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ABSTRACT

In this paper, a new fast adaptive blind channel estimation method
is proposed using the subspace information from the correlation
matrix. The algorithm is fully adaptive in the sense that both
the subspace information and the optimization which leads to the
channel estimation are computed adaptively. It is based on the re-
cently proposed YAST subspace tracker which has been shown to
outperform other methods both in terms of speed of convergence
and computational complexity. A discussion on the convergence
properties of the proposed algorithm is presented. We also propose
a hybrid method which makes use of the YAST subspace tracker
for initial fast convergence and the subspace information is then
updated using the numerically stable OPAST subspace tracker.

1. INTRODUCTION

The increasing demand for high spectral efficiency in broadband
wireless communications where multipath delay spread is a major
problem has motivated the design of (semi-) blind channel estima-
tion and equalization techniques which require little or no knowl-
edge of the transmitted sequence. A number of (semi-) blind tech-
niques have been proposed, which rely on some statistical prop-
erties or algebraic structure of the received signal [2]. In partic-
ular, several subspace techniques have been proposed for blind
and semi-blind channel identification after the pioneering work by
Moulines et al. [1] which has been applied to single-carrier [5]
and multicarrier systems [3]. These algorithms generally require
the computation of an SVD on the received signal correlation ma-
trix to determine the signal and noise subspace in a first step and
then the channel impulse response is estimated as the solution to a
quadratic form up to a scalar factor.

Recent developments in subspace tracking have shown that
performance matching a detailed SVD can be obtained using sub-
space projection based algorithms [7] [6]. These algorithms view
the estimation of the signal subspace as an optimization problem
and compute the signal subspace as the exact solution over a sub-
space of reduced dimensions. Essentially, an orthonormal matrix
which spans then-dimensional dominant subspace of the correla-
tion matrix is adaptively estimated where the orthonormality of the
estimated projection matrix is guaranteed at each iteration. In par-
ticular, the YAST algorithm proposed in [6] clearly outperforms
subspace trackers such as OPAST [9] or plane-rotation based FST
[8] with a global complexityO(mn) wherem is the dimension of
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the observed data window. Recently, a promising subspace tracker
known as FAPI [10] has also been presented, which outperforms
OPAST both in terms of stability and speed of convergence, but
YAST has a much faster initial convergence than FAPI.

This paper presents a fast fully-adaptive subspace-based blind
channel estimation method. We first propose a method which uses
the YAST subspace tracker to adaptively calculate the signal sub-
space from the correlation matrix and the quadratic form solution
is also adaptively calculated using the iterative power method [4].
However, we have observed that, although the YAST algorithm
converges remarkably at a similar speed of a detailed SVD with
an important reduction in computational complexity, the algorithm
diverges when the iterations reach the dimension of the signal sub-
space. Nevertheless, we propose a hybrid approach which com-
bines the YAST subspace tracker for initial fast convergence and
stability is guaranteed by updating the subspace information us-
ing the numerically stable OPAST subspace tracker. The proposed
method is numerically stable and achieves faster convergence than
other methods proposed in the literature [4] with a global complex-
ity of O(mn).

The paper is organized as follows: in Section 2 the multichan-
nel system model is presented and Section 3 presents the fully
adaptive blind channel estimation method based on the YAST sub-
space tracker. Section 4 discusses convergence properties of the
adaptive algorithm and proposes a hybrid method which guaran-
tees stability. Finally, computer simulations are presented in Sec-
tion 5 which highlight the ability of the proposed hybrid approach
to track the impulse response of a frequency-selective propagation
channel faster than other methods using different subspace track-
ers.

2. SYSTEM MODEL

The system is described as a multichannel system where the dis-
crete time input sequencex(k) is received byK antennas or equiv-
alently is sampled at a rateK-times faster than the source symbol
rate. The received signaly(i)(k) at theith subchannel is formu-
lated as:

y
(i)
k = H

(i)
N xk + w

(i)
k (1)

wherexk = [x(k), x(k − 1), · · · , x(k − N − M + 1)]† is
the(N + M) × 1 vector which contains the input sequencex(k),
N represents the dimension of the data window at each subchan-
nel andM + 1 is the length of the subchannel impulse response.
On the other hand,y(i)

k = [y(i)(k), y(i)(k − 1), · · · , y(i)(k −

N + 1)]† represents theN × 1 received signal vector andw(i)
k =



[w(i)(k), w(i)(k − 1), · · · , w(i)(k − N + 1)]† is the noise vec-
tor. The subchannel filtering matrixH(i)
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Equivalently,
yk = HNxk + wk (3)

whereyk
def
= [y

(0)†
k , · · · ,y

(K−1)†
k ]† is the received signal vector

andHN = [H
(0)†
N , · · · ,H

(K−1)†
N ]† is aKN × (N +M) filtering

matrix.

3. ADAPTIVE SUBSPACE-BASED BLIND CHANNEL
ESTIMATION

The identification of the channel coefficients is based on the SVD
of theKN×KN covariance matrixRy(k) of the received signal.
Provided that the filtering matrixHN meets the full column-rank
condition, the observation windowN is sufficiently large so that
N ≥ M and the subschannelsh

(i)
k do not share common zeros [1],

the singular vectorsS(k) associated with theM+N highest singu-
lar values span thesignal subspace and the singular vectorsG(k)
associated with the lastKN − M − N singular values span the
noise-subspace:

Ry(k) = HNRx(k)HH
N + Rw(k)

= [S(k)G(k)]

[
ΣS(k) 0

0 ΣG(k)

] [
S(k)H

G(k)H

]
(4)

whereRw(k) is the autocorrelation matrix of the stationary noise
process.

Since the signal subspace is a linear space spanned by the fil-
tering matrixHN , according to [1], the subschannel impulse re-
sponsesh(i)

k can be estimated by maximizing the following quadratic
form:

q′(H) =
∑M+N−1

i=0 | Ŝi(k)HHN |2

= HH
(
∑M+N−1

i=0 Ŝi(k)Ŝi(k)H
)

H

= HHQ̂(k)H

(5)

H = [H(0)T , . . . , H(K−1)T ] is a 1 × K(M + 1) channel
vector andH(i) = [h

(i)
0 , . . . , h

(i)
M ]T . Ŝi(k) are the estimated sig-

nal subspace singular vectors andŜi(k) is a transformation matrix
such that:

Ŝi(k) = ΥM+1[Ŝi(k)], (6)

whereH(i)
N = ΥN [H(i)].

The solution to this maximization problem is the unit-norm
singular vector associated with the maximum singular value of ma-
trix Q̂(k) subject to the unit norm constraint‖H‖ = 1.

In particular, we propose an adaptive method for the estima-
tion of the signal subspace based on maximizing the following
criterion:

τ [Ŝ(k)] = trace[Ŝ(k)H
R̂y(k)Ŝ(k)] (7)

whereŜ(k) is the estimatedm×n orthonormal matrix which
spans thesignal subspace andm = KN andn = M + N . This
maximization is subject to the recursive estimation of the received
signal covariance matrix as:

R̂y(k) = βR̂y(k − 1) + yky
H
k (8)

The idea introduced in [7] and [6] is to reduce the search space
of them × n orthonormal vectorŝS(k) which requires an overall
complexityO(m2n) by maximizing the following alternative cri-
terium instead:

τ [Ŝ(k)] = trace[Rz(k)]

= trace[U(k)H S̃(k)H
Ry(k)S̃(k)

︸ ︷︷ ︸
U(k)]

= trace[U(k)HR̃z(k)U(k)]

(9)

whereŜ(k) = S̃(k)U(k). The matrixS̃(k) = [Ŝ(k−1), V (k)] is
an orthogonal matrix withp = 1 orp = 2 more columns appended
to matrixŜ(k − 1). On the other hand,V (k) = ek/norm(ek) is
the normalized prediction error, where:

ek = xk − Ŝ(k − 1)Ŝ(k − 1)H
xk (10)

The maximization of eq. 9 reduces the search space fromm×
n to the(n + p) × n orthonormal matrixU(k) which spans the
n-dimensional dominant subspace ofR̃z(k), but it would still re-
quire to compute an singular value decomposition with a complex-
ity O(n3). In order to avoid this, we take into account the fact that
the orthonormal matrixU(k) also spans an invariant subspace of
the inversẽRz(k)−1

Rz(k)−1 = U(k)H
R̃z(k)−1U(k) (11)

Thus, the YAST algorithm computes̃Rz(k)−1 and itsp- di-
mensional dominant subspace which does not require any singular
value decomposition. This optimization leads to a simple recur-
sion for the adaptation rule of the signal subspace matrix [6]:

Ŝ(k) = Ŝ(k − 1) − ζ̃(k)f̃H
k = Ŝ(k − 1)

−[V (k) + Ŝ(k − 1)f̃k(Ĩ + ρ̃(k))−1]f̃H
k

(12)

wheref̃k = ϕ̃(k)θ̃(k)H . For the sake of simplicity we study the
adaptation rule forp = 1 rule. Then,ϕ̃(k) is built from the first
m coefficients of the(m + 1) × 1 dominant singular vector of
the matrixR̃z(k)−1, and θ̃(k) and ρ̃(k) correspond to the sign
and the absolute value of the last coefficient of this singular vector.
The adaptation of the signal subspace matrixŜ(k) requires4mn+
O(m + n2) MAC (multiply-accumulate) operations.

On the other hand, the solution to the maximization of the
quadratic form expressed in eq. 5 would require the computation
of the dominant singular vector of them1 ×m1 matrix Q̂(k) with
a complexityO(m2

1), wherem1 = K(M + 1). In this case, a
further reduction in complexity can be achieved by tracking the
most significant singular vector of matrix̂Q(k) using the power
method [11]. The power method is an iterative method for com-
puting the dominant singular vector with a complexity in each it-
eration. The procedure is as follows:



Since the matrixQ̂(k) is a symmetric positive matrix, the
dominant left singular vectorUq(k) of Q̂(k) can be directly ob-
tained according to:

Uq(k) = Q̂(k)Uq(k − 1)
Uq(k) = Uq(k)/‖Uq(k)‖

(13)

Finally, the channel vector estimate can be obtained from the
dominant left singular vectorUq(k) = [u

(0)
q , · · · , u

(K(M+1))
q ] us-

ing H(i) = [u
(i)
q , u

(K+i)
q , · · · , u

(KM+i)
q ].

In summary, the adaptive blind channel estimation algorithm
would require the following steps:

Table I
Adaptive Blind Channel Estimation

Recursion:
for k = 1, 2, . . .

ComputeR̂y(k) = βR̂y(k − 1) + yky
H
k

UpdateŜ(k) = Ŝ(k − 1) − ζ̃(k)f̃H
k (eq. 12)

ComputeQ̂(k) =
(
∑M+N−1

i=0 Ŝi(k)Ŝi(k)H
)

UpdateUq(k) usingUq(k) = Q̂(k)Uq(k − 1)
andUq(k) = Uq(k)/‖Uq(k)‖

end

4. CONVERGENCE PROPERTIES AND HYBRID
METHOD

In this section we consider the convergence properties of the YAST
subspace tracker in the context of blind channel estimation. In par-
ticular, it is interesting to note that afterk = M +N iterations, the
signal subspace is somewhat estimated as theM +N -dimensional
subspace of[Ŝ(k − 1),xk,xk+1, . . . ,xk+M+N−1] which maxi-
mizes the Rayleigh quotient. However, the familyxk,xk+1, . . . ,
xk+M+N−1 exactly spans the true signal subspace and therefore,
afterk = M + N iterations the estimated subspace matches the
true signal subspace. This explanation only holds for noiseless
signals.

On the other hand, we have observed that the YAST algorithm
diverges immediately after convergence. This is caused by the loss
of orthonormality of the updated matrix̂S(k) due to the fact that
the prediction errorek = xk − Ŝ(k − 1)Ŝ(k − 1)Hxk becomes
neglegible at iterationk = M + N . Indeed, when the algorithm
reaches convergence atk = M + N we obtain an orthonormal
matrix Ŝ(k) which matches the exact SVD solution for the same
iteration. In practice, it is observed that the normalized prediction
error vectorV (k) = ek/norm(ek) in S̃(k) = [Ŝ(k − 1), V (k)]

is not exactly orthogonal tôS(k − 1).
In most cases, especially when the observation windowN is

small, the channel estimates are not able to converge to a reason-
able value and we thus propose to use the YAST subspace tracker
as an initialization with fast convergence fork = M+N iterations
and after that, the numerically stable OPAST subspace tracker [9]
can be used for the adaptation of the signal subspace matrix.

The recursion used by the OPAST algorithm for the adaptation
of the signal subspace is:

Ŝ(k) = Ŝ(k − 1) + p̃kq
H
k (14)

wherep̃k = τkŜ(k − 1)qk + (1 + τk‖qk‖
2)pk. On the other

hand, we define the following terms as:

pk = γkek, (15)

γk = 1/(1 + x
H
k Ŝ(k − 1)qk), (16)

qk = 1/β(Z(k − 1)Ŝ(k − 1)H
xk) (17)

Z(k) = (1/β)Z(k − 1) − γkqkq
H
k (18)

and

τk =
1

‖qk‖2

(

1
√

1 + ‖pk‖2‖qk‖2
− 1

)

. (19)

This adaptation rule requires4mn+O(n2) MAC (multiply-accumulate)
operations. The pseudo-code of the proposed hybrid method is as
follows

Table II
Hybrid Method

Recursion:
for k = 1, 2, . . .

ComputeRy(k) = βRy(k − 1) + yky
H
k

if k ≤ M + N

UpdateŜ(k) according to eq. 12
else

UpdateŜ(k) according to eq. 14

ComputeQ̂(k) =
(
∑M+N−1

i=0 Ŝi(k)Ŝi(k)H
)

UpdateUq(k) usingUq(k) = Q̂(k)Uq(k − 1)
andUq(k) = Uq(k)/‖Uq(k)‖

end

The computational complexity of the different adaptive sub-
space based channel estimation techniques is summarized in Table
III:

Table III

subspace estimation of
estimation Uq(k)

Detailed SVD O[(KN)3] [K(M + 1)]2

YAST 4KN(M + N) [K(M + 1)]2

+O[KN + (M + N)2]
OPAST 4KN(M + N) [K(M + 1)]2

+O[(M + N)2]
Hybrid YAST/OPAST [K(M + 1)]2

5. SIMULATION RESULTS

Computer simulations have been conducted in order to compare
the performance of the proposed fully adaptive method with the
blind subspace technique using exact SVD and an adaptive method
using the OPAST subspace tracker. The source signal is a 2 Mbps
BPSK signal which is received byK = 4 antennas. The perfor-
mance of these techniques is measured in terms of thenormalized
mean squared error (NMSE) of the estimated propagation sub-
channel impulse responses. The experiments were conducted us-
ing a frequency- selective SUI-3 channel model with [0 0.5 1] tap
delay inµs, [0 -5 -10] power in each tap in dB andM = 2. The
maximum Doppler frequency is 0.4 Hz.
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Fig. 1. Convergence of channel estimation using an observation
window sizeN = 20 and SNR=25 dB.

Figure 1 shows the convergence of the NMSE averaged over
50 Monte-Carlo runs, using a fixed observation window sizeN =
20 and SNR=25 dB . It is observed that the adaptive method us-
ing the YAST algorithm the signal subspace estimation and the
iterative power method for the quadratic form solution is able to
converge to the solution provided by the exact SVD-based method
(denoted BL Subs). However, it can be seen that the algorithm
diverges immediately after convergence atk = M + N . On the
other hand, we have also tested the performance of the adaptive
technique using the OPAST subspace tracker and it is apparent that
the convergence is slow compared to the YAST subspace tracker.
We finally tested the proposed hybrid method which switches from
the YAST adaptation rule to OPAST atk = M+N and it is shown
that this combination enables global convergence of the algorithm
while increasing the speed of convergence.

Another experiment was also conducted computing the NMSE
over 100 Monte-Carlo runs using a fixed window sizeN = 20. It
is observed in Figure 2 that the proposed hybrid adaptive tech-
nique achieves almost identical performance as the exact SVD-
based technique at iterationsk = 22 andk = 150, whereas YAST
diverges after iterationk = 22 and the OPAST based adaptive
method is not even able to converge atk = 150.

6. CONCLUSIONS

In this paper we propose a new method for adaptive subspace-
based blind channel estimation using the YAST subspace tracker
for initial signal subspace estimation and the solution of the quadratic
form which leads to the blind channel estimate is also adaptively
computed. It has been discussed and shown by means of com-
puter simulations that although the YAST algorithm might diverge
when the iterations reach the dimension of the signal subspace, it
can still be used for initial fast convergence followed by other sub-
space trackers such as OPAST while keeping a global complexity
of O(mn). The resulting hybrid method achieves a remarkable
convergence speed and numerical stability.
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