Variational Bayesian EM algorithm for modeling mixtures of non-stationary signals in the time-frequency domain (HR-NMF)

Abstract : We recently introduced the high-resolution nonnegative matrix factorization (HR-NMF) model for analyzing mixtures of nonstationary signals in the time-frequency domain, and highlighted its capability to both reach high spectral resolution and reconstruct high quality audio signals. In order to estimate the model parameters and the latent components, we proposed to resort to an expectation-maximization (EM) algorithm based on a Kalman filter/ smoother. The approach proved to be appropriate for modeling audio signals in applications such as source separation and audio inpainting. However, its computational cost is high, dominated by the Kalman filter/smoother, and may be prohibitive when dealing with high-dimensional signals. In this paper, we consider two different alternatives, using the variational Bayesian EM algorithm and two mean-field approximations. We show that, while significantly reducing the complexity of the estimation, these novel approaches do not alter its quality.
Type de document :
Communication dans un congrès
ICASSP, 2013, Vancouver, Canada. IEEE, pp.6171--6175, 2013
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00945276
Contributeur : Roland Badeau <>
Soumis le : lundi 24 mars 2014 - 15:30:45
Dernière modification le : vendredi 23 février 2018 - 14:20:05
Document(s) archivé(s) le : dimanche 9 avril 2017 - 11:00:53

Fichier

badeau-icassp2013.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00945276, version 1

Citation

Roland Badeau, Angélique Dremeau. Variational Bayesian EM algorithm for modeling mixtures of non-stationary signals in the time-frequency domain (HR-NMF). ICASSP, 2013, Vancouver, Canada. IEEE, pp.6171--6175, 2013. 〈hal-00945276〉

Partager

Métriques

Consultations de la notice

112

Téléchargements de fichiers

851