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ABSTRACT

In this paper we study the relative phase offsets between partials in

the sustained part of harmonic sounds and investigate their suitabil-

ity for complex matrix decomposition of spectrograms. We formally

introduce this property in a sinusoidal model and visualise the phase

relations of a musical instrument. A model of complex matrix de-

composition in the time-frequency domain is derived and equations

for the estimation of the model parameters are provided in the mono-

phonic case. We illustrate the model with the analysis of a mono-

phonic saxophone signal. The results suggest that the phase offset is

able to capture inherent time-invariant phase properties of harmonic

sounds and outline its potential use for complex matrix decomposi-

tion.

Index Terms— harmonic signals, relative phase offsets of par-

tials, complex matrix decomposition, nonnegative matrix factorisa-

tion.

1. INTRODUCTION

Spectrogram factorisation techniques — particularly nonnegative

matrix factorisation (NMF) [1] — have proven to be useful methods

for the analysis of instrument sounds and have been successfully

applied for tasks such as music transcription [2], source separation

[3] and instrument recognition [4]. Most spectrogram factorisation

techniques rely on the assumption that magnitude spectra of sound

mixtures can be approximated by the superposition of the magnitude

spectra of the sound sources. Although this assumption provides rea-

sonable analysis results in practice, the linearity only holds for the

complex coefficients of the short-time Fourier transform (STFT).

Phase information is often discarded in the analysis stage, not

only because the human auditory system is considered insensitive

to absolute phase shifts of harmonic partials [5], but also because

the magnitude spectrogram is often considered more intuitive and

easier to model. For all applications in which sounds have to be

synthesised from a time-frequency representation, however, the cor-

rect estimation of phase values is crucial in order to avoid artefacts

due to phase-incoherent overlap of consecutive time frames. For the

task of instrument separation, for example, the phase information for

the synthesis of each sound source either has to be estimated from

the magnitude spectrogram [6], or the phases of the original mixture

have to be employed for each source [3]. Using the mixture phases

can lead to reasonable results when the number of sources is small
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and when most time-frequency bins are mainly influenced by a sin-

gle source. For higher numbers of sources and larger time-frequency

overlap, however, it can lead to cross-talk artefacts.

The STFT analysis phase of harmonic partials is not constant

over time. Therefore the instantaneous phase cannot be simply em-

bedded in a matrix factorisation framework, where the basis func-

tions include prototypical properties of the underlying instrument

spectra that vary little over time. Nevertheless, several approaches

have been proposed to consider phase information in matrix factori-

sation frameworks. Parry and Essa [7] propose a phase-aware non-

negative matrix factorisation. The authors model the STFT bins as

complex random variables, thereby assuming the phase to be uni-

formly distributed, and derive iterative update rules based on this

assumption. The update rules, however, still estimate the matrices

based on the magnitude spectrogram only. In a similar way, Févotte

et al. [8] show that Itakura-Saito NMF is equivalent to a maximum-

likelihood parameter estimation of a sum of complex Gaussian com-

ponents. The Gaussian components have zero mean and a diago-

nal covariance matrix, which also assumes a uniformly distributed

phase. An attempt to explicitly estimate the phase values of the

individual sources was made by Kameoka et al. [9]. Their com-

plex NMF algorithm combines the outer product of each NMF basis

function and gain vector with a phase spectrogram with the same di-

mensions as the original spectrogram. In [10], complex NMF was

shown to outperform NMF for speech separation. Complex NMF is

not a complex matrix factorisation technique, but a combination of

NMF with time-frequency phase estimates. The algorithm is heavily

overparameterised and it can be shown that an initialisation with the

original phase values leaves the phase parameters unaltered (up to

±π). Lastly, a high resolution NMF framework was introduced in

[11, 12], in order to model both the magnitude and phase of complex

or real-valued time-frequency representations. However this frame-

work does not take the phase relations of the partials into account.

In this paper, we exploit the relative phase offsets between par-

tials in the sustained part of the sounds of harmonic instruments as

a step towards complex matrix decomposition. The concept will be

reviewed and illustrated in Section 2, where we also present a math-

ematical formulation. In Section 3 we derive the model for complex

matrix decomposition and present the parameter estimation equa-

tions for the monophonic case. An example analysis of a mono-

phonic signal is provided in Section 4, and we conclude this work in

Section 5.

2. PHASE RELATIONS OF HARMONIC PARTIALS

2.1. Concept

Pitched musical instruments generally produce harmonic sounds

which can be represented by a superposition of P sinusoids at in-



teger multiples of a fundamental frequency. Each harmonic partial

can be described by its angular frequency ωp > 0, its amplitude

ap ≥ 0 and an absolute phase shift φp ∈ [−π, π): ∀t ∈ Z,

s(t) =
P
∑

p=1

ape
j[ωpt+φp]. (1)

For strictly harmonic sounds, the frequency of each harmonic is

given as the p-th multiple of the fundamental frequency: ωp = pω1.

Complex exponentials are used here to reflect the fact that we only

consider the baseband of the DFT in our model.

In this paper we are interested in the relation between the abso-

lute phase shifts of the harmonic partials. To capture this relation, we

express the phase shift of each partial in relation to the instantaneous

phase of the fundamental frequency ω1:

s(t) =

P
∑

p=1

ape
j[p·θ(t)+∆φp], (2)

where θ(t) = ω1t+ φ1 denotes the instantaneous phase of the fun-

damental and ∆φp = φp − p φ1 represents the phase offset between

the p-th partial and the fundamental (with ∆φ1 = 0).

Figure 1 shows a graphical illustration of the parameters in

Eq. (2). The upper part (Fig. 1a) displays the waveform of the first

three partials of a harmonic sound, and the lower part (Fig. 1b) the

instantaneous phases. The phase offsets ∆φp correspond to the

instantaneous phases of the partials at the time where θ(t) = 0.

Modifying ∆φp translates the p-th partial relative to the fundamen-

tal along the time axis. Since a translation by ∆φp is equivalent to a

translation by ∆φp + c · 2π with c ∈ Z, ∆φp is uniquely defined in

the range [−π, π). Given all phase offsets ∆φp of the partials, the

instantaneous phase of each partial can be computed at any given

time t0 based on the instantaneous phase of the fundamental θ(t0) at

that time. Note that even though we can only measure the wrapped

phase of θ(t) (i.e. in the interval [−π, π)), the correct wrapped phase

of each partial can still be calculated.

(a) Waveform of the first three harmonics.

(b) Instantaneous phases of the first three harmonics.

Fig. 1: Illustration of the model parameters.

2.2. Example

To illustrate the phase relations, we display the phase offsets ∆φp of

the partials with indices p ∈ {2, 3, 4} in a monophonic saxophone

recording of “Summertime” by G. Gershwin in Figure 2. The first

four bars of this small excerpt are displayed in Fig. 2a, and Fig. 2b
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(a) First four bars of “Summertime” by G. Gershwin.

(b) Fundamental frequencies of saxophone performance.

(c) Phase differences ∆φp over time.

Fig. 2: Visualisation of the phase relations of a musical instrument.

displays the fundamental frequency of the saxophone performance

measured by the YIN algorithm [13]. In Fig. 2c, the partial offsets

∆φp are plotted over time. Phase offsets were obtained from the

STFT and computed as the wrapped difference between the mea-

sured instantaneous phases of each partial and p times the instanta-

neous phase of the fundamental. It can be seen that the partial offsets

exhibit little variation during the steady state of each note — which is

not surprising given the fact that the sound is harmonic. In addition

to that, however, the same phase offsets occur at different notes of the

same pitch. The area shaded in dark grey highlights all renditions of

the note E4 and the light grey area highlights all occurrences of the

note D4. These observations make this property suitable for the use

in a complex matrix decomposition framework as we will illustrate

in the next section. It should be noted that the relative phase offsets

can only be defined if the partial frequencies are in a strictly har-

monic relation. For instruments with slightly inharmonic frequency

relations — such as the piano — a constant phase offset does not

exist.

3. PARAMETER ESTIMATION

3.1. Frequency domain model

We aim at estimating the parameters of the model in Eq. (2) from the

STFT which is given by

X(n, k) =

K−1
∑

t=−K

x(t+ n·m) · h(t) · e−jΩkt, (3)

where x(t) is the signal under analysis and n and k represent the

time frame and frequency index, respectively. h(t) denotes the anal-

ysis window of time support [−K . . .K − 1]. The distance between

consecutive audio frames in samples (hopsize) is denoted by m.

Ωk = 2πk
N

is the normalised angular frequency of the k-th frequency

index.

The STFT of the signal s(t) from Eq. (2) is given by

S(n, k) =
P
∑

p=1

apH(Ωk − pω1)e
j[pΘ(n)+∆φp]. (4)



In this equation, H(Ω) =
∑K−1

t=−K
h(t) · e−jΩt denotes the Fourier

spectrum of the window function h(t) and Θ(n) = θ(n ·m).
To simplify the monophonic model in Eq. (4), we assume that

each partial can be represented by the main lobe of the window func-

tion only. This assumption holds fairly well if the side lobe attenu-

ation of the window spectrum H(Ω) is sufficiently high and if the

frequency resolution of the STFT is high enough so that the main

lobes of adjacent partials do not overlap. We denote the partial index

belonging to frequency bin k by pk. We set pk = 0 for all k that lie

outside the main lobes of the partials, and set a0 = 0. This allows

us to drop the sum in Eq. (4):

S
′(n, k) = apkH(Ωk − pkω1)e

j[pkΘ(n)+∆φpk
]
. (5)

We additionally introduce a real time-varying gain factor g(n) > 0
that enables a uniform scaling of the magnitudes in order to accom-

modate loudness variations (similar to the gains in NMF):

B̂(n, k) = g(n) · S′(n, k). (6)

Scaling ambiguities between g(n) and ap can be resolved by normal-

ising ap. Finally, the model can be extended to incorporate multiple

harmonic sounds. We denote the index of each harmonic sound by r

and append it to the quantities in Eq. (6):

V̂ (n, k) =

R
∑

r=1

gr(n) · S
′
r(n, k) (7)

By substituting Eq. (5) into Eq. (7), we finally obtain:

V̂ (n, k) =
R
∑

r=1

wr(k) · hr(n, k) (8)

where wr(k) = apk,r
H(Ωk − pk,rω1,r)e

j∆φpk,r and hr(n, k) =

gr(n)e
jpk,rΘr(n). The term wr(k) is not time-dependent and is

therefore referred to as a complex basis function. Accordingly, the

term hr(n, k) is referred to as a complex activation. Note that

hr(n, k) is a 2-dimensional function. Eq. (8) is therefore not a

complex matrix factorisation, but a decomposition of a complex

spectrogram V (n, k) into a matrix of complex basis functions

wr(k), a matrix of real-valued gain factors gr(n) and a matrix of

real-valued instantaneous phases of the fundamentals Θr(n).

In this paper we will not investigate the case of multiple concur-

rent sounds. Our goal is to prove that phase offsets between partials

are a viable concept for sound analysis purposes. The model param-

eters will thus be estimated in the monophonic case of Eq. (6) only.

3.2. Parameter estimation

The parameters in Eq. (6) can be estimated by minimizing the error

between the original complex spectrogram B(n, k) and the model

approximation B̂(n, k) for all n ∈ [1 . . . N ] and k ∈ [1 . . .K] with

N > 0 and K > 0. We choose to minimise the following cost

function:

J =
N
∑

n=1

K
∑

k=1

∣

∣

∣ln(B(n, k))− ln(B̂(n, k))
∣

∣

∣

2

(9)

=
N
∑

n=1

K
∑

k=1

[

ln

(

|B(n, k)|

g(n) · apkH(Ωk − pkω1)

)]2

+

[∠B(n, k)−∆φpk − pkΘ(n) + 2πq(n, k)]2 (10)

where ∠B(n, k) denotes the argument of the complex number

B(n, k). The term q(n, k) ∈ Z stems from the fact that the log-

arithm of a complex number has an infinite number of solutions

which are obtained by adding integer multiples of 2π to the imagi-

nary part of the solution [14]. The integer q(n, k) is here treated as

an additional parameter that has to be estimated. In Eq. (10), H(Ω)
is assumed positive, since we only consider the main lobe of the

window function. The model parameters are estimated by means of

a coordinate descent (J is minimized w.r.t. each parameter):

g(n) =

(

K
∏

k=1

|B(n, k)|

apkH(Ωk − pkω1)

)
1
K

(11)

ap =





N
∏

n=1

∏

{k|pk=p}

|B(n, k)|

g(n)H(Ωk − pω1)





1
N·#{k|pk=p}

(12)

Θ(n) =

∑K

k=1 pk[∠B(n, k)−∆φpk + 2πq(n, k)]
∑K

k=1 p
2
k

(13)

∆φp =

∑N

n=1

∑

{k|pk=p} ∠B(n, k)− pΘ(n) + 2πq(n, k)

N ·#{k|pk = p}
(14)

q(n, k) = round
(

− 1
2π

[∠B(n, k)−∆φpk − pkΘ(n)]
)

(15)

In these equations, the expression {k|pk = p} denotes the set of fre-

quency indices k at which pk = p and the operator #{. . .} denotes

the cardinality of the set. The function round() denotes the rounding

of a real number to the nearest integer.

4. ANALYSIS OF AN EXAMPLE SIGNAL

In this section we apply the estimation method to an example signal

and illustrate how it can be used for a transcription task. The signal

is the same monophonic saxophone recording of “Summertime” that

we used to illustrate the phase relations in Figure 2. It has a sample

rate of 44.1 kHz and we use the first eight bars of the recording.

The recording is split into two parts. The first part contains the

first four bars (cf. Fig. 2a) and is used as training material in which

prototypical partial amplitudes ap and phase offsets ∆φp are learned

for different pitches ω1. The spectrogram with K = 2049 frequency

bins and N = 5380 time frames is manually segmented in time into

the different notes. All spectrogram parts with the same nominal

pitch are concatenated, the fundamental frequency is estimated by

employing the YIN algorithm and ω1 is computed as the average

across all frames for each nominal pitch. g(n) is estimated from the

original spectrogram by taking the mean of the magnitudes in each

time frame. In order to compute ap we alternately apply Eq. (12)

and (11) for 10 iterations. For the computation of ∆φp, Θ(n) is

initialised by the instantaneous phase value of the frequency bin cor-

responding to the fundamental in each frame. An initial estimate for

∆φp is obtained by replacing the terms in the summation in the nu-

merator of Eq. (14) by wrap(∠B(n, k) − pΘ(n)), where wrap(α)
calculates the principal argument of α. q(n, k) is computed accord-

ing to Eq. (15) and we iterate over Eq. (13)–(15) until q(n, k) con-

verges. ∆φp is eventually given by result of Eq. (14) in the last

iteration.

The second part of the recording contains the remaining four

bars (cf. Fig. 3a) and is used as test material. The learned prototype

amplitudes ap and ∆φp for all pitches ω1 that occurred in the first
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(a) Bars 5–8 of “Summertime” by G. Gershwin. (b) Fundamental frequencies for bars 5–8.

(c) Gains g(n) for bars 5–8 for each pitch from bars 1–4. (d) Phase activations f(n) for bars 5–8 for each pitch from bars 1–4.

Fig. 3: Example analysis of a monophonic saxophone example.

part are employed to estimate g(n) and Θ(n) in the following way.

First, Θ(n) is initialised with the instantaneous phase values at the

frequency bins corresponding to ω1. Then q(n, k) is estimated ac-

cording to Eq. (15). Finally, g(n) and Θ(n) are estimated according

to Eqs. (11) and (13).

Active pitches can be estimated from both g(n) and Θ(n).
While for g(n) this is obvious — high values indicate activity, low

values indicate inactivity —, the instantaneous phase Θ(n) of the

fundamental can also be used as an activity detector. We here use

a measure inspired by the phase-based onset detection function

described in [15]. The measure is based on the unwrapped phase,

which can be assumed to be linear when the note is active and

non-linear when the note is inactive. We will denote the unwrapped

phase of Θ(n) by Θu(n). The second phase difference can be used

as a measure of phase-linearity. It is given by

∆Θu(n) = Θu(n)− 2Θu(n− 1) + Θu(n− 2). (16)

If the unwrapped phase is strictly linear, ∆Θu(n) will be close to

zero, if it is non-linear ∆Θu(n) is likely to take on values with larger

magnitudes. Additionally, ∆Θu(n) is likely to take on low values

in several consecutive active frames and more random values in con-

secutive inactive frames. We therefore compute the mean square of

∆Θu(n) over a sliding window as

σ(n) =
1

M

M
2

−1
∑

n′=−M
2

∆Θ2
u(n+ n

′), (17)

and define the phase-based activity measure as f(n) = − ln(σ(n)) .
In our simulations a window length of 50 ms (M = 37) was used.

The results of the estimation are displayed in Figure 3. In

Fig. 3b, the measured fundamental frequencies of the four bar ex-

cerpt are shown. Fig. 3c shows the gains g(n) and Fig. 3d the

results for the phase-based activity measure f(n). The gains clearly

show the activity of the different pitches and are very much reminis-

cent of activity measurements in NMF analyses. The results of the

phase-based activity measure also reveal the active pitches very well,

which confirms that the phase relations between harmonic partials

can actually be used to characterise pitches of certain instruments

and distinguish between them. Note that the pitch E3 does not occur

in bars 5–8, and that the note B3, the last note in Fig. 3a, is missing

because it did not occur in bars 1–4.

5. CONCLUSIONS

In this paper we have investigated the relative phase relations within

the sustained part of harmonic sounds and their potential use for

complex matrix decomposition. The phase relations between har-

monic partials have been expressed as relative phase offsets of the

partials w.r.t. the fundamental. Equations for the estimation of the

model parameters have been presented based on a complex logarith-

mic cost function between the original spectrogram and the model

approximation. With the analysis of an example signal, we demon-

strated the potential of the phase coupling property to capture inher-

ent time-independent phase characteristics of harmonic sounds.

In future work the method should be extended to deal with mix-

tures of harmonic sounds in order to obtain a complex matrix de-

composition that can be used to unmix spectral components in the

complex domain. A formulation of such a complex matrix decom-

position framework has been provided in Section 3.1. For the mono-

phonic case, the complex logarithmic cost function proved to be use-

ful, not only because logarithmic amplitudes better match the hu-

man perception than linear amplitudes, but also because it separates

the modulus and argument of the model, which allowed us to treat

them separately. In the polyphonic case however, a complex matrix

decomposition framework would need to deal with magnitudes and

phases jointly, since the sum of two complex time-frequency com-

ponents depends on both their modulus and phase.
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