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A TEMPERING APPROACH FOR ITAKURA-SAITO NON-NEGATIVE MATRIX
FACTORIZATION. WITH APPLICATION TO MUSIC TRANSCRIPTION

Nancy BERTIN, Ćedric FÉVOTTE, Roland BADEAU

CNRS LTCI - TELECOM ParisTech (ENST)
46 rue Barrault 75634 PARIS Cedex 13, France

ABSTRACT

In this paper we are interested in non-negative matrix factorization
(NMF) with the Itakura-Saito (IS) divergence. Previous work has
demonstrated the relevance of this cost function for the decompo-
sition of audio power spectrograms. This is in particular due to its
scale invariance, which makes it more robust to the wide dynamics
of audio, a property which is not shared by other popular costs such
as the Euclidean distance or the generalized Kulback-Leibler (KL)
divergence. However, while the latter two cost functions are convex,
the IS divergence is not, which makes it more prone to convergence
to irrelevant local minima, as observed empirically. Thus, the aim of
this paper is to propose a tempering scheme that favors convergence
of IS-NMF to global minima. Our algorithm is based on NMF with
the beta-divergence, where the shape parameter beta acts as a tem-
perature parameter. Results on both synthetical and music data (in a
transcription context) show the relevance of our approach.

Index Terms— Non-negative matrix factorization (NMF),
Itakura-Saito (IS) divergence, beta divergence, music transcription.

1. INTRODUCTION

Non-negative matrix factorization (NMF) is a now popular dimen-
sion reduction technique, employed for non-subtractive, parts-based
representation of nonnegative data. Its use has dramatically grown
in various signal processing applications over the last years, among
which we can cite learning parts of faces and semantic features of
text [1] or polyphonic music transcription [2, 3]. Given a data ma-
trix V of dimensionsF ×N with non-negative entries, NMF is the
problem of finding a factorization

V ≈WH (1)

whereW andH are non-negative matrices of dimensionsF×K and
K ×N , respectively.K is usually chosen such thatFK + KN ≪
FN , hence reducing the data dimension. The factorization (1) is
generally obtained by minimizing a cost function defined by

D(V |WH) =
FX

f=1

NX
n=1

d(Vfn| [WH]
fn

) (2)

whered(x|y) is a function of two scalar variables.d is typically non-
negative and takes value zero if and only if (iff)x = y. The most
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popular cost functions for NMF are the Euclidean (EUC) distance,
defined as

dEUC(x|y) =
1

2
(x− y)2, (3)

and the generalized Kullback-Leibler (KL) divergence, defined as

dKL(x|y) = x log

�
x

y

�
− x + y. (4)

Those two cost functions, as NMF itself, were particularly popular-
ized by Lee and Seung, see, e.g, [1], which described multiplicative
update rules under whichD(V |WH) is shown nonincreasing while
ensuring non-negativity ofW and H. Despite the popularity of
these updates, the literature is flourishing on other algorithms among
which we can cite alternating least squares, projected gradient, con-
jugate gradient, quasi-Newton optimization, see, e.g., [4].

We are here concerned with NMF using the Itakura-Saito (IS)
cost function, expressed as

dIS(x|y) =
x

y
− log

�
x

y

�
− 1. (5)

In [5] we have suggested the IS cost function to be better suited
to the NMF of music power spectrograms than the usual EUC
or KL costs, as it was shown to better bring out the semantics
of audio. We have described how IS-NMF may be expressed as
a maximum likelihood (ML) estimation in two different frame-
works: it can either be seen as variance estimation in superim-
posed Gaussian components or as estimation ofW and H from
their product observed in multiplicative Gamma noise (see [5]
and references therein). An interesting property of IS-NMF is
scale-invariance, i.e,dIS(λx|λy) = dIS(x|y), a property which
is not shared by the two other cost functions; as such, we have
dEUC(λx|λy) = λ2 dEUC(x|y) anddKL(λx|λy) = λ dKL(x|y).
The scale invariance means that same relative weight is given to
small and large coefficients ofV in cost function (2), in the sense
that a bad fit of the factorization for a low-power coefficient[V ]fn

will cost as much as a bad fit for a higher power coefficient[V ]f ′n′ .
The scale invariance of the IS divergence is relevant to decompo-
sition of audio spectra, which typically exhibit exponential power
decrease along frequencyf and also usually comprise low-power
transient components such as note attacks, together with higher
power components such as tonal parts of sustained notes.

However, a property shared by the EUC and KL costsd(x|y),
and not by the IS cost, is convexity. This means that the cost
D(V |WH) is at least convex with respect to (wrt) eitherW or
H (see Section 2.3). In contrast, nothing can be said about IS-
NMF. However, we can intuitively expect that its non-convex form



makes it more prone to local minima, as also empirically observed
in previous work [6]. As such, the aim of this paper is to propose
a tempering scheme that favors convergence of IS-NMF to global
minima. Our algorithm is based on NMF with theβ-divergence
[7], which takes the EUC, KL and IS costs as special cases, where
the shape parameterβ acts as a temperature parameter. The idea
is simply to start from a criterion with less local minima (such as
DEUC(V |WH) or DKL(V |WH)) and gradually reshape it to the
correct criterionDIS(V |WH).

The paper is organized as follows. In Section 2, we provide a
detailed study of the properties of theβ-divergence wrtβ (a study
which was to our best knowledge not yet available) and describe
a NMF algorithm under this cost that was previously proposed by
[7]. In particular, we describe our novel tempering procedure in
Section 2.5. Section 3 presents some results on synthetic data, on
which our tempered algorithm is shown to attain more frequently
lower cost values than the standard IS-NMF algorithm. Then, our
algorithm is validated on a real-case music transcription problem in
Section 4, where we show improved precision and recall rates. Sec-
tion 5 provides conclusive remarks.

2. NMF WITH β-DIVERGENCE

2.1. Theβ-divergence

Theβ-divergence introduced by Eguchi and Kano in [8] is defined
as

dβ(x|y) =8<: 1
β (β−1)

�
xβ + (β − 1) yβ − β x yβ−1

�
β ∈ R\{0, 1}

x log x
y

+ (y − x) β = 1
x
y
− log x

y
− 1 β = 0

As observed in [7], the IS divergence is a limit case of theβ-
divergence. [8] assumeβ > 1, but the definition domain can very
well be extended toβ ∈ R. Theβ-divergence is shown to be contin-
uous inβ by using the identitylimβ→0 (xβ − yβ)/β = log(x/y).
EUC distance is obtained forβ = 2, so that theβ-divergence is
inclusive for our three choices of NMF costs: EUC, KL and IS.

2.2. Study of variations

Let us studydβ(x|y) as a function ofy (remember thatx acts as
data). Its first and second-order derivatives write

∇ydβ(x|y) = yβ−2(y − x), (6)

∇2
ydβ(x|y) = yβ−3 ((β − 1)y + (2− β)x) . (7)

The next properties follow :

• dβ(x|y) has a single minimum iny = x and increases with
|y − x|. This justifies its relevance as a measure of fit.

• dβ(x|0) is finite iff β ≥ 1.

• dβ(x|y) is convex onR+ iff 1 ≤ β ≤ 2.

Figure 1 represents typical behaviours of theβ-divergence.

2.3. β-divergence between matrices

The cost functionDβ(V |WH) is not convex in general wrt the pair
(W, H), even if the costdβ(x|y) is convex (wrty). However, when
dβ(x|y) is convex,Dβ is at least convex as a function ofW (resp.
H) with fixedV andH (resp.W ), because it is expressed as a sum
of convex functions composed with linear functionals (see Eq. (2)).
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Fig. 1. β-divergence as a function ofy (with x = 1). Subfigures (e),
(c) and (b) show EUC, KL and IS costs respectively.

2.4. NMF with the β-divergence

Computing the gradient∇HDβ(V |WH) (resp.∇W Dβ(V |WH))
using Eq. (6), and multiplyingH (resp.W ) at previous iteration by
the ratio of the negative and positive parts of the gradient, we obtain
the following alternate multiplicative algorithm [7] :

H ← H ⊗
W T (V ⊗ (WH).[β−2])

W T ((WH).[β−1])
(8)

W ← W ⊗
(V ⊗ (WH).[β−2])H

((WH).[β−1])HT
(9)

where⊗ and⊘ denote (Hadamard) entrywise product and division
respectively, the fraction is also entrywise andA.[n] denotes the ma-
trix with entries[A]n

ij
. For β = 1, 2, we obtain Lee and Seung’s

original algorithm. Using convexity ofdβ(x|y), monotonicity of the
criterion under the latter rules can be shown for1 ≤ β ≤ 2 [9]. In
other cases, this monotonicity was observed in practice, though not
proven.

2.5. Tempering algorithm

As we observed in practice that IS-NMF is more prone to local min-
ima [5, 6], we now describe a tempering scheme that favors conver-
gence of IS-NMF to global minima. It simply consists of usingβ
as a temperature parameter, which is set to a value between 1 and 2
in the first iterations (where the costDβ(V |WH) is at least convex
wrt to eitherW or H) and gradually decrease it to the target cost,
i.e, IS in our case, obtained forβ = 0. As such, we simply ap-
ply update rules (8) and (9), withβ being a function of the iteration
number. More precisely, we use the template described by Fig. 2;β
takes valueβi duringni iterations, then starts to decrease following



a cosine duringnd more iterations, until it finally reaches its target
value, to which it remains fixed during the lastne iterations. In the
following, the prefix and superscript(βe � βi) will refer to one par-
ticular template, as described by its initial and final values ofβ; the
other parametersni, nd andne being fixed to arbitrary values.
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Fig. 2. β wrt the number of iterationsn.

3. SIMULATIONS

In this part, we wish to investigate on local minima ofβ-divergences
and on the convergence of various NMF algorithms, including the
tempering algorithm proposed in section 2.5.

3.1. Experimental setup

We use the multiplicative noise model from [5] as a generative
model, to obtain synthetic data for which minimizing IS divergence
is relevant in a statistical sense. Ground truth matricesW0 andH0

are chosen randomly. Multiplicative noiseE is generated according
to the Gamma distribution with shape parameter and mean1. The
matrixV0 to factorize is then built asV0 = (W0H0)⊗ E.

We then draw a random initialization(Wi, Hi) and use it to
compute factorizations(W βi�βe , Hβi�βe) for different values of
βi andβe. For each realizationV0, we draw 100 random initializa-
tions to repeat this process. This experiment is carried out for10
different realizationsV0.

Dimensions of matrices are chosen smaller than for a real ap-
plication, but their ratios are compatible with real cases. For each
realization and initialization, the following pairs(βi, βe) are tested:
(10,0),(2,0),(1,0),(0,0). The following table sums up the parameters
used in the simulations.

Parameter F K N ni nd ne

Value 50 5 500 100 200 4700

3.2. Results

We consider one run of a given algorithm as a success if the in-
equalityDβe�βi

IS (V0|WH) ≤ D0�0
IS (V0|WH) is verified. Table 1

presents the results of convergence of the tested algorithms.

βi � βe 10�0 2�0 1�0
Success rate 18 100 98

Table 1. Success rate (%).

For illustration purpose, we also represent on figure 3 the evo-
lution of IS divergence wrt the iteration number, for selected signifi-
cant runs and forβe = 0 andβi = 2, 0.
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Fig. 3. IS divergence vs. number of iterations.

3.3. Discussion

As shown in Table 1, the tempering approach withβe = 2 is par-
ticularly efficient to reach lower final error than(0 � 0)-NMF (i.e.,
classical IS-NMF) when the data follow the underlying statistical
model. Tempering withβe = 1 is equally performant, but it is im-
portant to stress thatD2�0

IS (V0|WH) ≤ D1�0
IS (V0|WH) in most

cases. This relation, added to the relatively poor performance of
(10 � 0)-tempering, suggests the importance of the “convexity
zone” (1 ≤ β ≤ 2) and its use in the first iterations of the algo-
rithm.

Though no clearly identifiable local minimum appear in this test
set, final values reached by(0 � 0)-NMF are more scattered than
those obtained with(2 � 0)-tempering. This may confirm the exis-
tence of local minima, observed for typical NMF-costs in [6].

(10 � 0)-NMF performs relatively bad. Several explanations
may be invoked. First, the non-convexity of the cost forβ > 2 let
us presume a negative effect of such a choice. The synthetic mater-
ial used here has low dynamics (compared to audio signals), putting
less importance on the propertydβ(λx|λy) = λβdβ(x|y) which is
mostly useful for wide-dynamics signals. Moreover, as visible on
Figure 1,d10 diverge very quickly to infinity wheny grows, mak-
ing the algorithm diverge if initialization falls into too high values.
Eventually, as no local minimum was observed, and considering the
relatively low dimensionsF, K, N , we can guess that a tempering
approach with a too high temperature may be unnecessary, nay nox-
ious.

Despite the lack of proof, we verify that(0 � 0)-NMF ex-
hibits nonincreasing IS divergence. On the contrary, we observe
phases where IS divergence increases in(2 � 0)-NMF, which is
the expected behaviour of a tempering algorithm. We notice that the
higher the “local maximum” around iteration 100, the lower the final
cost. This validates the use of a tempering approach: by allowing IS-
divergence to increase, it allows to find NMF solutions that are not
reachable by usual approaches.



4. AN AUDIO APPLICATION

In this section, we consider the music transcription task as a “wav-
to-midi” task, with single-channel music as input and a midi-file in-
cluding note onsets, offsets and pitch as output.

Let us takeV as a time-frequency representation of a polyphonic
music signal,F being the number of frequency bins andN the num-
ber of time frames. [2] suggests that under an adequate additivity hy-
pothesis, the NMFV ≈ WH may give a separation of theK notes
appearing in the input signal, by interpretingW as a basis of note
pseudo-spectra andH as the corresponding time envelopes. Follow-
ing this idea, we proposed in [3] a full “wav-to-midi” system, by
performing a monopitch estimation on columns ofW and an energy
thresholding on lines ofH. Transcription performance, expressed in
terms of precision and recall at the note level, is then a new way to
evaluate NMF costs and algorithms.

We perform midi transcriptions of six 30-second excerpts of real
piano music, recorded from a Yamaha DisKlavier, providing a midi
reference of the piece. Each piece is factorized with 10 different ran-
dom initializations. Midi transcription and reference are then com-
pared in order to get averaged transcription scores. Table 2 sums up
the results for six algorithms with fixed and variableβ.

βi � βe 10�0 2�0 1�0 0�0 2�2 1�1
Precision 83.4 73.6 69.7 77.2 67.8 70.5

Recall 79.2 79.2 73.6 70.6 73.6 65.5
F-measure 81.3 76.3 71.6 73.7 70.6 67.9

Table 2. Averaged transcription performance (%).

Several observations can be made. First, all algorithms involv-
ing IS divergence, with or without tempering, outperform EUC and
KL-NMF. The tempering algorithm withβi = 10 gives the best
transcription scores, despite the non-convexity of theβ-divergence
with β > 2. A possible explanation for this fact is the property
dβ(λx|λy) = λβdβ(x|y), meaning that first iterations of(10 � 0)-
NMF put a strong importance on high-energy components. Since
analyzed data possess the typical wide dynamics of audio, this can
be decisive, compared to synthetic data of previous section. More-
over, the dimensions of the problem make it more likely to possess
numerous local minima, motivating the use of a higher initial tem-
perature.

Tempering withβi = 2 is the second best in our test. Yet,
(0 � 0)-NMF reaches better final cost values in all cases. No clear
correlation between final cost and transcription performance is ob-
served.

Another noticeable result to mention is the existence of a few
severe failures for(0 � 0)-NMF (for which the F-measure is below
10%). On the contrary, EUC-NMF, KL-NMF and tempering algo-
rithms seem to be unexposed to this phenomenon. However, if we
exclude pathological cases from transcription scores computation,
(0 � 0)-NMF performs as good as tempering.

This study confirms how suitable IS-divergence is in an audio
processing task, and the improvement brought by the tempering ap-
proach.

5. CONCLUSIONS

In this paper, we motivated the choice of Itakura-Saito divergence
for NMF-based audio processing, by a theoretical and experimen-
tal study that confirms its interest. We proposed a new approach,

inspired from tempering, to minimize this divergence in the NMF
framework.

Experiments on synthetic material confirm our intuition that the
tempering approach, and in particular the exploitation of convexity
of β-divergences with1 ≤ β ≤ 2 in the first iterations of the al-
gorithm, allows to reach better final cost values, thus avoiding local
minima of the IS-divergence. The optimalβi seems however signal-
dependent and its choice remains an open question. Good properties
of IS-NMF and tempering approaches are confirmed on a real music
test set.

The best music transcription performance, which is obtained
by algorithms with IS divergence and/or tempering, does generally
not correspond to the lowest cost value. This points out the in-
evitable limitations of any numerical criterion. Numerous improve-
ments of NMF-based music transcription are obtained by constrain-
ing the solution to possess supplementary properties such as sparsity,
harmonicity or temporal smoothness. We can thus expect better tran-
scription performances by integrating such constraints to NMF with
IS divergence, which was done for instance in [5] for another audio
application.
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