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ABSTRACT

This paper presents a new method to decompose musical spec-

trograms derived from Non-negative Matrix Factorization (NMF).

This method uses time-varying harmonic templates (atoms) which

are parametric: these atoms correspond to musical notes. Tem-

plates are synthesized from the values of the parameters which are

learnt in an NMF framework. This parameterization permits to ac-

curately model some musical effects (such as vibrato) which are

inaccurately modeled by NMF.

1. INTRODUCTION

The decomposition of audio signals in terms of elementary

atoms has been a large field of research for years. Sparse decompo-

sition techniques [1] use a redundant dictionary of vectors (called

atoms) and try to decompose signals on a few of them (much less

than the dimension of the space). When atoms are designed to

better encompass some signal properties (for instance harmonic

atoms for musical signals [2]), the elements become less generic

but more meaningful with regard to the context, and then a super-

vised classification can be performed to cluster atoms correspond-

ing to a real event in the signal [3].

Recently methods of data factorization were proposed to si-

multaneously extract atoms from the signal and provide a decom-

position on these atoms giving more robustness to the diversity of

signals: NMF [4] has been introduced both to reduce the dimen-

sionality and to explain the whole data by a limited number of

elementary parts, possibly more significant regarding the consid-

ered objects. For instance, thanks to the non-negativity constraint,

NMF applied to musical spectrograms will hopefully decompose

them into notes, percussive sounds, or rapid transients. This in-

teresting behavior of NMF leads to a wide dissemination of the

tool in the audio signal processing community, with a number of

applications such as automatic music transcription [5, 6, 7] and

sound source separation [8, 9, 10]. Unfortunately, NMF is not

well adapted for time-varying phenomena such as vibrato: NMF

is a rank reduction technique relying on the frame-to-frame redun-

dancy and slight variations of the fundamental frequency drasti-

cally increase the rank by eliminating this redundancy (frequency

of high order partials extensively varies and successive frames are

then quite dissimilar).

To address this issue, Smaragdis [11] proposes a shift-invariant

extension of NMF (in the theoretical background of Probabilis-

∗ The research leading to this paper was supported by the Quaero Pro-
gramme, funded by OSEO, French State agency for innovation and by the
CONTINT program of the French National Research Agency (ANR), as a
part of the DReaM project (ANR-09-CORD-006-03).

tic Latent Component Analysis) to decompose constant-Q spec-

trograms in which transposition can be seen as a shift of the tem-

plates. However, the constant-Q spectrogram imposes a quantifica-

tion of the frequency bins and thus fundamental frequency in a vi-

brato cannot be estimated with precision. Moreover, the constant-

Q transform is not invertible and time-domain signal reconstruc-

tion from the decomposition is consequently a difficult task [12].

When used on musical spectrograms, for instance in auto-

matic transcription, "interesting" atoms should hopefully present

a specific structure, since musical note spectra possess a harmonic

structure. This harmonicity is generally desirable and templates

are usually constrained to be harmonic in automatic transcription

application [13].

The main idea proposed in this paper is to analytically synthe-

size such harmonic atoms in a parametric way: this method pro-

vides a parametric representation of the harmonic atoms, which

can depend on a fundamental frequency parameter, a chirp param-

eter, a decrease/increase parameter and so on.

The harmonicity constraint is quite strong: the shape of the

atoms is restrictive, since they can only be harmonic. However

the parameterization should allow for a unique (parametric) atom

for a note, the fundamental frequency of which slightly varies (for

instance during a vibrato), which was a real issue with standard

NMF.

This method provides a representation which can be suitable

for automatic transcription, further providing an accurate descrip-

tion of the slight frequency variations.

In section 2, the principle of NMF is briefly reminded and our

model is presented as an extension of NMF. In section 3 an algo-

rithm which provides the decomposition is presented. In section

4, the algorithm is used to decompose a musical excerpt showing

its ability to deal with slight variations of fundamental frequency

(vibrato) and it is then compared to NMF. Finally, conclusions are

drawn in section 5.

2. PARAMETRIC TEMPLATE

2.1. Non-negative Matrix Factorization

Given an F ×T non-negative matrix V and an integer R such

that FR+RT ≤ FT , NMF approximates V by the product of an

F ×R non-negative matrix W and an R×T non-negative matrix

H:

V ≈WH, Vft ≈ V̂ft =
R

∑

r=1

wfrhrt. (1)

When V is the magnitude or power spectrogram of a musical

signal, the templates that are redundant in multiple frame hope-

fully are most of the time the harmonic templates corresponding
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to musical tones. Thus, each column of W should correspond to

a note and each row of H is the time activation associated to each

note. However, this property is not assured and generally, further

constraints are added [13, 14].

2.2. Model

In our model, templates are parameterized following a time-

dependent value θrt. Equation (1) is thus replaced by:

Vft ≈ V̂ft =
R

∑

r=1

wθrt

fr hrt (2)

where θrt is the parameter associated to the template r at time t.
It can be considered as the “state” of this template: template r will

then be synthesized from the value of this parameter for each t.
The time-dependence of the parameter now allows for modeling

time-varying phenomena such as vibrato.

In this paper, the parameter chosen is the instantaneous funda-

mental frequency (noted θrt = frt
0 ) of the template: each template

is a harmonic comb parameterized by its fundamental frequency.

The parametric template writes:

w
frt

0

fr =

nh(frt

0
)

∑

k=1

akg(f − kfrt
0 ). (3)

This template corresponds in the time domain to a windowed

stationary periodic sound (i.e. a windowed sum of sine functions).

The Fourier transform of a periodic signal of fundamental fre-

quency f0 is a sum of Dirac distributions centered in kf0 (with

k ∈ Z
⋆). Thus, when such a signal is windowed, its Fourier trans-

form is the convolution of the previous sum with the Fourier trans-

form of the window. As templates should be non-negative, we take

the squared modulus of this Fourier Transform. To make the calcu-

lation simpler the modulus of the sum of harmonics is replaced by

the sum of the squared modulus of each harmonic: g is the squared

modulus of the Fourier transform of the window used in the STFT.

The interference between two successive partials is thus neglected;

this approximation can be made for sufficiently high fundamental

frequencies (or equivalently, sufficiently long analysis windows).

The choice of the squared modulus is natural to make function g
differentiable, in order to permit standard minimization algorithm.

The expression of function g and its derivative is given in ap-

pendix A.1 for a Gauss window and in appendix A.2 for Hann

and Hamming windows. Then equation (3) is obtained where ak

are the amplitudes of each harmonic, and nh(frt
0 ) the number of

harmonics.

Amplitudes ak of each harmonic are supposed to be the same

for every atom and will be learnt in an unsupervised way. It would

have been possible to have a different set of partial amplitudes for

each template, however, this choice extensively enhances octave

(and twelfth, double octave...) ambiguities.

As for a standard NMF, a cost function which is a distance (or

a divergence) between the observed spectrogram and the recon-

structed spectrogram will be minimized:

C(Θ,H,A) = D(V|V̂) =
∑

ft

d(Vft|V̂ft) (4)

where Θ = (θrt)r∈J1,RK,t∈J1,T K, H = (hrt)r∈J1,RK,t∈J1,T K, and

A = (ak)k∈J1,KK.

In this paper, a β-divergence is chosen for d: this is a fre-

quently used class of divergences in NMF frameworks which en-

compasses a number of usual divergences (Euclidean distance for

β = 2, Kullback-Liebler divergence for β = 1 and Itakura-Saito

divergence for β = 0). The β-divergence is defined for β ∈
R\{0, 1} by:

dβ(x, y) =
1

β(β − 1)
(xβ + (β − 1)yβ − βxyβ−1).

For β ∈ {0, 1}, the value of the β-divergence is the limit of

the previous expression.

Then, the cost function is minimized according to hrt, frt
0 and

ak for r ∈ J1, RK, t ∈ J1, T K and k ∈ J1, KK.

However, the cost function is highly non-convex with respect

to (wrt) frt
0 : it can be seen in figure 1 for fixed r and t. We can

observe several local minima: two prevailing minima correspond

to actually played notes, and several lies near the octaves, the sub-

octaves, the twelfths... of each note (This figure can be seen as

the opposite of a spectral product-like function). Consequently,

a global optimization seems to be doomed to failure: a template

with a 800Hz initial fundamental frequency will certainly con-

verge to 880Hz. To avoid this issue, rather than a unique generic

template for the whole scale, a template by chromatic degree is

introduced. Thus, in the proposed decomposition, there is a single

harmonic template associated to each chromatic degree. The fun-

damental frequency of the rth template can vary over time around

frt
0 ≈ f ref

0 2
r−1

12 , where f ref
0 is the fundamental frequency of the

lowest template. Templates with a low activation are discarded

afterwards.

Figure 1: Cost function wrt the fundamental frequency frt
0 of the

templates r: analyzed spectrum is a mix of two harmonic spectra

with fundamental frequencies 440Hz and 523Hz

3. ALGORITHM

Minimization of C(Θ,H,A) can be done with a multiplica-

tive descent algorithm similar to those generally used for NMF: for

the fundamental frequencies, the choice of multiplicative update

rules is motivated by the positiveness of the frequency parameter

and their natural logarithmic distribution.

In a multiplicative descent algorithm, the update rules associ-

ated to one of the parameters λ (here, λ = f(r, t), λ = h(r, t)
or λ = ak for some value of r, t and k) are usually obtained by
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expressing the partial derivative of the cost function wrt this pa-

rameter as a difference of two positive terms:

∂C
∂λ

= Pλ −Mλ. (5)

The update rule is then:

λ← λ
Mλ

Pλ

. (6)

This rule particularly ensures that λ remains non-negative and

becomes constant if the partial derivative is zero.

The partial derivative of the cost function (4) wrt one of the

parameter λ is:

∂C
∂λ

=
∑

ft

∂d(Vft, V̂ft)

∂λ
=

∑

ft

∂V̂ft

∂λ

∂d

∂y
(Vft, V̂ft)

where ∂d
∂y

stands for the partial derivative of d wrt to its second ar-

gument. With a β-divergence cost function, this partial derivative

is:
∂d

∂y
(Vft, V̂ft) = V̂ β−2

ft (V̂ft − Vft).

Thus:
∂C
∂λ

=
∑

ft

∂V̂ft

∂λ
V̂ β−2

ft (V̂ft − Vft).

3.1. Update of f0

In order to obtain the update rules for the parameter Θ, one

needs the partial derivative of the cost function wrt the parameter

θr0t0 :

∂C
∂θr0t0

=
∑

ft

∂V̂ft

∂θr0t0

V̂ β−2
ft (V̂ft − Vft).

The partial derivative of the parametric spectrogram V̂ft (see

equation (2)) wrt θr0t0 is given by:

∂V̂ft

∂θr0t0

= δtt0hr0t0

∂w
θr0t0

fr0

∂θr0t0

where δ is the Kronecker delta.

When the parameter Θ is the fundamental frequency of each

template at each time, the partial derivative of the template wrt this

fundamental frequency is obtained from (3):

∂wfr0

∂f0
r0t0

= −
nh
∑

k=1

akkg′(f − kf0
r0t0).

The partial derivative of the cost function wrt f0
r0t0 is then:

∂C
∂fr0t0

0

= −
∑

f

nh
∑

k=1

hr0t0akkg′(f−kf0
r0t0)(V̂ β−1

ft0
−V̂ β−2

ft0
Vft0).

When g has a single lobe (when the window used in STFT is

a Gauss window), the following remark is not an issue. However,

generally, g has several lobes, and g′ changes sign in numerous

points. Then, in order to make the calculation easier, only the

support of the main lobe of g (noted Λ) is kept in the expression of

the derivative:

g′(f) ≈ g′

a(f) = g′(f)1Λ(t). (7)

Assuming that the main lobe has a unique local maximum

(which is actually true for Hamming and Hann windows, see fig-

ure 2), function f 7→ −g′

a(f)/f is then non-negative (see figure

2) and one can write g′

a(f − kf0
r0t0) = −(f − kf0

r0t0)P (f −
kf0

r0t0), where P is a positive function.

Figure 2: Main lobe of g, derivative of g and positivity of P (f) =

− g′(f)
f

on Λ = [− 2
T

, 2
T

] for a T -long Hamming window.2

Using approximation (7), the partial derivative of the cost func-

tion wrt fr0t0
0 is expressible as a difference of two non-negative

terms:

∂C
∂fr0t0

0

≈ Gr0t0 −Fr0t0 (8)

with:

Gr0t0 =
∑

f,k

hr0t0akkP (f−kf0
r0t0)V̂ β−2

ft0
(fV̂ft0+kf0

r0t0Vft0),

Fr0t0 =
∑

f,k

hr0t0akkP (f−kf0
r0t0)V̂ β−2

ft0
(kf0

r0t0 V̂ft0+fVft0).

This results in the update rule of f0:

fr0t0
0 ← fr0t0

0

Fr0t0

Gr0t0

. (9)

The spectrogram will then be decomposed using a single tem-

plate per semitone. However the update rule of f0 does not ensure

that for each template r, frt
0 remains close to its original funda-

mental frequency and does not slip to the fundamental frequency

band of another semitone. Thus, evolution of frt
0 should be re-

stricted to a fundamental frequency band around the correspond-

ing semitone. In our algorithm, when the fundamental frequency

leaves its allocated frequency band, we consider that the corre-

sponding template should not be active at this time and set the

corresponding activation to 0.

2In order to represent all curves on the same plot, the y-axis scale has
been modified and is then arbitrary.
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3.2. Update of H

Update rules of H are obtained in a way similar to standard

NMF by computing the derivative of the cost function wrt hr0t0 :

∂C
∂hr0t0

=
∑

ft

∂V̂ft

∂hr0t0

V̂ β−2
ft (V̂ft − Vft) (10)

=
∑

f

w
θr0t0

fr0
V̂ β−2

ft0
(V̂ft0 − Vft0) (11)

= Pr0t0 −Mr0t0 (12)

where both Pr0t0 =
∑

f w
θr0t0

fr0
V̂ β−1

ft0
and Mr0t0 =

∑

f w
θr0t0

fr0
V̂ β−2

ft0
Vft0 are positive terms.

Then, the update rule of hr0t0 is:

hr0t0 ← hr0t0

Mr0t0

Pr0t0

. (13)

3.3. Update of A

Update rules of A are obtained in a way similar to the previous

section by computing the partial derivative of the cost function wrt

ak:

∂C
∂ak

=
∑

ft

∂V̂ft

∂ak

V̂ β−2
ft (V̂ft − Vft). (14)

The partial derivative of V̂ft wrt ak is:

∂V̂ft

∂ak

=
R

∑

r=1

g(f − kfrt
0 )hrt1[1,nh(frt

0
)](k).

Noting rk the maximum value of r for which k ∈
[1, nh(frt

0 )], the previous equation becomes:

∂V̂ft

∂ak

=

rk
∑

r=1

g(f − kfrt
0 )hrt.

Thus, the partial derivative of the cost function wrt ak can be

naturally expressed as a difference of two positive terms:

∂C
∂ak

= Pk −Mk (15)

with:

Pk =
∑

ft

rk
∑

r=1

g(f − kfrt
0 )hrtV̂

β−1
ft ,

Mk =
∑

ft

rk
∑

r=1

g(f − kfrt
0 )hrtV̂

β−2
ft Vft.

The update rule of ak is then:

ak ← ak
Mk

Pk

. (16)

3.4. Standard NMF templates to model non-harmonic events

In a musical spectrogram, percussive events (generated by per-

cussive instruments or by the onset of harmonic instruments) do

not correspond to harmonic templates and are thus inaccurately

taken into account in our model. To encompass this kind of event

a standard NMF decomposition term can be added to the paramet-

ric spectrogram proposed in (2):

Vft ≈ V̂ft =
R

∑

r=1

wθrt

fr hrt +

R′

∑

r=1

w′

frh
′

rt. (17)

Thus w′

fr is not time-varying and should model percussive

events. R′ should be kept very low (in the examples of section

4, R′ = 1) in order to avoid non-parametric templates represent-

ing harmonic events. Update rules of W
′ = (w′

fr)f∈J1F Kr∈J1R′K

and H
′ = (h′

rt)r∈J1R′Kt∈J1T K are standard NMF multiplicative

updates for β-divergence which can be found in [15]:

W
′ ←W

′.
((W′

H
′).β−2.V)H′T

(W′H′).β−1H′T
(18)

H
′ ← H

′.
W

′T ((W′
H

′).β−2.V)

W′T (W′H′).β−1
(19)

where the dot and the fraction bar stands for element-wise op-

eration (element-wise multiplication, element-wise exponent and

element-wise division).

3.5. Constraints

As for standard NMF, penalty terms can be added in the cost

function to favor certain properties of the decomposition. The up-

date rules are obtained in the same way as presented previously.

The partial derivative of the constraint term Cp wrt the parameter

λ to be updated is expressed as a difference of two positive terms:

∂Cp

∂λ
= P p

λ −Mp
λ .

The update rule (6) of the parameter λ thus becomes:

λ← λ
Mλ + Mp

λ

Pλ + P p
λ

where Pλ and Mλ were defined in equation (5).

Several constraints have been considered for the proposed de-

composition:

• Sparsity constraint on the columns of H as proposed in [9]:

only a few templates should be simultaneously active.

• Uncorrelation constraint between activations of a template

and its octave (and eventually twelfth, double octave...) as

proposed in [16]: to avoid octave ambiguities, a template

should not be active.

• Smoothness constraint on the coefficients of the amplitude

as proposed in [9]: the spectral shape of templates should

be smooth.

It has been observed that smoothness and uncorrelation con-

straints noticeably improve the results.

The whole algorithm without penalty term is detailed in Algo-

rithm 1.
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Algorithm 1 Time-dependent parametric templates decomposi-

tion

Input: V (spectrogram to be decomposed), R (number of har-

monic templates), R′ (number of non-harmonic templates), niter

(number of iterations), β (parameter of the β-divergence)

Output: {frt
0 }r∈J1,RK,t∈J1,T K, H, A, W′, H′

Initialize H, W′, H′ with random positive values

Initialize A with ones

Initialize f0 with normalized frequencies of the chromatic scale:

frt
0 = 2

r−1

12 f ref
0

for j = 1 to niter do

compute parametric template according to equation (3)

compute V̂ according to equation (17)

for all r and t do

update frt
0 according to equation (9)

if

∣

∣

∣
12 log2

frt

0

f ref
0

− (r − 1)
∣

∣

∣
> 1 then

set hrt = 0
end if

end for

compute parametric template according to equation (3)

compute V̂ according to equation (17)

for all k do

update ak according to equation (16)

end for

compute parametric template according to equation (3)

compute V̂ according to equation (17)

for all r and t do

update hrt according to equation (13)

end for

compute V̂ according to equation (17)

update W
′ with standard NMF rules (equation (18))

compute V̂ according to equation (17)

update H
′ with standard NMF rules (equation (19))

end for

4. EXAMPLES

4.1. Decomposition of a musical excerpt

Figure 5 represents the activations hrt of the decomposition of

the power spectrogram (represented in figure 3) of an excerpt (four

first bars) of the J.S. Bach’s first prelude played by a synthesizer.

The sampling rate of the excerpt is fs = 11025Hz. We chose

a 1024-sample long Hamming window with 75% overlap for the

STFT. The decomposition was made with 72 templates (6 octaves)

with fundamental frequencies every semitone from 55Hz (A0) to

3322Hz (G#6). Kullback-Liebler divergence (β-divergence with

β = 1) was used. Two constraint terms were added: a uncorrela-

tion constraint on activation of octave (and twelfths) and a smooth-

ness constraint on A. All notes were played by the synthesizer with

a slight vibrato.

Notes of the piece clearly appear with strong activation values.

The maximum simultaneous polyphony is of 3 notes. Even when

one note is played simultaneously with its octave, the activation

values correspond to effectively played notes. At onset instant,

numerous templates are active because no template is able to ac-

curately represent an onset. To reduce this problem, one standard

NMF template (non-parametric template) was added to the model

in order to better represent the onsets (see section 3.4).

The reconstructed spectrogram is represented in figure 4.

Figure 3: Original spectrogram of the excerpt of J.S. Bach’s first

prelude

Figure 4: Reconstructed spectrogram of the excerpt of J.S. Bach’s

first prelude

One can easily build a synthetic time/frequency representation

of the activations that includes the varying fundamental frequency:

for each template r, at each time t, a thin peak is generated in

the time/frequency plane at (t, frt
0 ) with amplitude equal to the

activation hrt. Such a representation is given in figure 6 for the

same excerpt in figure 5. This representation reveals the vibrato

generated by the synthesizer.

4.2. Comparison with NMF

In this section we will compare our method with the method of

decomposition proposed in [13] which is based on NMF with tem-

plates that are imposed to be harmonic: in this method, templates

are linear combinations of narrow band harmonic patterns. This

method is used for transcription and decomposes Equivalent Rect-

angular Bandwidth (ERB) power spectrograms on 88 templates

corresponding each one to a note in the chromatic scale. Smooth-

ness constraints on the activations are added. The input data is not

exactly the same (ERB spectrogram in [13] and Standard STFT

spectrogram in our method) but the original time-domain signal

used is the same and the kind of decomposition provided is very

similar in both cases (harmonic templates corresponding to notes
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Figure 5: Activations in the decomposition of the spectrogram

of the excerpt of J.S Bach’s first prelude. Color scale is in dB.

Semitones correspond to relative MIDI note (relative to the lower

pitch).

Figure 6: Representation of the activations including fundamen-

tal frequencies (Two first bars of the excerpt of J.S. Bach’s first

prelude). Color scale is in dB.

and activation for each template).

The signal analyzed is a C diatonic scale played from C1 to

B4 harmonized with the corresponding third in the scale (each

note of the scale is simultaneously played with its third). The scale

was played by a synthesizer.

The activation provided by our algorithm is given in figure 7:

all notes played clearly appears. The amplitude shape of each note

is clear, with a strong onset and a slight decay. One could notice

the simultaneous activation of numerous templates at onset times,

which is due to the percussive spectral shape of the spectrogram at

these instants.

The activation provided by the algorithm of [13] is given in

figure 8 with the same dynamic as the activation of our algorithm:

most notes are correctly located. However, there are several oc-

tave (or sub-octave, twelfth, sub-twelfth...) errors. Moreover the

smoothness constraint does not make possible to see the amplitude

shape of each note, the onset being spread and the decay being ex-

tended. The odd activation of the second template is probably due

to the presence of non-harmonic events which are taken into ac-

count by this template.

Thus, our decomposition seems to enhance the representation

of this signal.

Figure 7: Representation of the activations provided by our algo-

rithm (amplitude scale is in dB).

Figure 8: Representation of the activations provided by the algo-

rithm of [13] (amplitude scale is in dB).

5. CONCLUSION

In this paper, we presented a new way of decomposing musical

spectrograms on a basis of parametric templates which correspond

to musical notes. This decomposition provides a good represen-

tation of the different notes which are played in each column of

the spectrogram. The decomposition being parametric is thus very

flexible.

In future work, a supervised learning of atoms could be in-

cluded in order to improve results and to decompose spectrograms

containing several instruments. Moreover, the parameterization

of templates could be extended in order to model inharmonicity

(that occurs in piano notes), fast fundamental frequency variations

(chirp) or fast decrease/increase of the amplitude of the harmonics,

and thus to better fit to real audio spectrograms.
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A. EXPRESSION OF g

In this section, we use the following definition of the Fourier

transform of a continuous-time signal x:

X̂(f) =

∫ +∞

−∞

x(t)e−i2πftdt.

A.1. Gauss window

In this section, we will give the properties of the Gauss win-

dow, i.e. the window defined in the time-domain by:

h(t) = e
−

t
2

σ2

where σ characterizes the width of the peak.

The Fourier transform of this window is:

Ĥ(f) =
e−σ2π2f2

√
2σ2

.

Consequently, the expression of g for this type of window is:

g(f) = |Ĥ(f)|2 =
e−2σ2π2f2

2σ4
.

The derivative of g is then:

g′(f) = −2π2fe−2σ2π2f2

σ2
.

For all frequencies
g′(f)

f
≤ 0, which permits to easily write

the partial derivative of the cost function wrt the fundamental fre-

quency of a template at a given time as the difference of two posi-

tive terms (cf. equation (8)).

The Gauss window has good frequency properties (it has a

single main lobe and it saturates the Heisenberg inequality) but are

rarely used because of its infinite support and because it does not

permit the perfect reconstruction of a signal from its spectrogram.
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A.2. “Cosine” window

In this section, we will study the properties of windows de-

fined in the time-domain by:

h(t) = (α− β cos(2π
t

T
))1[0,T ](t)

where T is the length of the window, 1[0,T ](t) is the indicator

function of the interval [0, T ], and α + β = 1 (the maximum of

the window is equal to 1).

This class of windows encompasses:

• Hann window (sometimes referred as Hanning window),

for α = β = 0.5.

• Hamming window, for α = 0.54 and β = 0.46.

The Fourier transform of this window is:

Ĥ(f) =
ie−i2πTf (−1 + ei2πTf )(T 2f2(β − α) + α)

2π(T 2f3 − f)
.

Thus, the expression of g for this type of window:

g(f) = |Ĥ(f)|2 =
1

4π2
(2−2 cos(2πTf))

(T 2f2(β − α) + α)2

f2(T 2f2 − 1)2
.

Remark: g can be C1-prolonged in 0 and ±T with g(0) =

α2T 2 and g(±T ) = β2T2

4
.

The derivative of g is then:

g′(f) =
1

4π2

[

(2− 2 cos(2πTf))
2(f2T 2(β − α) + α)

f2(f2T 2 − 1)2
(

2fT 2(β − α)− 2fT 2(f2T 2(β − α) + α)

f2T 2 − 1
− f2T 2(β − α) + α

f

)

+4πT sin(2πTf)
(T 2f2(β − α) + α)2

f2(T 2f2 − 1)2

]

.

For Hann and Hamming windows, the main lobe corresponds

to frequencies f ∈ [− 2
T

, 2
T

]. For these frequencies,
g′(f)

f
≤ 0,

which permits to easily write the partial derivative of the cost func-

tion wrt the fundamental frequency of a template at a given time

as a difference of two positive terms (cf. equation (8)), assuming

that g is zero outside the main lobe.
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