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ABSTRACT

Dimension reduction techniques such as Nonnegative Tensor Factor-

ization are now classical for both source separation and estimation of

multiple fundamental frequencies in audio mixtures. Still, few stud-

ies jointly addressed these tasks so far, mainly because separation is

often based on the Short Term Fourier Transform (STFT) whereas

recent music analysis algorithms are rather based on the Constant-Q

Transform (CQT). The CQT is practical for pitch estimation because

a pitch shift amounts to a translation of the CQT representation,

whereas it produces a scaling of the STFT. Conversely, no simple

inversion of the CQT was available until recently, preventing it from

being used for source separation. Benefiting from advances both in

the inversion of the CQT and in statistical modeling, we show how

recent techniques designed for music analysis can also be used for

source separation with encouraging results, thus opening the path to

many crossovers between separation and analysis.

Index Terms— audio source separation, NTF, PLCA, CQT

1. INTRODUCTION

Source separation has gathered much interest recently and many

methods were devised to separate the different sources signals mixed

together into observable mixtures. In the case of audio processing,

the sources are the different instruments playing together in a piece

of music. The special case of the removal of voice in the recordings

is of particular interest, because it allows many popular applications

from voice enhancement or remixing to automatic karaoke. Unfor-

tunately and because of the extreme diversity of vocal signals, this

task also appears to be the most challenging. Many recent studies

[1, 2] specifically focus on the separation of singing voice signals

from polyphonic mixtures. Popular trends include techniques that

decompose Time-Frequency (TF) representations of the mixtures us-

ing block models and that perform separation from those decompo-

sitions through generalized Wiener filtering [3, 4]. It is noticeable

that most existing techniques for source separation make use of an

invertible TF representation, such as the Short Term Fourier Trans-

form, that permits recovering the waveforms of signals that were

separated in the TF domain.

Apart from the separation of the different constitutive sounds

from a mixture, other tasks of interest in Music Information Re-

trieval (MIR) also include the computation of semantic information

from audio signals. One of the most prominent semantic informa-

tion related to music is its score, i.e. the information concerning the

time-varying pitch of the musical sounds composing the mixture.

The research leading to this paper was partly supported by the Quaero
Programme, funded by OSEO, French State agency for innovation.

Even if the pitch of a sound is a complex notion whose definition is

still the matter of some controversy, it has long been shown [5] to be

strongly related to the notion of fundamental frequency f0. Indeed,

sounds that are perceived as pitched often have the remarkable prop-

erty of being pseudo-periodic. Their pitch is then often considered

equivalent on computational grounds to their —time varying— fun-

damental frequency. Hence, the challenging task of tracking mul-

tiple fundamental frequencies (also written multiple-f0) over time

has long gathered much attention in the MIR community. Methods

ranging from deterministic sinusoidal modeling to fully probabilis-

tic models can both be found in the literature. Among the latter,

some recent techniques [6, 7] were proposed that focus on the anal-

ysis of the Constant-Q Transform (CQT) of the mixtures. Indeed, an

interesting property of the CQT is that a change in fundamental fre-

quency of a signal leads to a translation of its representation, whereas

it leads to a more complex scaling of the STFT. Consequently, the

CQT of a sound event following a complex pitch trajectory can ef-

ficiently be modeled as a single pattern merely translated over time.

Hence, translation invariant decompositions [8], which permit to es-

timate such translated recurrent patterns in 2D representations, are

adequate to model sound events. Unfortunately, there was no avail-

able inverse known for the CQT until recently, which prevented the

methods derived for the tracking of multiple-f0 to be used for source

separation.

Still, many techniques from both audio source separation and

multiple-f0 estimation make use of the same underlying statistical

models borrowed from the machine learning community. Among

them, dimension reduction techniques [9, 8, 2, 7] are very popular to

decompose the TF representation of mixtures into meaningful con-

stitutive elements, whether it be for separation or for semantic anal-

ysis. The idea of jointly estimating the melody of the lead pitched

instrument and separating it from the polyphonic mixtures has re-

cently led to promising methods [2]. Still, only a few studies [9, 10]

make use of translation invariant representations for the modeling

of musical signals. However, even if exact inversion of the CQT is

impossible, approximate and efficient algorithms are now publicly

available 1 [11] that permit to obtain good performance.

In this study, we show how efficient models for music analy-

sis on the CQT can directly be used for source separation. More

specifically, we demonstrate that translation invariant models de-

signed specifically to track the lead melody on CQT [6] can be used

to recover separated waveforms. Doing so, we pursue seminal work

in this direction by FITZGERALD [9], benefiting from both special-

ized and efficient models for vocal signals and recent statistical in-

1The invert CQT we used in our algorithm, implemented by J. Prado,
is freely available at http://www.tsi.telecom-paristech.fr/aao/en/2011/06/06/
inversible-cqt
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sights concerning decompositions of the TF representations of non-

stationary signals [3, 12].

The article is organized as follows: first, we present the statisti-

cal framework we use for modeling both the signal playing the lead

melody and the musical background in section 2. In section 3, we

focus on model parameters estimation and explain how the separa-

tion is performed. Finally, we present an evaluation of the proposed

method in section 4 and conclude in section 5.

2. THE PROBABILISTIC MODEL FOR THE CQT OF AN

AUDIO SIGNAL

As in [6] or [7], the model that we put forward is based on the Prob-

abilistic Latent Component Analysis (PLCA) [13]. The absolute

value of the CQT Xft of an audio signal x, denoted Vft = |Xft|,
is modeled as the histogram of N random variables (fn, tn) ∈ Z×
J1;T K, representing time-frequency bins, independently distributed

according to the discrete probability distribution P (f, t) (we sup-

pose that Vft = 0 for f /∈ J1;F K). The distribution P (f, t) is

structured according to the desired decomposition of Vft, and the

model parameters can be estimated by means of the Expectation-

Maximization (EM) algorithm. Since our purpose is to separate the

lead melody from the accompaniment, let P (f, t) be equal to2:

P (f, t) = P (c1)Pm(f, t|c1) + P (c2)Pa(f, t|c2), (1)

where the probability distributions Pm(f, t|c1)(f,t)∈Z×J1;T K and

Pa(f, t|c2)(f,t)∈Z×J1;T K respectively represent the CQTs of the two

sources: the main melody (when the hidden variable c is equal to 1)

and the accompaniment (when c = 2). P (c)c=1,2 corresponds to

the normalized global energy of each source. We now present the

model of CQT for those two components.

2.1. The accompaniment model

For the accompaniment, the model used is the classic PLCA [13],

equivalent to the Non-Negative Matrix Factorization [14]. Each col-

umn of a CQT Pa(f, t|c2)f is modeled as a weighted sum of R basis

spectra P (f |r, c2)f as described in Fig. 1:

Pa(f, t|c2) =
︁

r

P (r, t|c2)P (f |r, c2). (2)

Fig. 1. Spectrum model for the accompaniment at time t: the classic

PLCA.

2For the sake of simplicity, the notation ck is used for c = k.

2.2. The lead melody model

In order to account for the non-stationary nature of many musi-

cal instruments (and especially the human voice), in terms of both

pitch and spectral envelope, the model used for the lead melody

is based on the one that we presented in [6], which allows simul-

taneously considering those two characteristics. At time t, the

melody spectrum, represented by Pm(f, t|c1) is decomposed as a

weighted sum of Z fixed narrow-band harmonic spectral kernels,

denoted PK(µ|z, c1)(µ,z)∈J1;F K×J1;ZK, spectrally convolved by a

time-frequency impulse distribution PI(i, t|c1)(i,t)∈Z×J1;T K (when

c = 1, f is then defined as the sum of the two random variables µ
and i). The parameters have the following characteristics:

• all kernels share the same fundamental frequency, but have

their energy concentrated at a given harmonic,

• the weights applied to the kernels, denoted P (z|t, c1), define

the spectral envelope of the spectrum,

• each column of the impulse distribution PI(i, t|c1)i is uni-

modal, and its mode corresponds to the pitch of the melody.

Finally, the whole melody model can be written as:

Pm(f, t|c1) =
︁

i,z

PI(i, t|c1)P (z|t, c1)PK(f − i|z, c1). (3)

This model is illustrated in Fig. 2.

Fig. 2. Harmonic spectrum model for the main melody at time t.
Each kernel has its main energy concentrated on a given harmonic

(multiple of a reference fundamental frequency), and the rest of the

energy is shared between adjacent partials.

3. PARAMETERS ESTIMATION AND ALGORITHM

3.1. EM algorithm and parameter updates

As described in [13], the EM algorithm defines update rules for the

parameters, such that the log-likelihood L of the variables fn and

tn observed via the histogram Vft, which is proved equal to L =
︀

f,t Vft ln (P (f, t)), increases at every iteration.

First, the a posteriori distributions of the latent variables i, z, r, c
are computed using Bayes’ theorem, in the "expectation step":

P (i, z, c1|f, t) =
P (c1)PI(i, t|c1)P (z|t, c1)PK(f − i|z, c1)

P (f, t)
,

(4)

P (r, c2|f, t) =
P (c2)P (r, t|c2)P (f |r, c2)

P (f, t)
, (5)



P (f, t) being defined by equations (1), (2) and (3).

Then the expectation of the log-likelihood of the complete data

(including observed and latent variables) is maximized in the "max-

imization step":

P (c1) ∝
︁

f,t,z,i

VftP (i, z, c1|f, t), (6)

PI(i, t|c1) ∝
︁

f,z

VftP (i, z, c1|f, t), (7)

P (z|t, c1) ∝
︁

f,i

VftP (i, z, c1|f, t), (8)

P (c2) ∝
︁

r,f,t

VftP (r, c2|f, t), (9)

P (r, t|c2) ∝
︁

f

VftP (r, c2|f, t), (10)

P (f |r, c2) ∝
︁

t

VftP (r, c2|f, t). (11)

The algorithm consists in initializing the parameters, then iter-

ating equations (4), (5), the various update rules (equations (6), (7),

(8), (9), (10) and (11)) and finally the normalization of all param-

eters so that the probabilities sum to one. Ideally, for a given time

t, PI(i, t|c1)i∈Z would be unimodal, the value of the mode would

correspond to the pitch of the lead melody, and the coefficients

P (z|t, c1) would describe its spectral envelope. This is however

not guaranteed, since other notes from the accompaniment could be

modeled by Pm(f, t|c1). Next section shows how to overcome this

flaw.

3.2. Viterbi algorithm and second round of the EM algorithm

To ensure that each column of the impulse distribution PI(i, t|c1)i
has a unique maximum, corresponding to the melody pitch, the same

Viterbi algorithm used by Durrieu [2, p. 570] is applied on the es-

timated impulse distribution. The best pitch path (which makes a

compromise between high energy and smooth trajectory) is found,

and PI(i, t|c1) is set to zero for the couples (i, t) which are further

than one semi-tone from it. This step is illustrated in Fig. 3. The

EM algorithm is then applied again for a few iterations in order to

let parameters converge to a new solution.

3.3. Silence detection

The model presented above does not take possible silences in the

melody into account. In order to avoid the presence of energy in the

estimated melody source when the lead instrument or voice is shut

down, we use a simple silence detector. The temporal energy sig-

nal of the estimated melody, defined as Em(t) =
︀

i PI(i, t|c1), is

filtered with a 1/10Hz cut-off frequency low-pass filter, and a thresh-

old manually set at −12dB is applied. When the melody is consid-

ered off, we set Pa(f, t|c2) = P (f, t), which means that P (c2) = 1
and P (c1) = 0.

3.4. Time-frequency masking

Once all parameters have been estimated, one can proceed to the

unmixing process by means of time-frequency masking. The time-

frequency masks, Mm and Ma, which respectively correspond to

Fig. 3. Illustration of the Viterbi algorithm: the model parameters

of the input CQT (a) are estimated in a first round, and the melody

pitch trajectory is estimated from the impulse distribution (b). The

bottom figure (c) shows the final estimated impulse distribution.

the main melody and the accompaniment, are defined as:

Mm(f, t) =
P (c1)Pm(f, t|c1)

P (f, t)
, (12)

Ma(f, t) =
P (c2)Pa(f, t|c2)

P (f, t)
. (13)

The temporal signals of the two sources can then be estimated by ap-

plying the masks on the CQT Xft of the input signal, and calculating

the invert CQT:

ŝm =CQT−1(Mm(f, t)Xft), (14)

ŝa =CQT−1(Ma(f, t)Xft). (15)

Fig. 4 illustrates the result obtained by applying our algorithm to

the CQT Xft of an input mixture audio file. It shows the estimated

CQT’s of the two sources (|MmXft| and |MmXft|).

Fig. 4. Input CQT and estimated CQT of each source.



4. EVALUATION

The proposed separation system was tested on twelve monophonic

excerpts, which last from 11 to 45 s (340 s in total), sampled at

44.1kHz from the Quaero 3 source separation corpus. The excerpts

featured different kinds of music, including rock, reggae or bossa.

For each of these files, the ground truth melody and accompaniment

signals are known for evaluation, but the input signals in our system

are the mixtures. All CQTs are calculated using 36 bins per octave

and a step size of 4ms. After estimating the sources of each audio

file, the quality of the result is quantified through the BSSEval tool-

box [15], which gives three different metrics (in dB): the Source to

Distortion Ratio (SDR), the Source to Artifact Ratio (SAR) and the

Source to Interference Ratio (SIR). Whereas the SDR measures the

global quality of the separation, the SIR and SAR respectively mea-

sure the amount of energy from the other sources and the amount of

separation/reconstruction artifacts. In order to assess the quality of

the proposed method, we compared it with the system proposed in

[2] (using the code available on the author’s website4). Furthermore,

we evaluated the quality of the time-frequency filtering using CQT

instead of classic STFT by calculating the results obtained by using

the idealized (oracle) masks:

ŝm =TF−1

︂

|TF(sm)|2

|TF(sm)|2 + |TF(sa)|2
TF(sm + sa)

︂

, (16)

ŝa =TF−1

︂

|TF(sa)|
2

|TF(sm)|2 + |TF(sa)|2
TF(sm + sa)

︂

, (17)

where the operator TF is either the STFT or the CQT, and sm (resp.

sa) is the ground truth melody (resp. accompaniment) source. All

results are shown in Fig. 5. We can see that oracle performances
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Fig. 5. SDR, SAR and SIR of the melody and accompaniment es-

timates using four different systems. The error bars represent the

means (circle, diamond, plus and cross markers) plus/minus stan-

dard deviations (horizontal lines on each side) of BSSEval results.

Higher values mean better separation.

with the CQT are very similar to the ones with the STFT, despite

the fact that the CQT is only approximately invertible. We can also

observe that the measures given by our algorithm are very closed to

those given by Durrieu’s method. This proves that our model is well

adapted the task of melody extraction, and that using the CQT for

source separation is relevant. Sound excerpts and a full implemen-

tation in Matlab of this separation technique are freely available on

our website 5.

3http:///www.quaero.org
4http://www.durrieu.ch/research/jstsp2010.html
5http://www.tsi.telecom-paristech.fr/aao/en/2012/01/16/fuentes_

icassp2012

5. CONCLUSION

In this study, we proposed a system that accurately separates the

main melody from the accompaniment in a music audio file. The

CQT of an audio signal is modeled as the sum of two CQTs, one for

each source, and some analysis tools have been proposed in order to

estimate both of them. Then the separation is performed by time-

frequency masking. The very good results that we obtained show

that the models designed for music analysis on the CQT can easily

be applied to source separation. In the future, we would like to model

rhythmic patterns, in order to separate the percussive part in addition

to the lead melody and accompaniment in a musical excerpt. An ad-

ditional interesting work would be to integrate the silence detection

into the model, instead of performing it as a post-processing step.
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