fault in the time interval [t′+23, t′+42],
i.e., it remains idle in this time interval. Continuing this reasoning we conclude
that none of the agents can finish its procedure Dance by round t′′, which is a
contradiction.

Case 2. An agent executes a step of phase Correction in round t′′.

Let f be the agent finishing its procedure Dance in round t′′ and let f ′

be the agent executing a step of phase Correction in round t′′. Suppose, for
contradiction, that the agents do not meet at some node by round t′′. Agent
f moves in each round of the time interval [t′′ − 11, t′′]. Indeed, agent f could
not be subject to a fault in one of these rounds or execute Stage 1 of the phase
Correction, because then it could not finish procedure Dance in round t′′. For
the same reasons, agent f could not execute any steps of Stage 1 or Stage 2
of procedure Dance. Hence in these rounds agent f either executes the entire
Stage 3 of procedure Dance, or executes some rounds of Stage 2 or 3 of phase
Correction and then at least one round of procedure Dance. Hence in all these
rounds the agent must move. It follows that in each round of the time interval
[t′′− 11, t′′] agent f ′ also moves, for otherwise there would be a meeting at some
node by round t′′. Hence agent f ′ executes rounds of Stage 2 or Stage 3 of phase
Correction in this time interval. It follows that in round t′′ − 21 agent f ′ is idle
executing a step of Stage 1 of phase Correction. There are two subcases.

Subcase 2.1. Agent f does not terminate any phase Correction in the time
interval [t′′ − 15, t′′].

During this time interval agent f executes exclusively steps of procedure
Dance, which it finishes in round t′′. Hence in round t′′−12 agent f executes the
last step of Stage 2 of this procedure, in which it is idle. Agent f ′ must be also
idle during this round, otherwise a meeting occurs at some node. Since in round
t′′−11 agent f ′ moves executing a step of the phase Correction, this implies that
in round t′′ − 12 agent f ′ executes the last step of Stage 1 of phase Correction.
Hence f ′ is idle in round t′′ − 15. In this round agent f treats the penultimate
bit of its modified label in Stage 2 of procedure Dance. This bit is 1. Hence agent
f traverses edge {x, y} in round t′′− 15. This implies a meeting at some node in
round t′′ − 16 or t′′ − 15, which is a contradiction.

Subcase 2.2. Agent f terminates a phase Correction in the time interval
[t′′ − 15, t′′].

If this happens in round t′′−2 or earlier, then in round t′′−21 agent f executes
a step of Stage 2 or Stage 3 of phase Correction. Hence in this round agent f
traverses edge {x, y}, while agent f ′ is idle. This implies a meeting at some
node in round t′′ − 22 or t′′ − 21, which is a contradiction. Since agent f cannot
end phase Correction in round t′′ by definition of this round, we may assume
that it terminates phase Correction in round t′′ − 1. If f executed 21 rounds of
movement in Stage 2 and Stage 3 of phase Correction, then a meeting at some
node must occur by round t′′−21. Otherwise agent f executed exactly 20 moves
in phase Correction and hence was subject to a fault in round t′′ − 41. Consider
two possibilities. If both agents are always subject to faults simultaneously in the
time interval [t′, t′′], then both agents execute steps of phase Correction in the

same rounds in the time interval [t′, t′′], which contradicts the fact that in round
t′′ agent f executes the last step of procedure Dance and agent f ′ executes a
step of phase Correction in this round. If agents are not always subject to faults
simultaneously in the time interval [t′, t′′], then the contradiction is obtained
using an argument similar to that from Case 2 in the proof of Claim 2.

Hence we proved that a meeting at some node must occur by round t′′. Since
in the time interval [t′, t′′] both agents executed O(max(log λ1, log λ2)) steps of
the phase Progress, the proof is complete. �

The proof of the next lemma is analogous to that of Lemma 5, hence we omit
it.

Lemma 6. Consider two agents a and b, with different labels λ1 and λ2, respec-
tively, starting at arbitrary different nodes of an n-node graph, where n is un-
known to the agents. Suppose that in some round t′ of the execution of Algorithm
RV-RF in the model M we have Home(a) = Home(b) and Cot(a) = Cot(b).
Then a meeting occurs at some node after O(max(log λ1, log λ2)) steps of the
phase Progress executed after round t′.

The last lemma of this section shows that the meeting between agents in
model M is guaranteed after a polynomial number of steps in phase Progress.

Lemma 7. Consider two agents a and b, with different labels λ1 and λ2, re-
spectively, starting at arbitrary different nodes of an n-node graph, where n is
unknown to the agents. There exists a polynomial B such that a meeting at some
node is guaranteed after the execution of a total of B(n,max(log λ1, log λ2)) steps
of phase Progress of Algorithm RV-RF by both agents in the model M.

Proof. Each stage of phase Progress of Algorithm RV-RF consists of one step of
procedure Asynch and one execution of procedure Dance, and the execution time
of procedure Dance is logarithmic in the label of the executing agent. Hence after
executing a total of A(n,min(log λ1, log λ2)) stages of phase Progress the agents
with labels λ1 and λ2 executed a total of at most

B∗(n,max(log λ1, log λ2)) = A(n,min(log λ1, log λ2)) · c ·max(log λ1, log λ2)

steps of phase Progress, for some positive constant c. By Lemma 4, after execut-
ing a total of A(n,min(log λ1, log λ2)) stages of phase Progress by both agents,
one of the 5 events must have occurred.

If event 1 occurred, the conclusion follows from Lemma 5 for

B(n,max(log λ1, log λ2)) = B∗(n,max(log λ1, log λ2))+O(max(log λ1, log λ2))(∗).

If event 2 occurred, the conclusion is immediate. If event 3 occurred, the con-
clusion follows from Lemma 6, for B given by (∗). If event 4 occurred, there are
two cases.

Case 1. Both agents leave node v in the same round applying a step of
procedure Asynch.

In this case the agents were together at v in the previous round, hence ren-
dezvous occurred and the conclusion follows from the fact that each agent has
executed at most c ·max(log λ1, log λ2) steps of procedure Dance since it arrived
at v.

Case 2. One of the agents leaves node v applying a step of procedure Asynch
in a round m before the other agent leaves node v applying a step of procedure
Asynch.

In this case in round m + 1 we have Home(a) = Cot(b) and Home(b) =
Cot(a) and hence the conclusion follows from Lemma 5, for B given by (∗).

Finally, if event 5 occurred, there are two cases.
Case 1. Both agents leave node v in the same round applying a step of

procedure Asynch.
In this case the agents were together at v in the previous round, hence ren-

dezvous occurred and the conclusion follows from the fact that each agent has
executed at most c ·max(log λ1, log λ2) steps of procedure Dance since it arrived
at v.

Case 2. Agent a leaves node v applying a step of procedure Asynch in a round
m before agent b leaves node v applying a step of procedure Asynch.

In this case in round m + 1 we have Home(a) = Cot(b) and Home(b) =
Cot(a) and hence the conclusion follows from Lemma 5, for B given by (∗). �

We are now ready to prove the main result of this section, showing that Algo-
rithm RV-RF achieves rendezvous at polynomial cost with very high probability,
under the random fault model.

Theorem 1. Consider two agents a and b, with different labels λ1 and λ2, re-
spectively, starting at arbitrary different nodes of an n-node graph, where n is
unknown to the agents. Suppose that delay faults occur randomly and indepen-
dently with constant probability 0 < p < 1 in each round and for each agent.
Algorithm RV-RF guarantees rendezvous of the agents with probability 1. More-
over, there exists a polynomial B such that rendezvous at some node occurs at
cost τ = O(B(n,max(log λ1, log λ2))) with probability at least 1− e−O(τ).

Proof. An entire execution of phase Correction of Algorithm RV-RF, if no fault
occurs during it, lasts at most 41 rounds. Hence in a segment of 42 consecutive
rounds without a fault an agent makes at least one step of phase Progress. Call
a segment of 42 consecutive rounds without a fault occurring to a given agent
clean for this agent. For any round r the probability that the segment starting at
r is clean for both agents is at least q = (1−p)84. Let B be the polynomial from
Lemma 7. The probability of the existence of B(n,max(log λ1, log λ2)) pairwise
disjoint clean segments is 1, and this event implies rendezvous by Lemma 7.

Let c = ⌈84/q⌉. Consider τ = c ·B(n,max(log λ1, log λ2)) rounds of execution
of Algorithm RV-RF. Partition these rounds into ⌈2/q⌉B(n,max(log λ1, log λ2))
pairwise disjoint segments of length 42. By Chernoff bound, there are at least
B(n,max(log λ1, log λ2)) clean segments among them, with probability 1−e−O(τ).
This concludes the proof. �

4 Unbounded adversarial faults

In this section we consider the scenario when the adversary can delay each of
the agents for any finite number of consecutive rounds. Under this scenario the
time (number of rounds until rendezvous) depends entirely on the adversary, so
the only meaningful measure of efficiency of a rendezvous algorithm is its cost.
However, it turns out that, under this harsh fault scenario, even feasibility of
rendezvous is usually not guaranteed, even for quite simple graphs. Recall that
we do not assume knowledge of any upper bound on the size of the graph.

In order to prove this impossibility result, we introduce the following termi-
nology. For any rendezvous algorithm A in a graph G, a solo execution of this
algorithm by an agent A is an execution in which A is alone in the graph. Note
that, in an execution of algorithm A where two agents are present, the part of
this execution by an agent before the meeting is the same as the respective part
of a solo execution of the algorithm by the respective agent.

A port labeling in a graph is called homogeneous, if port numbers at both
endpoints of each edge are equal.

Remark 1. Let F be a family of regular graphs of degree d, with homogeneous
port labeling. Consider a solo execution of a rendezvous algorithm A by an agent
Aλ with label λ, in a graph G ∈ F . In each round the agent may either decide to
stay at the current node or try to traverse an edge. This decision depends on the
label λ and on the history of the agent. In view of the regularity of the graph,
and since the port labeling is homogeneous, the agent can differentiate neither G
from any graph G′ ∈ F , nor any two nodes in G, during its navigation. Hence,
if the algorithm, the agent’s label and the adversary’s behavior are fixed, the
agent’s history, in any round, (which can be coded by the sequence of previous
round numbers in which the agent made a move) is necessarily the same in any
graph of F and for any starting node. (The agent made a move in a previous
round, if and only if, it tried to traverse an edge and the adversary allowed the
move by not imposing a fault in this round.)

Consider the decisions of agent Aλ starting in some round t and before its
next move. We say that the agent attacks since round t, if, from round t on, it tries
an edge traversal in each round until it makes the next move. Note that, within
a given attack, the edge which the attacking agent attempts to traverse, is not
always necessarily the same. We say that the agent does not attack after round
t, if there does not exist a round t′ > t in which the agent starts attacking.
In other words it means that, after round t, the agent decides to stay at the
current node in rounds with arbitrarily large numbers, interleaved with possible
attempts at a move, all of which can be prevented by an adversary. Note that an
adversary must eventually allow an agent that attacks to make a next move but
it is capable of preventing an agent that never attacks after a given round from
making any further move by imposing faults in all rounds in which the agent
tries an edge traversal.

We first prove the following technical lemma.

Lemma 8. Let F be a family of regular graphs of degree d, with homogeneous
port labeling, A any rendezvous algorithm working for graphs in F , and M any
positive integer. Then there exists a behavior of the adversary inducing an infinite
increasing sequence τ1, τ2, . . . , τi, . . . of positive integers, such that, for any graph
G ∈ F and for any λ ≤ M , there exists a solo execution of algorithm A in G by
agent Aλ with label λ, such that one of the following conditions is satisfied:

– either Aλ attacks only a finite number k ≥ 0 of times, in which case Aλ either
does not move if k = 0, or moves exactly in rounds τ1, τ2, . . . , τk otherwise;

– or Aλ attacks infinitely many times, in which case it moves exactly in rounds
τi, for all positive integers i.

Proof. Fix a rendezvous algorithm A, a degree d of graphs in a family F , and
a positive integer M . Consider the set S of agents Aλ with label λ ≤ M , and
suppose that each of these agents executes A alone in some graph G ∈ F . Note
that, for a given behavior of an adversary and a given label, this execution will
be the same in any graph G ∈ F (cf. Remark 1). We construct the sequence
τ1, τ2, . . . , τi, . . . and the behavior of an adversary by induction on i. We start by
giving a partial description of this behavior. For any agent in S, the adversary
imposes a fault in every round in which the agent does not attack but tries to
traverse an edge. An adversary behaving in this way will be called tough.

If an agent does not attack before its first move, then the agent never moves,
in view of the toughness of the adversary. Consider the set S0 ⊆ S of agents
that attack before their first move. Let s1 < · · · < sr be the rounds in which
this attack starts for some agent in S0. Define τ1 = sr. The adversary allows a
move of all agents from the set S0 in round τ1.

For the inductive step, consider the set Si−1 ⊆ S of agents that attacked
i > 0 times and made i moves, exactly in rounds τ1, τ2, . . . , τi. If an agent from
Si−1 does not attack after its i-th move in round τi, then the agent never moves
again, in view of the toughness of the adversary. Consider the set Si ⊆ Si−1 of
agents that attack after round τi and before the next move. Let t1 < · · · < tp,
where t1 > τi, be the rounds in which the (i+1)-th attack starts for some agent
in Si. Define τi+1 = tp. The adversary allows a move of all agents from the set
Si in round τi+1.

This concludes the definition of the sequence τ1, τ2, . . . , τi, . . ., and of the
behavior of the adversary, by induction on i. In order to prove that one of the
conditions in the lemma must be satisfied, consider the solo execution Eλ of an
agent Aλ with label λ ≤ M , in some graph G ∈ F , against the above defined
adversary. There are two possible cases: either, in the execution Eλ, the agent
attacks k times, where k is a non-negative integer, or it attacks infinitely many
times. By the definition of the adversary, in the first case the agent does not
move or moves exactly in rounds τ1, τ2, . . . , τk, and in the second case it moves
exactly in rounds τi, for all positive integers i. �

We now establish the impossibility result for the model with unbounded
faults.

Theorem 2. Rendezvous with unbounded adversarial faults is not feasible, even
in the class of rings.

Proof. Let F be the family of rings of even size with homogeneous port number-
ing. Since graphs in F are regular graphs of degree 2, Lemma 8 applies. Suppose
that A is a rendezvous algorithm working for the family F , and let M = 3. Let
X = (τ1, τ2, . . . , τi, . . .) be the sequence of integers given by Lemma 8, and con-
sider the solo execution Ej of agent Aj with label j, for j = 1, 2, 3, corresponding
to X and satisfying one of the two conditions of Lemma 8. (For a fixed j ≤ 3,
this execution is the same in each ring from F , regardless of the starting node.)
Consider two cases.

Case 1. At least two among agents Aj attack infinitely many times in execu-
tion Ej .

Without loss of generality, assume that A1 and A2 attack infinitely many
times, each in their solo execution E1 (resp. E2). Consider the execution E in
which agents A1 and A2 start simultaneously at an odd distance in the graph,
and the adversary acts against each of them as in their respective solo execution
E1 and E2. In execution E , both agents make moves in exactly the same rounds,
i.e., the rounds of sequence X. Since an even ring is bipartite, the parity of their
distance never changes, and they remain at an odd distance forever. Hence they
never meet, which is a contradiction.

Case 2. At least two among agents Aj attack finitely many times in execution
Ej .

Without loss of generality, assume that A1 and A2 attack finitely many times,
each in their solo execution E1 (resp. E2): agent A1 attacks k times and agent A2

attacks k′ times. Choose as the starting nodes of these agents antipodal nodes in
the ring of size 2(k+k′+1) (i.e., at distance k+k′+1), start them simultaneously,
and assume that the adversary acts against each of them as in their respective
solo execution E1 and E2. By Lemma 8, agent A1 will make a total number of
k moves, and agent A2 will make a total number of k′ moves, in this execution.
Hence they never meet, which is a contradiction. �

In view of Theorem 2, it is natural to ask if rendezvous with unbounded
adversarial faults can be accomplished in the class of connected graphs not con-
taining cycles, i.e., in the class of trees, and if so, at what cost it can be done.
The rest of this section is devoted to a partial answer to this problem. We start
with an auxiliary result about rendezvous in oriented rings, under the additional
assumption that the size of the ring is known to the agents. This result will be
used in a special situation when the size of the ring can be learned by the agents
at small cost. By an oriented ring we mean a ring in which every edge has ports
0 and 1 at its extremities. This provides the agents with the orientation of the
ring: they can both go in the same direction by choosing port 0 at each node.

Lemma 9. If the size n of an oriented ring is known to the agents, then ren-
dezvous with unbounded adversarial faults can be achieved at cost O(nℓ), where
ℓ is the smaller label.

Proof. The rendezvous algorithm for an agent with label λ is the following: start
by port 0, perform 2nλ edge traversals in the same direction, and stop. If two
agents execute this algorithm, then, if they have not met before, the agent with
larger label does at least one full tour of the ring after the agent with smaller
label already stopped. Hence they must meet at cost at most 4(ℓ+1)n, where ℓ
is the smaller label. �

Our goal is to present an efficient rendezvous algorithm working for arbitrary
trees. We will use the following notion. Consider any tree T . A basic walk in T ,
starting from node v is a traversal of all edges of the tree ending at the starting
node v and defined as follows. Node v is left by port 0; when the walk enters a
node by port i, it leaves it by port (i + 1) mod d, where d is the degree of the
node. Any basic walk consists of 2(n− 1) edge traversals. An agent completing
the basic walk knows that this happened and learns the size n of the tree and
the length 2(n− 1) of the basic walk.

The following Algorithm Tree-RV-UF (for rendezvous in trees with unbounded
faults) works for an agent with label λ, starting at an arbitrary node of any
tree T .

Algorithm Tree-RV-UF

Repeat 2λ basic walks starting from the initial position and stop. ⋄

Theorem 3. Algorithm Tree-RV-UF is a correct rendezvous algorithm with un-
bounded adversarial faults in arbitrary trees, and works at cost O(nℓ), where n
is the size of the tree and ℓ is the smaller label.

Proof. Fix any nodes v1 and v2 of T , which are the starting positions of the
agents. Notice that agents repetitively performing a basic walk starting at v1
and v2 respectively, traverse all edges of the tree in the same order and in the
same direction, with a cyclic shift. Hence performing a repetitive basic walk in
a tree of size n can be considered as making tours of a “virtual” oriented ring
of length 2(n − 1) composed of edges in the order and direction imposed by
the basic walk. Each edge of the tree is traversed exactly twice in each tour of
this virtual ring (once in each direction) and the direction of the walk in this
virtual ring is the same, regardless of the node where the basic walk starts. Since,
after completing the first basic walk, the agent learns its length, and Algorithm
Tree-RV-UF is equivalent to the algorithm from the proof of Lemma 9 providing
rendezvous in oriented rings of known size (run on the virtual oriented ring given
by the basic walk of the tree), the conclusion follows. �

We do not know if Algorithm Tree-RV-UF has optimal cost, i.e., if a lower
bound Ω(nℓ) can be proved on the cost of any rendezvous algorithm with un-
bounded adversarial faults, working in arbitrary trees of size n. However, we
prove a weaker lower bound. It is clear that no algorithm can beat cost Θ(n)
for rendezvous in n-node trees, even without faults. Our next result shows that,
for unbounded adversarial faults, Ω(ℓ) is a lower bound on the cost of any ren-
dezvous algorithm, even for the simplest tree, that of two nodes.

Proposition 1. Let T be the two-node tree. Every rendezvous algorithm with
unbounded adversarial faults, working for the tree T , has cost Ω(ℓ), where ℓ is
the smaller label.

Proof. Let M be a positive integer, and A a rendezvous algorithm working in the
tree T . For every j ∈ {1, . . . ,M}, consider the solo execution Ej of A, for agent
Aj with label j, and for the adversary constructed in Lemma 8. Let E(i, j) be
the execution of A in T , for agents Ai and Aj starting simultaneously from the
two nodes of T , for the same adversary. By Lemma 8, for at most one value of
j ∈ {1, . . . ,M}, agent Aj attacks infinitely many times in execution Ej , because
if there were two such agents Ai and Aj , then they would not meet in execution
E(i, j). Hence, for at least M − 1 values of j ∈ {1, . . . ,M}, agent Aj attacks a
finite number of times in execution Ej . Again by Lemma 8, for all these values
of j, agent Aj must attack a different number of times in execution Ej , because
if there were two agents Ai and Aj attacking the same number k of times, then
they would not meet in execution E(i, j). Hence, for at least two different labels
ℓ < L ≤ M this number of attacks must be at least M − 2. It follows from
Lemma 8 that in execution E(ℓ, L) each of the agents makes at least M − 2
moves before rendezvous. Since ℓ ≤ M − 1, agent Aℓ makes at least ℓ− 1 moves
before rendezvous, which completes the proof. �

5 Bounded adversarial faults

In this section we consider the scenario when the adversary can delay each of
the agents for at most c consecutive rounds, where c is a positive integer, called
the fault bound. First note that if c is known to the agents, then, given any syn-
chronous rendezvous algorithm working without faults for arbitrary networks,
it is possible to obtain an algorithm working for bounded adversarial faults and
for arbitrary networks, at the same cost. Let A be a synchronous rendezvous
algorithm for the scenario without faults, working for arbitrary networks. Con-
sider the following algorithm A(c) working for bounded adversarial faults with
parameter c. Each agent replaces each round r of algorithm A by a segment of
2c + 1 rounds. If in round r of algorithm A the agent was idle, this round is
replaced by 2c + 1 consecutive rounds in which the agent is idle. If in round r
the agent left the current node by port p, this round is replaced by a segment of
2c+ 1 rounds in each of which the agent makes an attempt to leave the current
node v by port p until it succeeds, and in the remaining rounds of the segment
it stays idle at the node adjacent to v that it has just entered.

We associate the first segment of the later starting agent with the (unique)
segment of the earlier agent that it intersects in at least c+ 1 rounds. Let it be
the ith segment of the earlier agent. We then associate the jth segment of the
later agent with the (j + i− 1)th segment of the earlier agent, for j > 1. Hence,
regardless of the delay between starting rounds of the agents, corresponding
segments intersect in at least c+1 rounds. If the agents met at node x in the jth
round of the later agent, according to algorithm A, then, according to algorithm

A(c), in the last c + 1 rounds of its jth segment the later agent is at x and in
the last c+ 1 rounds of its (j + i− 1)th segment the earlier agent is at x. Since
these segments intersect in at least c+ 1 rounds, there is a round in which both
agents are at node x according to algorithm A(c), regardless of the actions of
the adversary, permitted by the bounded adversarial fault scenario. This shows
that algorithm A(c) is correct. Notice that the cost of algorithm A(c) is the
same as that of algorithm A, because in each segment corresponding to an idle
round of algorithm A, an agent stays idle in algorithm A(c) and in each segment
corresponding to a round in which an agent traverses an edge in algorithm A,
the agent makes exactly one traversal in algorithm A(c).

In the rest of this section we concentrate on the more difficult situation
when the fault bound c is unknown to the agents. The following Algorithm
Graph-RV-BF (for rendezvous in graphs with bounded faults) works for an agent
with label λ starting at an arbitrary node of any graph.

Algorithm Graph-RV-BF is divided into phases. The i-th phase is composed
of 2i stages, each lasting si = 2i+4 rounds. Hence the i-th phase lasts pi = 22i+4

rounds. The λ-th stage of the i-th phase consists of two parts: the busy part of
bi = 3 · 2i rounds and the waiting part of wi = 13 · 2i rounds. During the busy
part of the λ-th stage of phase i, the agent tries to explore the graph three times
(each exploration attempt lasts at most ei = 2i rounds), using a UXS. We say
that the agent is active during the busy part of the λ-th stage of each phase
i ≥ q = ⌈log(λ + 1)⌉. In order to explore the graph, the agent keeps estimates
of the values of c and P (n). (Recall that the latter is the length of a UXS that
allows to traverse all edges of any graph of size at most n, starting from any
node). The values of these estimates in phase i are called ci and ui, respectively,
and grow depending on the strategy of the adversary. For the first phase q in
which the agent is active, we set uq = 1 and cq = 2q. In phase i the agent uses
the UXS of length ui. Call this sequence S. The agent uses this UXS proceeding
by steps. Steps correspond to terms of the sequence S. During phase i, the k-
th step consists of si rounds during which the agent tries to move, using port
(p + S[k] mod d) (where d is the degree of the current node and p is the port
by which the agent entered the current node), until it succeeds or until the si
rounds of the k-th step are over. If it succeeded to move, it waits until the si
rounds of the step are over. If the agent succeeds to perform all of its three UXS
explorations during a phase i, i.e., if it succeeds to move once in each step, then
we set ui+1 = 2ui and ci+1 = ci. Otherwise, we set ui+1 = ui and ci+1 = 2ci.
When the agent is not active, it waits at its current node. The agent executes
this algorithm until it meets the other agent.

Below we give the pseudocode of the algorithm that works for an agent with
label λ starting at an arbitrary node of any connected graph.

Algorithm Graph-RV-BF

q := ⌈log(λ+ 1)⌉;
cq := 2q;
uq := 1;
i := 0;

while rendezvous not achieved do

for j := 0 to 2i − 1 do

if λ = j then

success := true;
for r := 0 to 2 do

success := (success AND exploration(ui, ci));
/*the value of exploration(ui, ci)) may be different
in different iterations of the loop, due to the actions
of the adversary*/

endfor

if success then
ui+1 := 2ui; ci+1 := ci;

else

ui+1 := ui; ci+1 := 2ci;
endif

wait for 13 · 2i rounds;
else

wait for 2i+4 rounds;
endif

endfor

i := i+ 1;
endwhile ⋄

We use the following function for exploration.

boolean exploration(integer u, integer c)
success := true;
S := UXS of length u;
for k := 0 to u− 1 do

moved := false;
for r := 0 to c− 1 do

p := port by which the agent entered the current node;
d := degree of the current node;
try to move by port (p+ S[k] mod d);
if move is successful then

moved := true; break;
endif

endfor

wait for c− 1− r rounds;
if moved = false then

success := false; break;
endif

endfor

wait until the call of exploration lasts for 2cu rounds;
return success; ⋄

Theorem 4. Algorithm Graph-RV-BF is a correct rendezvous algorithm with
bounded adversarial faults in arbitrary graphs, and works at cost polynomial in

the size n of the graph, and logarithmic in the fault bound c and in the larger
label L.

Proof. Let a with label λ be the first agent to be activated by the adversary. The
second agent a′ with label λ′ is activated after δ ≥ 0 rounds. Let Si (respectively
S′

i) be the λ-th (respectively λ′-th) stage of phase i of execution of agent a
(respectively agent a′). The stage Si (respectively S′

i) is called the active stage
of agent a (respectively a′) for phase i. Recall that agent a (respectively agent a′)
is active in round t if it is executing a busy part of an active stage Si (respectively
S′

i). Let tk (respectively t′k) be the round in which stage Sk (respectively S′

k)
starts. We say that stage Si of agent a intersects stage S′

j of agent a
′ if there is a

round during the execution when both agents are active, with agent a executing
the busy part of stage Si and agent a′ executing the busy part of S′

j . We say
that an active stage of an agent is useless if it intersects an active stage of the
other agent. We denote by u′

i and c′i the values of the variable ui and ci during
the execution of Algorithm Graph-RV-BF by agent a′. For simplicity, we denote
these values for agent a by ui and ci. First, we show the following claim.

Claim 1. At most three active stages of agent a are useless.

In order to prove the claim, we can assume that agent a has at least one
useless stage, otherwise the claim is proved. Let Si be the first useless stage of
a. We consider the minimal index j > i + 1 such that the active stage Sj is
useless. If j does not exist then the claim is proved, since only stages Si and
Si+1 can be useless. We will show that for r > j, stage Sr is not useless. This
will prove the claim since in this case only the stages Si, Si+1 and Sj can be

useless. Observe that δ <
∑i

k=0 pk, since the second agent was active during the
phase i of the first agent. For all k ∈ N, we have pk+1 = 4pk. Hence, we have
∑i

k=0 pk < 1
2pi+1. Thus δ < 1

2pk−1 for any k > i + 1. Hence, for any k > i + 1
the phase k of agent a happens between the beginning of the second half of
phase k− 1 and the end of phase k of agent a′. Observe that agent a′ was active
during some phase i′ ≤ i since agent a has a useless stage in phase i. Hence
λ′ ≤ 2i ≤ 1

22
k−1 for any k ≥ i + 1. It implies that for all k ≥ i + 1 agent a′ is

not active during the second half of phase k − 1, and so for any r < k, stage
S′

r cannot intersect stage Sk. Hence, for any k > i + 1, Sk can only intersect
stage S′

k. In particular, this implies that during phase j, the active stage Sj

intersects stage S′

j . Hence λ′ < λ. We have t′j < tj + bj since S′

j intersects Sj

(recall that S′

j intersects Sj if there exists a round in which agents a and a′ are
both executing the busy part of Sj and S′

j , respectively). Let k ≥ j. We have

tk+1 = tk + (2i − λ)sk + λsk+1 = tk + pk + λ(sk+1 − sk). Similarly, we have
t′k+1 = t′k + pk + λ′(sk+1 − sk) for any k ≥ j. We obtain that for any k ≥ j:

tk+1 − t′k+1 = tk + pk + λ(sk+1 − sk)− (t′k + pk + λ′(sk+1 − sk))

= tk − t′k + (λ− λ′)(sk+1 − sk)

≥ tk − t′k + (sk+1 − sk), since λ > λ′.

By induction on r, we have for any r ≥ j that :

tr+1 − t′r+1 ≥ tj − t′j +

r
∑

k=j

(sk+1 − sk)

≥ tj − t′j + sr+1 − sj

≥ tj − t′j +
1

2
sr+1 (since sj ≤

1
2sr+1)

≥
1

2
sr+1 − bj (since t′j < tj + bj)

≥ 2br+1 − bj (since sr+1 > 4br+1)

> br+1 (since br+1 > bj).

For any r ≥ j, we conclude that the busy part of stage S′

r+1 of agent a′ starts
in round t′r+1 and ends in round t′r+1+ br+1. Stage S

′

r+1 does not intersect Sr+1

since tr+1 > t′r+1 + br+1. Hence, for any r > j, stage Sr is not useless. This ends
the proof of the claim.

In order to bound the number of moves of the two agents, we will show the
following claim.

Claim 2. There exists a constant d, such that, for any integer i, either rendezvous
occurs by the end of the execution of phase i by one of the agents, or the values
of ui and u′

i are at most dP (n).

In order to prove the claim, first consider the values of ui (for agent a). Let
j = min{k ∈ N | uk ≥ P (n)}. For i < j we have ui ≤ uj ≤ 2P (n). Let i ≥ j.
Consider two cases: either (1) Si is not useless or (2) Si is useless. For Case (1),
consider two subcases: either (1.1) the agent succeeds to move in each step of
Si, or (1.2) the agent is blocked by the adversary in some step of Si. In case
(1.1), agent a explores all the graph since it performs a UXS of length uk for
uk ≥ P (n). Hence, rendezvous occurs since agent a′ does not move during stage
Si. For Case (1.2), we have ui+1 = ui. Since Case (2) can only happen three
times by Claim 1, in view of Case (1.2) and of the fact that uz+1 ≤ 2uz for all
z ≥ 0, we have that for all i, ui ≤ 8uj ≤ 16P (n). This proves the claim for agent
a with d = 16.

Next, we consider the values of u′

i (for agent a′). Let x = min{k ∈ N |
u′

k ≥ P (n)}. For i < x we have u′

i ≤ u′

x ≤ 2P (n). Let i ≥ x. Consider two
cases: either (1) S′

i is not useless or (2) S′

i is useless. Using the same argument
as for agent a, we can assume that the value u′

i+1 is equal to u′

i in Case (1),
otherwise rendezvous occurs in phase i of agent a′. Consider Case (2). We have
that S′

i intersects Sj for some j ≥ i. Let p = min{k ∈ N | S′

k intersects Sj} and
q = max{k ∈ N | S′

k intersects Sj}. We consider two subcases: (2.1) q− p > 0 or
(2.2) q − p = 0. Consider Subcase (2.1). Stages S′

q−1 and S′

q intersect stage Sj

and we have tj ≤ t′q−1+ bq−1 ≤ t′q ≤ tj + bj . This implies t′q − (t′q−1+ bq−1) ≤ bj .
We have t′q − t′q−1 = pq−1 + λ′(sq+1 − sq) ≥ pq−1. Hence:

pq−1 ≤ bj + bq−1

22(q−1)+4 ≤ 3 · 2j + 3 · 2q−1, since pi = 22i+4 and bi = 3.2i for all i ∈ N.

22(q−1)+4 ≤ 3 · 2j + 3 · 2j−1, since S′

q intersects Sj and q ≤ j.

22q ≤
9

8
· 2j

2q ≤ j + log

(

9

8

)

2q ≤ j + 0.06

2q ≤ j, since both q and j are integers.

For any p ≤ k ≤ q, we have 2k ≤ j. Now we show that for k such that
p ≤ k ≤ q, if u′

k ≥ 48P (n), then rendezvous occurs. Assume that u′

k ≥ 48P (n).
We have :

22k ≤ 2j since 2k ≤ j

(ek)
2 ≤ ej since ∀i ∈ N, ei = 2i

ek(c
′

ku
′

k) ≤ cjuj since ∀i ∈ N, ei = u′

ic
′

i = uici

48P (n)ekc
′

k ≤ 16P (n)cj since u′

k ≥ 48P (n) and uj ≤ 16P (n)

3ek ≤ cj since c′k ≥ 1.

Hence, during a period of time of duration less or equal to cj , agent a
′ explores

three times the graph. Agent a moves at most twice during this period of time,
since this period of time intersects at most two steps and agent a moves at
most once in each step. Hence, agent a′ explores the graph at least once while
agent a is not moving and thus rendezvous occurs. It follows that for k such
that p ≤ k ≤ q, if u′

k ≥ 48P (n), then rendezvous occurs. Hence, for k such
that p ≤ k ≤ q, if rendezvous does not occur by the end of phase k, we have
u′

k ≤ 96P (n). (By definition of p and q, in Subcase (2.1) it is enough to restrict
attention to k in the interval [p, q].)

Finally, let us consider Subcase (2.2). The stage S′

i is the only active stage
of a′ to intersect Sj . This means that Subcase (2.2) can only occur three times
by Claim 1. Hence the value of ui is less than max{23uj , 2

296P (n)} ≤ 384P (n).
This proves the claim for agent a′ with d = 384 and concludes the proof of
Claim 2.

We show that rendezvous occurs by the end of the execution of phase ρ(r) =
log(P (n))+log(c)+log(L)+r by agent a, for some constant r. Note that for any
phase i ≥ ⌈log(L)⌉ ≥ ⌈log(λ)⌉, agent a has an active stage Si. At the end of each
phase, either ui+1 = 2ui or ci+1 = 2ci. For all i, if rendezvous has not occurred
by the end of phase i, we have ui ≤ dP (n) for some constant d (cf. Claim 2).

Moreover, observe that if cj ≥ c+1 then uj+1 = 2uj , since the adversary cannot
prevent the move of the agent more than c times. Hence, there exists a constant
y, such that if rendezvous has not occurred by the beginning of phase ρ(y), then
we have uρ(y) ≥ P (n) and cρ(y) ≥ c+1. This means that during any active stage
Sj with j ≥ ρ(y), agent a explores the graph. At least one of the stages among
Sρ(y), Sρ(y)+1, Sρ(y)+2 or Sρ(y)+3 is not useless by Claim 1. Hence, rendezvous
occurs by the end of the execution of phase ρ(y) + 3 = ρ(y+ 3) = ρ(r) by agent
a, with r = y + 3.

Now we can conclude the proof of the theorem. Since agent a is activated
before or at the same time as agent a′, agent a′ cannot execute more than the first
ρ(r) phases before rendezvous occurs. Hence, at most ρ(r) phases are executed
by each of the agents a and a′. Since, in view of Claim 2, each agent makes at
most dP (n) moves during each phase, the total number of moves of the agents
is in O((log(P (n))+ log(c)+ log(L))P (n)). Since P is a polynomial, the theorem
follows. �

Notice that in the bounded fault scenario (as opposed to the unbounded
fault scenario) it makes sense to speak about the time of a rendezvous algorithm
execution (i.e., the number of rounds from the start of the earlier agent until
rendezvous), apart from its cost. Indeed, now the time can be controlled by the
algorithm. Our last result gives an estimate on the execution time of Algorithm
Graph-RV-BF.

Theorem 5. Algorithm Graph-RV-BF works in time polynomial in the size n of
the graph, in the fault bound c and in the larger label L .

Proof. From the proof of Theorem 4 we know that rendezvous occurs by the time
when the agent activated earlier executes its ρ-th phase with ρ = log(P (n)) +
log(c) + log(L) + O(1). Thus the number of rounds until rendezvous (since the
activation of the first agent) is

∑ρ
i=0 pi. We have:

ρ
∑

i=0

pi ≤ 2pρ, since ∀i ∈ N, pi+1 = 4pi

≤ 22ρ+5, since ∀i ∈ N, pi+1 = 22i+4

= O((P (n) · c · L)2).

Since P is a polynomial, Algorithm Graph-RV-BF works in time polynomial
in the size n of the graph, in the fault bound c and in the larger label L. �

Notice the difference between the estimates of cost and of time of Algorithm
Graph-RV-BF: while we showed that cost is polylogarithmic in L and c, for time
we were only able to show that it is polynomial in L and c. Indeed, Algorithm
Graph-RV-BF relies on a technique similar to “coding by silence” in the time-
slice algorithm for leader election [30]: “most of the time” both agents stay idle,

in order to guarantee that agents rarely move simultaneously. It remains open
whether there exists a rendezvous algorithm with bounded adversarial faults,
working for arbitrary graphs, whose both cost and time are polynomial in the
size n of the graph, and polylogarithmic in the fault bound c and in the smaller
label ℓ .

6 Conclusion

We presented algorithms for rendezvous with delay faults under various distri-
butions of faults. Since we assumed no knowledge of any bound on the size of the
graph, for unbounded adversarial faults rendezvous is impossible, even for the
class of rings. Hence it is natural to ask how the situation changes if a polynomial
upper bound m on the size of the graph is known to the agents. In this case,
even under the harshest model of unbounded adversarial faults, a simple ren-
dezvous algorithm can be given. In fact this algorithm mimics the asynchronous
rendezvous algorithm (without faults) from [16]. An agent with label λ, starting
at node v of a graph of size at most m, repeats (P (m)+1)λ times the trajectory
R(m, v), which starts and ends at node v, and stops. Indeed, in this case, the
number of integral trajectories R(m, v) performed by the agent with larger label
is larger than the number of edge traversals by the other agent, and consequently,
if they have not met before, the larger agent must meet the smaller one after
the smaller agent stops, because the larger agent will still perform at least one
entire trajectory afterwards. The drawback of this algorithm is that, while its
cost is polynomial in m, it is exponential in the smaller label ℓ. We know from
Theorem 1 that the cost of any rendezvous algorithm must be at least linear in
ℓ, even for the two-node tree. Hence an interesting open problem is:

Does there exist a deterministic rendezvous algorithm, working in
arbitrary graphs for unbounded adversarial faults, with cost polynomial
in the size of the graph and in the smaller label, if a polynomial upper
bound on the size of the graph is known to the agents?

References

1. S. Alpern, The rendezvous search problem, SIAM J. on Control and Optimization
33 (1995), 673-683.

2. S. Alpern, Rendezvous search on labelled networks, Naval Reaserch Logistics 49
(2002), 256-274.

3. S. Alpern and S. Gal, The theory of search games and rendezvous. Int. Series in
Operations research and Management Science, Kluwer Academic Publisher, 2002.

4. E. Anderson and R. Weber, The rendezvous problem on discrete locations, Journal
of Applied Probability 28 (1990), 839-851.

5. E. Anderson and S. Fekete, Asymmetric rendezvous on the plane, Proc. 14th An-
nual ACM Symp. on Computational Geometry (1998), 365-373.

6. E. Anderson and S. Fekete, Two-dimensional rendezvous search, Operations Re-
search 49 (2001), 107-118.

7. E. Bampas, J. Czyzowicz, L. Gasieniec, D. Ilcinkas, A. Labourel, Almost optimal
asynchronous rendezvous in infinite multidimensional grids, Proc. 24th Interna-
tional Symposium on Distributed Computing (DISC 2010), 297-311.

8. V. Baston and S. Gal, Rendezvous on the line when the players’ initial distance
is given by an unknown probability distribution, SIAM J. on Control and Opt. 36
(1998), 1880-1889.

9. V. Baston and S. Gal, Rendezvous search when marks are left at the starting
points, Naval Reaserch Logistics 48 (2001), 722-731.

10. J. Chalopin, S. Das, P. Widmayer, Deterministic symmetric rendezvous in arbitrary
graphs: Overcoming anonymity, failures and uncertainty, In ”Search Theory: A
Game Theoretic Perspective”, S. Alpern et al. (eds.), Springer, 175-195, 2013.

11. M. Cieliebak, P. Flocchini, G. Prencipe, N. Santoro, Distributed computing by
mobile robots: Gathering, SIAM J. Comput. 41 (2012), 829-879.

12. J. Czyzowicz, A. Kosowski, A. Pelc, How to meet when you forget: Log-space
rendezvous in arbitrary graphs, Distributed Computing 25 (2012), 165-178.

13. J. Czyzowicz, A. Labourel, A. Pelc, How to meet asynchronously (almost) every-
where, ACM Transactions on Algorithms 8 (2012), article 37.

14. S. Das, Mobile agent rendezvous in a ring using faulty tokens, Proc. 9th Inter-
national Conference on Distributed Computing and Networking (ICDCN 2008),
292-297.

15. S. Das, M. Mihalak, R. Sramek, E. Vicari, P. Widmayer, Rendezvous of mobile
agents when tokens fail anytime, Proc. 12th International Conference on Principles
of Distributed Systems (OPODIS 2008), 463-480.

16. G. De Marco, L. Gargano, E. Kranakis, D. Krizanc, A. Pelc, U. Vaccaro, Asyn-
chronous deterministic rendezvous in graphs, Theoretical Computer Science 355
(2006), 315-326.

17. A. Dessmark, P. Fraigniaud, D. Kowalski, A. Pelc. Deterministic rendezvous in
graphs. Algorithmica 46 (2006), 69-96.

18. Y. Dieudonné, A. Pelc, Deterministic network exploration by a single agent with
Byzantine tokens, Information Processing Letters 112 (2012), 467-470.

19. Y. Dieudonné, A. Pelc, D. Peleg, Gathering despite mischief, Proc. 23rd Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2012), 527-540.

20. Y. Dieudonné, A. Pelc, V. Villain, How to meet asynchronously at polynomial
cost, Proc. 32nd Annual ACM Symposium on Principles of Distributed Computing
(PODC 2013), 92-99.

21. P. Flocchini, E. Kranakis, D. Krizanc, F. L. Luccio, N. Santoro, C. Sawchuk, Mo-
bile agents rendezvous when tokens fail, Proc. 11th Int. Colloquium on Structural
Information and Communication Complexity (SIROCCO 2004), 161-172.

22. P. Flocchini, G. Prencipe, N. Santoro, P. Widmayer, Gathering of asynchronous
robots with limited visibility, Theoretical Computer Science 337 (2005), 147-168.

23. P. Fraigniaud, A. Pelc, Delays induce an exponential memory gap for rendezvous
in trees, ACM Transactions on Algorithms 9 (2013), article 17.

24. A. Israeli and M. Jalfon, Token management schemes and random walks yield self
stabilizing mutual exclusion, Proc. 9th Annual ACM Symposium on Principles of
Distributed Computing (PODC 1990), 119-131.

25. M. Koucký, Universal traversal sequences with backtracking, Journal of Computer
and System Sciences 65 (2002), 717-726.

26. D. Kowalski, A. Malinowski, How to meet in anonymous network, Proc. 13th
Int. Colloquium on Structural Information and Communication Complexity,
(SIROCCO 2006), 44-58.

27. E. Kranakis, D. Krizanc, and P. Morin, Randomized Rendez-Vous with Limited
Memory, Proc. 8th Latin American Theoretical Informatics (LATIN 2008), 605-
616.

28. E. Kranakis, D. Krizanc, N. Santoro and C. Sawchuk, Mobile agent rendezvous
in a ring, Proc. 23rd Int. Conference on Distributed Computing Systems (ICDCS
2003), 592-599.

29. W. Lim and S. Alpern, Minimax rendezvous on the line, SIAM J. on Control and
Optimization 34 (1996), 1650-1665.

30. N.L. Lynch, Distributed algorithms, Morgan Kaufmann Publ. Inc., San Francisco,
USA, 1996.

31. A. Pelc, Deterministic rendezvous in networks: A comprehensive survey, Networks
59 (2012), 331-347.

32. O. Reingold, Undirected connectivity in log-space, Journal of the ACM 55 (2008).
33. A. Ta-Shma and U. Zwick. Deterministic rendezvous, treasure hunts and strongly

universal exploration sequences. Proc. 18th ACM-SIAM Symposium on Discrete
Algorithms (SODA 2007), 599-608.

34. L. Thomas, Finding your kids when they are lost, Journal on Operational Res.
Soc. 43 (1992), 637-639.

