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VARIATIONAL BAYESIAN EM ALGORITHM FORMODELING MIXTURES OF
NON-STATIONARY SIGNALS IN THE TIME-FREQUENCY DOMAIN (HR-NMF)

Roland Badeau, Angélique Drémeau

Institut Mines-Telecom, Telecom ParisTech, CNRS LTCI

ABSTRACT

We recently introduced the high-resolution nonnegative matrix
factorization (HR-NMF) model for analyzing mixtures of non-
stationary signals in the time-frequency domain, and highlighted
its capability to both reach high spectral resolution and reconstruct
high quality audio signals. In order to estimate the model pa-
rameters and the latent components, we proposed to resort to an
expectation-maximization (EM) algorithm based on a Kalman fil-
ter/smoother. The approach proved to be appropriate for modeling
audio signals in applications such as source separation and audio
inpainting. However, its computational cost is high, dominated by
the Kalman filter/smoother, and may be prohibitive when dealing
with high-dimensional signals. In this paper, we consider two dif-
ferent alternatives, using the variational Bayesian EM algorithm and
two mean-field approximations. We show that, while significantly
reducing the complexity of the estimation, these novel approaches
do not alter its quality.

Index Terms— Nonnegative Matrix Factorization, High Res-
olution methods, Expectation-Maximization algorithm, Variational
inference.

1. INTRODUCTION

Nonnegative matrix factorization (NMF) [1] is a powerful tool
for decomposing mixtures of non-stationary signals in the time-
frequency (TF) domain. However, unlike the high resolution (HR)
methods [2] dedicated to mixtures of complex exponentials, its spec-
tral resolution is limited by that of the underlying TF representation.
Following previous works which aimed at providing a probabilistic
framework for NMF [3–6], we introduced in [7, 8] a unified proba-
bilistic model called HR-NMF, that permits to overcome this limit
by taking both phases and local correlations in each frequency band
into account. It can be used with both complex-valued and real-
valued TF representations (like the short-time Fourier transform or
the modified discrete cosine transform). Moreover, we showed that
HR-NMF generalizes some very popular models: the Itakura-Saito
NMF model (IS-NMF) [6], autoregressive (AR) processes, and the
exponential sinusoidal model (ESM), commonly used in HR spec-
tral analysis of time series [2]. In [7, 8], HR-NMF was estimated
with the expectation-maximization (EM) algorithm, which involves
time-demanding Kalman filtering and smoothing. In this paper, we
introduce two faster algorithms based on variational inference, and
compare the performance of the three algorithms.

This paper is organized as follows. In Section 2, we present the
HR-NMF model, as introduced in [7]. We recall the basics of the
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variational Bayesian EM algorithm in Section 3, before particulariz-
ing it to the HR-NMF model in Section 4. Section 5 is devoted to
experimental results, and conclusions are drawn in Section 6.

The following notation will be used throughout the paper:
• M∗: conjugate of matrix (or vector) M ,
• M": transpose of matrix (or vector)M ,
• MH : conjugate transpose of matrix (or vector)M ,
• [M ;N ]: vertical concatenation ofM andN ,
• c

=: equality up to an additive constant,
• h ∗m: discrete convolution of times series h andm,
• NF(µ,R): real (if F = R) or circular complex (if F = C)
multivariate normal distribution of mean µ and covariance
matrixR.

2. HR-NMF TIME-FREQUENCYMIXTURE MODEL

The HR-NMF mixture model of TF data x(f, t) ∈ F (where F = R
or C) is defined for all discrete frequencies 1 ≤ f ≤ F and times
1 ≤ t ≤ T as the sum of K latent components ck(f, t) ∈ F plus a
white noise n(f, t) ∼ NF(0,σ

2):

x(f, t) = n(f, t) +
K∑

k=1

ck(f, t) (1)

where

• ck(f, t) =
P (k,f)∑
p=1

a(p, k, f) ck(f, t − p) + bk(f, t) is ob-

tained by autoregressive filtering of a non-stationary signal
bk(f, t) ∈ F (where a(p, k, f) ∈ F and P (k, f) ∈ N is such
that a(P (k, f), k, f) &= 0),

• bk(f, t) ∼ NF(0, vk(f, t)) where vk(f, t) is defined as

vk(f, t) = w(k, f)h(k, t), (2)

with w(k, f) ≥ 0 and h(k, t) ≥ 0,
• processes n and b1 . . . bK are mutually independent.
Moreover, ∀(k, f) ∈ {1 . . .K} × {1 . . . F}, the random vec-

tors ck(f, 0) = [ck(f, 0); . . . ; ck(f,−P (k, f) + 1)] are assumed
to be independent and distributed according to the prior distribution
ck(f, 0) ∼ NF(µk(f),Qk(f)

−1), where the mean µk(f) and the
precision matrix Qk(f) are fixed parameters1. Lastly, we assume
that ∀f ∈ {1 . . . F}, ∀t ≤ 0, x(f, t) is unobserved.

Let c denote the set {ck(f, t)}(k,f,t), x denote the set {x(f, t)}(f,t)
and θ the set of model parameters σ2, {a(p, k, f)}(p,k,f), {w(k, f)}(k,f)

1In practice we choose µk(f) = [0; . . . ; 0]" and Qk(f)−1 = ξI ,
where I is the identity matrix and ξ is small relative to 1, in order to both
enforce the causality of the latent components and avoid singular matrices.
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and {h(k, t)}(k,t). Considering model (1), we focus on the maxi-
mum a posteriori (MAP) estimation of the latent components

c! = argmax
c

p(c|x; θ!), (3)

where the model parameters are estimated according to a maximum
likelihood (ML) criterion

θ! = argmax
θ

p(x; θ). (4)

The solution of (3)-(4) can be found by means of an EM algo-
rithm. We proposed in [7, 8] an efficient implementation, using a
Kalman filter/smoother in the E-step. However, the computational
cost remains high, dominated by the complexity of the Kalman
filter/smoother, and may be prohibitive when dealing with large di-
mensions. We propose here an alternative, based on the variational
Bayesian EM (VB-EM) algorithm, which uses a mean-field approx-
imation of the posterior p(c|x; θ!) to reach a good compromise
between quality and complexity of the MAP estimation (3).

3. VARIATIONAL BAYESIAN EM ALGORITHM

Variational inference [9, 10] is now a classical approach for estimat-
ing a probabilistic model involving both observed variables x and
latent variables c, parametrized by θ. Let F be a set of proba-
bility density functions (PDF) over the latent variables c. For any
PDF q ∈ F and any function f(c), we note 〈f〉q =

∫
f(c)q(c)dc.

Then for any PDF q ∈ F and any parameter θ, the log-likelihood
L(θ) = ln(p(x; θ)) can be decomposed as

L(θ) = DKL(q||p(c|x; θ)) + L(q; θ) (5)

where DKL(q||p(c|x; θ)) =
〈
ln

(
q(c)

p(c|x; θ)

)〉

q

(6)

is the Kullback-Leibler divergence between q and p(c|x; θ), and

L(q; θ) =
〈
ln

(
p(c, x; θ)

q(c)

)〉

q

(7)

is called the variational free energy. Moreover, L(q; θ) can be fur-
ther decomposed as L(q; θ) = E(q; θ) +H(q), where

E(q; θ) = 〈ln (p(c, x; θ))〉q , (8)

and H(q) = −〈ln (q(c))〉q is the entropy of distribution q. Since
DKL(q||p(c|x; θ)) ≥ 0, L(q; θ) is a lower bound of L(θ). The varia-
tional Bayesian EM algorithm is a recursive algorithm for estimating
θ. It consists of the two following steps at each iteration i:

• E-step (update q):

q! = argmin
q∈F

DKL(q||p(c|x; θi−1)) = argmax
q∈F

L(q; θi−1)

(9)
• M-step (update θ):

θi = argmax
θ

L(q!; θ) = argmax
θ

E(q!; θ). (10)

F defines a set of constraints leading to a particular approximation
of the posterior distribution p(c|x; θi−1). We note that:

• In the standard EM algorithm, q is not constrained, thus
q! = p(c|x; θi−1) and DKL(q

!||p(c|x; θi−1)) = 0. There-
fore L(θi) ≥ L(q!; θi) ≥ L(q!; θi−1) = L(θi−1), which
proves that the log-likelihood is non-decreasing.

• In the general case, L(θ) is no longer guaranteed to be
non-decreasing, but its lower bound L(q; θ) is still non-
decreasing.

4. VARIATIONAL BAYESIAN EM FOR HR-NMF

Considering the HR-NMFmodel defined in (1), ∀(k, f) ∈ {1 . . .K}×
{1 . . . F}, let ckf denote the set {ck(f, t)}t∈{−P (k,f)+1...T}. More-
over, let α = 1 if F = C, and α = 2 if F = R. Then

α ln(p(c, x)) = α
K∑

k=1

F∑
f=1

ln(p(ckf ))

+α
F∑

f=1

T∑
t=1

δ(f, t) ln(p(x(f, t)|c1(f, t) . . . cK(f, t)))

= −
(
KFT +

K∑
k=1

F∑
f=1

P (k, f)

)
ln(απ)

−
K∑

k=1

F∑
f=1

(ck(f, 0)− µk(f))
H Qk(f)(ck(f, 0)− µk(f))

+
K∑

k=1

F∑
f=1

(
ln(det(Qk(f))) +

T∑
t=1

ln(ρk(f, t))

)

−
K∑

k=1

F∑
f=1

T∑
t=1

ρk(f, t)

∣∣∣∣∣ck(f, t)−
P (k,f)∑
p=1

a(p, k, f)ck(f, t− p)

∣∣∣∣∣

2

−
F∑

f=1

T∑
t=1

δ(f, t)

(
ln(απσ2) + 1

σ2

∣∣∣∣x(f, t)−
K∑

k=1
ck(f, t)

∣∣∣∣
2
)

(11)
where

• δ(f, t) = 1 if x(f, t) is observed, and δ(f, t) = 0 else (in
particular δ(f, t) = 0 ∀t < 1 and ∀t > T ),

• ρk(f, t) = 1
vk(f,t)

if t ∈ {1 . . . T}, and ρk(f, t) = 0 else.

In the following subsections, we will first recall the EM-based
algorithm presented in [7, 8] as a particular case of the variational
procedure (9)-(10) (Sections 4.1 and 4.2) and then propose two dif-
ferent alternatives to this costly approach, based on two mean-field
approximations, i.e. two different definitions of F (Sections 4.3
and 4.4). These three algorithms only differ in the E-step, but they
share the same implementation of the M-step.

4.1. M-step

TheM-step defined in equation (10) consists in maximizingE(q!; θ)
w.r.t. the model parameters θ. First, equations (8) and (11) yield

αE(q!; θ)
c
= −

F∑
f=1

T∑
t=1

δ(f, t) ln(απσ2) + e(f, t)/σ2

−
K∑

k=1

F∑
f=1

T∑
t=1

ln(w(k, f)h(k, t)) +
a(k, f)HS(k, f, t)a(k, f)

w(k, f)h(k, t)
,

(12)
where

• e(f, t) = δ(f, t)

〈∣∣∣∣x(f, t)−
K∑

k=1
ck(f, t)

∣∣∣∣
2
〉

q!

,

• S(k, f, t) = 〈ck(f, t)∗ ck(f, t)
"〉q! ,

• ck(f, t) = [ck(f, t); . . . ; ck(f, t− P (k, f))],
• a(k, f) = [1;−a(1, k, f); . . . ;−a(P (k, f), k, f)].

We note that e(f, t) and S(k, f, t) can be computed as

• e(f, t) = δ(f, t)

(∣∣∣∣x(f, t)−
K∑

k=1
mk(f, t)

∣∣∣∣
2

+
K∑

k=1
Γk(f, t)

)
,

• S(k, f, t) = Rk(f, t)
∗ +mk(f, t)

∗ mk(f, t)
",

where we have defined:
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• mk(f, t) = 〈ck(f, t)〉q! ,
• Γk(f, t) = 〈|ck(f, t)−mk(f, t)|2〉q! ,
• mk(f, t) = 〈ck(f, t)〉q! ,

• Rk(f, t) = 〈(ck(f, t)−mk(f, t)) (ck(f, t)−mk(f, t))
H〉q! .

The maximization ofE(q!; θ) in equation (12), w.r.t. σ2, a(p, k, f),
w(k, f), and h(k, t), can then be performed as in the M-step pre-
sented in [8], using the current estimations ofmk(f, t) andRk(f, t)
derived from the E-steps as presented in the next sections.

4.2. E-step in the exact EM algorithm

As mentioned in Section 3, in the exact EM algorithm q is not con-
strained, thus the solution of (9) is given by q! = p(c|x; θ), and
the variational free energy L(q!, θi) is equal to the log-likelihood
L(θi). In [7, 8], we showed that the posterior distribution p(c|x; θ)
is Gaussian, and that its first and second order moments, as well as
the value of L(θi), can be computed by means of Kalman filtering
and smoothing. The resulting E-step can symbolically be written as:
for 1 ≤ f ≤ F do

{mk(f, t),Rk(f, t)}1≤k≤K
1≤t≤T

= Kalman ({x(f, t)}1≤t≤T )

end for
Its computational complexity was shown to beO(FTK3(1+P )3),
where P = max

k,f
P (k, f).

4.3. E-step with structured mean field approximation

If K > 1, we assume that F , introduced in Section 3, is the set of
PDFs which can be factorized in the form

q(c) =
K∏

k=1

F∏

f=1

qkf (ckf ). (13)

Using this particular factorization for q(c), the solution of (9) satis-
fies (see [9]): ∀(k, f) ∈ {1 . . .K}× {1 . . . F},

ln(qkf (ckf ))
c
= 〈ln(p(c, x))〉( ∏

(l,g) "=(k,f)
qlg

). (14)

Then, reformulating equation (11) and using equation (14), we get

α ln(p(c, x))
c
= α ln(p(ckf ))−

T∑

t=1

δ(f, t)
σ2

|ck(f, t)− ĉk(f, t)|2 ,

(15)
with ĉk(f, t) = x(f, t) −

∑
l &=k

ml(f, t). We observe that qkf is the

posterior distribution of a HR-NMF model of order K = 1, where
the posterior means of all components other than k have been sub-
tracted to the observed data x(f, t). Hence qkf is Gaussian, and its
first and second moments can be computed by applying the Kalman
filter/smoother presented in [7, 8] to ĉk(f, t) instead of x(f, t). The
resulting E-step can symbolically be written as:
for 1 ≤ f ≤ F do
for 1 ≤ k ≤ K do

∀1 ≤ t ≤ T , ĉk(f, t) = x(f, t)−
∑
l &=k

ml(f, t)

{mk(f, t),Rk(f, t)}1≤t≤T = Kalman({ĉk(f, t)}1≤t≤T )
end for

end for

The complexity of this procedure is O(FTK(1 + P )3) instead of
O(FTK3(1 + P )3) for the "classical" E-step.

In order to evaluate this algorithm, we are also interested in com-
puting the variational free energy L. After some straightforward cal-
culations, we note that the entropyH(qkf ) satisfies

αH(qkf ) = (T + P (k, f)) (ln(απ) + 1)

+
T∑

t=1
ln(det(Rk(f, t)))−

T−1∑
t=1

ln(det(Rk(f, t))),
(16)

where Rk(f, t) is the P (k, f) × P (k, f) top-left submatrix of
Rk(f, t). Thus equations (7), (11) and (16) yield

αL(q; θ) = KFT +
K∑

k=1

F∑
f=1

P (k, f)− trace(Qk(f)Rk(f, 0))

−
K∑

k=1

F∑
f=1

(mk(f, 0)− µk(f))
HQk(f)(mk(f, 0)− µk(f))

+
K∑

k=1

F∑
f=1

ln(det(Qk(f))) +
T∑

t=1
ln(ρk(f, t))

−
K∑

k=1

F∑
f=1

T∑
t=1

ρk(f, t)a(k, f)
HS(k, f, t)a(k, f)

−
F∑

f=1

T∑
t=1

δ(f, t) ln(απσ2) + e(f, t)/σ2

+
K∑

k=1

F∑
f=1

(
T∑

t=1
ln(det(Rk(f, t)))−

T−1∑
t=1

ln(det(Rk(f, t)))

)

(17)
wheremk(f, 0) is the P (k, f)× 1 top subvector ofmk(f, 0).

4.4. E-step with mean field approximation

If P > 0, we further assume that F is the set of PDFs which can be
factorized in the form

q(c) =
K∏

k=1

F∏

f=1

T∏

t=−(P (k,f)−1)

qkft(ck(f, t)). (18)

With this particular factorization of q(c), the solution of (9) satisfies
(see [9]): ∀(k, f, t)∈{1 . . .K}×{1 . . . F}×{−P (k, f)+1 . . . T},

ln(qkft(ck(f, t)))
c
= 〈ln(p(c, x))〉( ∏

(l,g,u) "=(k,f,t)
qlgu

). (19)

Let us define the filter of impulse response hkf , such that hkf (0)=
1, hkf (p) = −a(p, k, f) ∀p ∈ {1 . . . P (k, f)}, and hkf (p) =
0 everywhere else, and the filter h̃kf (p) = hkf (−p)∗. Af-
ter some straightforward calculations, equations (11) and (19)
yield ∀(k, f, t) ∈ {1 . . .K}×{1 . . . F}×{−P (k, f)+1 . . . T},
qkft(ck(f, t)) ∼ NF (mk(f, t),Γk(f, t)) , where2

Γk(f, t) =

(
δ(f, t)
σ2

+ qk(f, t) + |h̃kf |2 ∗ ρk(f, t)
)−1

(with qk(f, t) = Qk(f)(1−t,1−t) if −P (k, f) + 1 ≤ t ≤ 0 and
qk(f, t) = 0 else), and

mk(f, t) = mk(f, t) + Γk(f, t)
(
− qk(f, t)

H(mk(f, 0)− µk(f))

+ δ(f,t)
σ2 (x(f, t)−

K∑
l=1

ml(f, t))− h̃kf ∗ (ρk(f, t)(hkf ∗mk(f, t)))
)

2|h̃kf |2 denotes the filter whose coefficients are the square magnitude of
the corresponding coefficients of h̃kf .
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Fig. 1. Maximization of the log-likelihood and the variational free
energy over the iterations.

(where qk(f, t) is the (1 − t)th column of Qk(f) if −P (k, f) +
1 ≤ t ≤ 0 and qk(f, t) = [0; . . . ; 0] else)3. The computational
complexity of the E-step is thus further reduced from O(KFT (1 +
P )3) to O(KFT (1 + P )), which is linear w.r.t. all dimensions.

Finally, note that the variational free energy L(q; θ) can be cal-
culated as in equation (17), whereRk(f, t) becomes a diagonal ma-
trix of diagonal coefficients Γk(f, t) . . .Γk(f, t− P (k, f)).

5. SIMULATION RESULTS

The VB-EM algorithm aims to maximize the free energy. As we
mentioned in Section 3, the log-likelihood is thus no longer guaran-
teed to increase, while remaining an indicator of the estimation qual-
ity. It can then be interesting to evaluate the influence of the approx-
imations (13) and (18) on the maximization of the log-likelihood. To
this end, we consider a fully observed TF data x(f, t) generated ac-
cording to model (1) with T =20, F =3, P (k, f)=3 ∀(k, f) and
K=2 (and random parameters θ), and compare the performance of
the three algorithms described respectively in Subsections 4.2, 4.3
and 4.4 with regard to the maximization of the log-likelihood. Fig-
ure 1 presents the value of the log-likelihood at each iteration of the
three algorithms. Interestingly, we can observe that although focus-
ing on the maximization of the free energy, the VB-EM algorithm
permits here to increase the log-likelihood, whatever the considered
approximation (mean-field or structured mean-field). In addition, as
intuitively expected, the most constrained factorization (18) leads to
a lesser increase of the log-likelihood. In practice however, this
expected quality loss is not tangible. As an example of the good be-
havior of the VB-EM approach, we focus here on a simple case of
source separation, where the observation is the whole STFT x(f, t)
(of dimensions F =400 and T =44) of a 1.05 s-long piano sound
sampled at 11025 Hz, containing three notes, C3, C4 and C5, start-
ing respectively at 0 ms, 260 ms and 525 ms, and lasting until the
end of the sound. Within this scenario, we aim at separating K=3
components ck(f, t) of order P (k, f)=2 in the frequency band f
which corresponds to the first harmonic of C5, the second harmonic
of C4 and the fourth harmonic of C3 (around 540 Hz). These three
sinusoidal components (whose real parts are represented as red solid
lines in Figure 2) have very close frequencies, making them hardly
separable. We compare then three different approaches, namely,
the HR-NMF model estimated by means of the EM algorithm, the
HR-NMF model estimated by means of the VB-EM algorithm us-
ing the mean-field approximation (18) and the IS-NMF model [6].

3In this equation, although the term mk(t) appears several times in the
right-hand side, it can be easily verified that its contributions add up to zero.
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Fig. 2. Separation of three sinusoidal components.

Two important observations can be made about Figure 2. As previ-
ously noticed in [7, 8], IS-NMF (in black dash-dotted lines), which
involves Wiener filtering, is not able to properly separate the com-
ponents when they overlap. As a comparison, the components es-
timated by HR-NMF (blue dashed lines and magenda dotted lines)
better fit the ground truth. We see on this example that the EM-
based and VB-EM-based approaches lead to very similar results: the
separated components are often merged. More precisely, we mea-
sured an averaged mean squared error of 0.0161 for IS-NMF, 0.0016
for the VBEM-based HR-NMF and 0.0006 for the EM-based HR-
NMF on the whole set of frequencies and components reconstructed
within this experiment. The slight quality loss due to the mean-field
approximation is largely compensated by a significant computation
time saving: with a 2.20GHz CPU processor and 8Go RAM, the
CPU time required to run the E-step in the exact EM approach with
aMatlab implementation is 19.5s, while 1.9s is enough for the E-step
with mean-field approximation.

6. CONCLUSIONS

This paper introduces two novel methods as alternatives to estimate
the HR-NMFmodel introduced in [7,8]. These methods are based on
the variational Bayesian EM algorithm and two different mean-field
approximations. Their low complexities allow using the HR-NMF
model in high-dimensional problems without altering the good qual-
ity of the estimation. We illustrated these good properties with a sim-
ple example of source separation. In future work, we will investigate
other kinds of structured and unstructured mean field approxima-
tions, as well as a fully Bayesian approach involving uninformative
or informative priors for the various model parameters. We will also
apply variational inference to the future extensions of the HR-NMF
model (e.g. involving convolutive and multichannel mixtures).
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