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A TEMPERING APPROACH FOR ITAKURA-SAITO NON-NEGATIVE MATRIX
FACTORIZATION. WITH APPLICATION TO MUSIC TRANSCRIPTION

Nancy BERTIN, &dric FEVOTTE, Roland BADEAU

CNRS LTCI - TELECOM ParisTech (ENST)
46 rue Barrault 75634 PARIS Cedex 13, France

ABSTRACT popular cost functions for NMF are the Euclidean (EUC) distance,
defined as
In this paper we are interested in non-negative matrix factorization d 1 2 3
(NMF) with the Itakura-Saito (IS) divergence. Previous work has puc(zly) = 5(‘7” -y ®)

demonstrated the relevance of this cost function for the decompgyng the generalized Kullback-Leibler (KL) divergence, defined as
sition of audio power spectrograms. This is in particular due to its

scale invariance, which makes it more robust to the wide dynamics _

of audio, a property which is not shared by other popular costs such drcr(zly) =z log v ° TY
as the Euclidean distance or the generalized Kulback-Leibler (KL)

divergence. However, while the latter two cost functions are convex! hose two cost functions, as NMF itself, were particularly popular-
the IS divergence is not, which makes it more prone to convergend&ed by Lee and Seung, see, e.g, [1], which described multiplicative
to irrelevant local minima, as observed empirically. Thus, the aim otipdate rules under which (V' [W H) is shown nonincreasing while
this paper is to propose a tempering scheme that favors convergen@@asuring non-negativity of¥’ and . Despite the popularity of

of IS-NMF to global minima. Our algorithm is based on NMF with these updates, the literature is flourishing on other algorithms among
the beta-divergence, where the shape parameter beta acts as a t&fhich we can cite alternating least squares, projected gradient, con-
perature parameter. Results on both synthetical and music data (if4gate gradient, quasi-Newton optimization, see, e.g., [4].
transcription context) show the relevance of our approach.

(4)

We are here concerned with NMF using the Itakura-Saito (IS)

Index Terms— Non-negative matrix factorization (NMF), cost function, expressed as

Itakura-Saito (IS) divergence, beta divergence, music transariptio

T T
drs(zly) = — —log| =) — L 5
1. INTRODUCTION 15(zly) Y & (y) ©)

Non-negative matrix factorization (NMF) is a now popular dimen-!n [5] we have suggested the IS cost function to be better suited
sion reduction technique, employed for non-subtractive, partselbaséo the NMF of music power spectrograms than the usual EL.JC
representation of nonnegative data. Its use has dramatically gro KL _COStS' as it was sr_]own to better bring out the semantics
in various signal processing applications over the last years, amo aud!o. We. haye described hpw l.S'NMF may .be expressed as
which we can cite learning parts of faces and semantic features Gf maximum likelihood (ML) estimation in two different frame-

text [1] or polyphonic music transcription [2, 3]. Given a data ma—WorkZ: C-;-t can either be seen as variance Qstlm%tl(()jnb;nf supenm-
trix V' of dimensionsF” x N with non-negative entries, NMF is the pose aussian components or as gstlmatloWo nd 7 from
problem of finding a factorization their product observed in multiplicative Gamma noise (see [5]

and references therein). An interesting property of IS-NMF is
Va~WH 1) scale-invariance, i.ed;s(Az|\y) = drs(zly), a property which
is not shared by the two other cost functions; as such, we have
wherel andH are non-negative matrices of dimensidns K and ~ devc(Az[\y) = A dpuc(zly) anddrr(Az[Ay) = Xdxr(z]y).
K x N, respectivelyX is usually chosen such th&atk + KN < The scale invariance means that same relative weight is given to
FN, hence reducing the data dimension. The factorization (1) i$mall and large coefficients df in cost function (2), in the sense

generally obtained by minimizing a cost function defined by that a bad fit of the factorization for a low-power coefficigvit s,
will cost as much as a bad fit for a higher power coefficiéft;:.,.
F N The scale invariance of the IS divergence is relevant to decompo-
D(VIWH) = Z d(Vinl WH];,) (2)  sition of audio spectra, which typically exhibit exponential power
f=1n=1 decrease along frequengyand also usually comprise low-power

transient components such as note attacks, together with higher

whered(z|y) is a function of two scalar variablegis typically non-  power components such as tonal parts of sustained notes.
negative and takes value zero if and only if (iff)= y. The most

However roperty shar he E nd KL
The research leading to this paper was supported by the Eamop owever, a property shared by the EUC and caktey),

Commission under contract FP6-027026, Knowledge Space ofnngéema and not by _the IS cost, is conv_exny. This means that the cost
inference for automatic annotation and retrieval of multiraedontent 2 (V|WH) is at least convex with respect to (wrt) eithidr or
KSPACE, and by the French GIP ANR under contract ANR-06-30027-  H (see Section 2.3). In contrast, nothing can be said about IS-
01, Deécomposition eicléments Sonores et Applications Musicales DESAM. NMF. However, we can intuitively expect that its non-convex form



makes it more prone to local minima, as also empirically observec 2
in previous work [6]. As such, the aim of this paper is to propose .5
a tempering scheme that favors convergence of IS-NMF to globa
minima. Our algorithm is based on NMF with th®divergence

[7], which takes the EUC, KL and IS costs as special cases, wher 05

the shape parametér acts as a temperature parameter. The idea
is simply to start from a criterion with less local minima (such as
Dguc(VIWH) or Dk, (V|W H)) and gradually reshape it to the

@p<0@B=-1)

10

b)0<p<1(B=0)

2

correct criterionD;s (VW H). s

The paper is organized as follows. In Section 2, we provide a
detailed study of the properties of tiedivergence wrt3 (a study
which was to our best knowledge not yet available) and describe

a NMF algorithm under this cost that was previously proposed by '

[7]-
Section 2.5. Section 3 presents some results on synthetic data, on
which our tempered algorithm is shown to attain more frequently

In particular, we describe our novel tempering procedure in o

1

©p=1

A
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(
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d1<p<2(8=15)

lower cost values than the standard IS-NMF algorithm. Then, our *®
algorithm is validated on a real-case music transcription problem ir
Section 4, where we show improved precision and recall rates. Sec

0.05

tion 5 provides conclusive remarks.

2. NMFWITH B-DIVERGENCE

2.1. Thep-divergence

The g-divergence introduced by Eguchi and Kano in [8] is defined
as

ds(zly) =
s @+ B -1y’ —pxy’t) BeR\{0,1}
zlog & + (y — ) B=1
% - log% -1 8=0

As observed in [7], the IS divergence is a limit case of the
divergence. [8] assum@ > 1, but the definition domain can very
well be extended t@ € R. The3-divergence is shown to be contin-
uous ing by using the identityimgs o (2 — y*)/8 = log(z/y).
EUC distance is obtained fg# = 2, so that the3-divergence is
inclusive for our three choices of NMF costs: EUC, KL and IS.

2.2. Study of variations

Let us studyds(z|y) as a function ofy (remember that: acts as
data). Its first and second-order derivatives write
Vyds(zly) = 4" *(y—a), (6)
Vids(zly) = 4" ((B-Dy+@2-Ba). ()
The next properties follow :

e dg(z|y) has a single minimum i = z and increases with
|y — z|. This justifies its relevance as a measure of fit.

e dg(x|0) is finite iff 5 > 1.
o dg(z|y)is convex orR, iff 1 < g < 2.
Figure 1 represents typical behaviours of thdivergence.

2.3. B-divergence between matrices

The cost functionDg (V|W H) is not convex in general wrt the pair
(W, H), even if the costlz(z|y) is convex (wrty). However, when
dg(z|y) is convex,Dg is at least convex as a function Bf (resp.

H) with fixed V and H (resp.WW), because it is expressed as a sum
of convex functions composed with linear functionals (see Eqg. (2)).

0 1 2 0 1

() =2 () 3>2(8=10)

Fig. 1. 5-divergence as a function gf(with x = 1). Subfigures (e),
(c) and (b) show EUC, KL and IS costs respectively.

2.4. NMF with the 3-divergence

Computing the gradier¥’ ;D (VW H) (resp.Vw Dg(V|W H))
using Eq. (6), and multiplyind? (resp.W) at previous iteration by
the ratio of the negative and positive parts of the gradient, we obtain
the following alternate multiplicative algorithm [7] :

WV e WH)P2)
WE(WH)1e=1)

(Ve (WH)P2hH
(WH) -1 HT

H «— H® (8)

W — We ©)
where® and® denote (Hadamard) entrywise product and division
respectively, the fraction is also entrywise atid”! denotes the ma-

trix with entries[A].. For3 = 1,2, we obtain Lee and Seung's
original algorithm. Using convexity afs(x|y), monotonicity of the
criterion under the latter rules can be shownfox g < 2 [9]. In

other cases, this monotonicity was observed in practice, though not
proven.

2.5. Tempering algorithm

As we observed in practice that IS-NMF is more prone to local min-
ima [5, 6], we now describe a tempering scheme that favors conver-
gence of IS-NMF to global minima. It simply consists of usifig

as a temperature parameter, which is set to a value between 1 and 2
in the first iterations (where the caBts(V|W H) is at least convex

wrt to eitherW or H) and gradually decrease it to the target cost,
i.e, IS in our case, obtained fgt = 0. As such, we simply ap-

ply update rules (8) and (9), with being a function of the iteration
number. More precisely, we use the template described by Fig). 2;
takes values; duringn; iterations, then starts to decrease following



a cosine duringy, more iterations, until it finally reaches its target For illustration purpose, we also represent on figure 3 the evo-
value, to which it remains fixed during the last iterations. In the Ilution of IS divergence wrt the iteration number, for selected signifi-
following, the prefix and superscripb. — 3;) will referto one par-  cant runs and fof. = 0 ands; = 2, 0.

ticular template, as described by its initial and final valueg;ahe

other parameters,;, ns andn. being fixed to arbitrary values. 4 8,=0,8, =0
1.5 T

Bi=2

8. = 0OF 15
'
€ - s —F SR — s e e >|
1.41
10° 10" 10 10° n 13r
1.2r
Fig. 2. 8 wrt the number of iterations. 1.1f

10° 10" 10° 10°

3. SIMULATIONS Fig. 3. IS divergence vs. number of iterations.
In this part, we wish to investigate on local minima®tlivergences
and on the convergence of various NMF algorithms, including the

tempering algorithm proposed in section 2.5. ) .
3.3. Discussion

3.1. Experimental setup As shown in Table 1, the tempering approach with= 2 is par-
o . . ticularly efficient to reach lower final error thdfi — 0)-NMF (i.e.,

We use the multiplicative noise model from [5] as a generativey assical I1S-NMF) when the data follow the underlying statistical

model, to obtain synthetic data for which minimizing IS divergence,,,qq|. Tempering withS. = 1 is equally performant, but it is im-

is relevant in a statistical sense. Ground truth matriégsand Hy portant to stress thalD?gO(Vo|WH) < D}gO(V0|WH) in most

are chosen randomly. Multiplicative noigeis generated according caqes. This relation, added to the relatively poor performance of

to th_e Gamma dls_trlb_utlon Wlth_ shape parameter and mearhe (10 - 0)-tempering, suggests the importance of the “convexity

matrix V5 to factorize is then built a8y = (WoHo) ® E. _ zone” (I < 3 < 2) and its use in the first iterations of the algo-

We then draw a random initializatiofiV;, H;) and use it to  (jthm.
compute factorizationgW?i=Pe  [rfi=Pe) for different values of

5 andg.. For each realizatioRfe, we draw 100 random initializa- Though no clearly identifiable local minimum appear in this test

" ¢ t thi Thi . ti ied out G set, final values reached §9 — 0)-NMF are more scattered than
dlﬁ'fnsr (r)]trrepe”azl i ﬁgp/)rocess. IS experiment 1S carmed oullior  y,,se obtained witli2 — 0)-tempering. This may confirm the exis-
erent realizationso. tence of local minima, observed for typical NMF-costs in [6].

Dimensions of matrices are chosen smaller than for a real ap- (10 — 0)-NMF performs relatively bad. Several explanations
plication, but their ratios are compatible with real cases. For each p y : P

realization and initialization, the following pai(g;, 8. ) are tested: may be invoked. First, the non-convexity of the costfor- 2 let

: us presume a negative effect of such a choice. The synthetic mater-
ﬁls%c?zrfzthcgs(im?légc?r:s The following table sums up the patarse ial used here has low dynamics (compared to audio signals), putting

less importance on the propeiy (Az|\y) = A\Pds(z|y) which is
mostly useful for wide-dynamics signals. Moreover, as visible on
Figure 1,d1o diverge very quickly to infinity wheny grows, mak-

ing the algorithm diverge if initialization falls into too high values.
Eventually, as no local minimum was observed, and considering the
3.2. Results relatively low dimensiond”, K, N, we can guess that a tempering

] ) ) ] _approach with a too high temperature may be unnecessary, nay nox-
We consider one run of a given algorithm as a success if the ing g

Parameter | F' | K N n; ng Ne
Value 50| 5 | 500 | 100 | 200 | 4700

equality D/s™" (Vo|W H) < D95°(Vo| WH) is verified. Table 1 Despite the lack of proof, we verify thgd — 0)-NMF ex-
presents the results of convergence of the tested algorithms. hibits nonincreasing IS divergence. On the contrary, we observe
phases where IS divergence increase$2in- 0)-NMF, which is
Bi = Be 10-0 | 2-0 | 1-0 the expected behaviour of a tempering algorithm. We notice that the
Success rate| 18 100 | 98 higher the “local maximum” around iteration 100, the lower the final
cost. This validates the use of a tempering approach: by allowing 1S-
Table 1. Success rate (%). divergence to increase, it allows to find NMF solutions that are not

reachable by usual approaches.



4. AN AUDIO APPLICATION inspired from tempering, to minimize this divergence in the NMF
framework.

In this section, we consider the music transcription task as a “wav-  Experiments on synthetic material confirm our intuition that the
to-midi” task, with single-channel music as input and a midi-file in- tempering approach, and in particular the exploitation of convexity
cluding note onsets, offsets and pitch as output. of 3-divergences with < 8 < 2 in the first iterations of the al-

Letus také/” as atime-frequency representation of a polyphonicgorithm, allows to reach better final cost values, thus avoiding local
music signal F" being the number of frequency bins aNdhe num-  minima of the I1S-divergence. The optimal seems however signal-
ber of time frames. [2] suggests that under an adequate additivity hytependent and its choice remains an open question. Good properties
pothesis, the NMR” ~ W H may give a separation of th€ notes  of IS-NMF and tempering approaches are confirmed on a real music
appearing in the input signal, by interpretifig as a basis of note test set.
pseudo-spectra arfd as the corresponding time envelopes. Follow-  The best music transcription performance, which is obtained
ing this idea, we proposed in [3] a full “wav-to-midi” system, by by algorithms with IS divergence and/or tempering, does generally
performing a monopitch estimation on columnd®@fand an energy  not correspond to the lowest cost value. This points out the in-
thresholding on lines off. Transcription performance, expressed in evitable limitations of any numerical criterion. Numerous improve-
terms of precision and recall at the note level, is then a new way tements of NMF-based music transcription are obtained by constrain-
evaluate NMF costs and algorithms. ing the solution to possess supplementary properties such as sparsity,

We perform midi transcriptions of six 30-second excerpts of reaharmonicity or temporal smoothness. We can thus expect better tran-
piano music, recorded from a Yamaha DisKlavier, providing a midiscription performances by integrating such constraints to NMF with
reference of the piece. Each piece is factorized with 10 different rants divergence, which was done for instance in [5] for another audio
dom initializations. Midi transcription and reference are then com-application.
pared in order to get averaged transcription scores. Table 2 sums up

the results for six algorithms with fixed and variable 6. REFERENCES
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