K. Voss, M. Heiner, and I. Koch, Steady state analysis of metabolic pathways using Petri nets, In Silico Biol, vol.3, issue.3, pp.367-387, 2003.

S. Hardy and P. Robillard, MODELING AND SIMULATION OF MOLECULAR BIOLOGY SYSTEMS USING PETRI NETS: MODELING GOALS OF VARIOUS APPROACHES, Journal of Bioinformatics and Computational Biology, vol.02, issue.04, pp.595-613, 2004.
DOI : 10.1142/S0219720004000764

M. Lakshmanan, G. Koh, B. Chung, and D. Lee, Software applications for flux balance analysis, Briefings in Bioinformatics, vol.15, issue.1, 2012.
DOI : 10.1093/bib/bbs069

J. Orth, I. Thiele, and B. Palsson, What is flux balance analysis?, Nature Biotechnology, vol.19, issue.3, pp.245-248
DOI : 10.1038/nbt.1614

J. Edwards and B. Palsson, The Escherichia coli MG1655 in silico metabolic genotype: Its definition, characteristics, and capabilities, Proceedings of the National Academy of Sciences, vol.97, issue.10, pp.975528-5533, 2000.
DOI : 10.1073/pnas.97.10.5528

K. Kauffman, P. Prakash, and J. Edwards, Advances in flux balance analysis, Current Opinion in Biotechnology, vol.14, issue.5, pp.491-496, 2003.
DOI : 10.1016/j.copbio.2003.08.001

C. Schilling, D. Letscher, and B. Palsson, Theory for the Systemic Definition of Metabolic Pathways and their use in Interpreting Metabolic Function from a Pathway-Oriented Perspective, Journal of Theoretical Biology, vol.203, issue.3, pp.229-248, 2000.
DOI : 10.1006/jtbi.2000.1073

C. Schilling, S. Schuster, B. Palsson, and R. Heinrich, Metabolic Pathway Analysis: Basic Concepts and Scientific Applications in the Post-genomic Era, Biotechnology Progress, vol.15, issue.3, pp.296-303, 1999.
DOI : 10.1021/bp990048k

D. Beard, S. Liang, and H. Qian, Energy Balance for Analysis of Complex Metabolic Networks, Biophysical Journal, vol.83, issue.1, pp.79-86, 2002.
DOI : 10.1016/S0006-3495(02)75150-3

Y. Oh, D. Lee, S. Lee, and S. Park, Multiobjective flux balancing using the NISE method for metabolic network analysis, Biotechnology Progress, vol.79, issue.4, pp.999-1008, 2009.
DOI : 10.1002/btpr.193

R. Mahadevan and C. Schilling, The effects of alternate optimal solutions in constraint-based genome-scale metabolic models, Metabolic Engineering, vol.5, issue.4, pp.264-276, 2003.
DOI : 10.1016/j.ymben.2003.09.002

A. Ghozlane, F. Bringaud, H. Soueidan, I. Dutour, J. F. et al., Flux Analysis of the Trypanosoma brucei glycolysis based on a multiobjective-criteria bIoinformatic approach, Adv Bioinformatics, p.159423, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00723179

M. Beurton-aimar, B. Beauvoit, A. Monier, F. Vallee, M. Dieuaide-noubhani et al., Comparison between elementary flux modes analysis and 13C-metabolic fluxes measured in bacterial and plant cells, BMC Systems Biology, vol.5, issue.1, p.95, 2001.
DOI : 10.1104/pp.110.158535

URL : https://hal.archives-ouvertes.fr/hal-00629222

M. Hanigan, L. Crompton, C. Reynolds, D. Wray-cahen, M. Lomax et al., An integrative model of amino acid metabolism in the liver of the lactating dairy cow, Journal of Theoretical Biology, vol.228, issue.2, pp.271-289, 2004.
DOI : 10.1016/j.jtbi.2004.01.010

J. Van-milgen, F. Gondret, and D. Renaudeau, The use of nutritional models as a tool in basis research, Progress in Research on Energy and Protein Metabolism. Edited by Edited by Souffrant WB MetgesCC, pp.259-263, 2003.

V. Acuña, A. Marchetti-spaccamela, M. Sagot, and L. Stougie, A note on the complexity of finding and enumerating elementary modes, Biosystems, vol.99, issue.3, pp.210-214, 2010.
DOI : 10.1016/j.biosystems.2009.11.004

J. Cant and B. Mcbride, Mathematical analysis of the relationship between blood flow and uptake of nutrients in the mammary glands of a lactating cow, Journal of Dairy Research, vol.76, issue.03, pp.405-422, 1995.
DOI : 10.1016/0026-2862(85)90057-3

V. Volpe, J. Cant, R. Boston, P. Susmel, and P. Moate, Development of a dynamic mathematical model for investigating mammary gland metabolism in lactating cows, The Journal of Agricultural Science, vol.82, issue.01, p.14831, 2010.
DOI : 10.1017/S0021859600050243

M. Hanigan, L. Crompton, B. Bequette, J. Mills, and J. France, Modelling Mammary Metabolism in the Dairy Cow to Predict Milk Constituent Yield, with Emphasis on Amino Acid Metabolism and Milk Protein Production: Model Evaluation, Journal of Theoretical Biology, vol.217, issue.3, pp.311-330, 2002.
DOI : 10.1006/jtbi.2002.3037

M. Hanigan, L. Crompton, J. Metcalf, and J. France, Modelling Mammary Metabolism in the Dairy Cow to Predict Milk Constituent Yield, with Emphasis on Amino Acid Metabolism and Milk Protein Production: Model Construction, Journal of Theoretical Biology, vol.213, issue.2, pp.223-239, 2001.
DOI : 10.1006/jtbi.2001.2417

M. Hanigan, A mechanistic model of mammary gland metabolism in the lactating cow, Agricultural Systems, vol.45, issue.4, pp.369-419, 1994.
DOI : 10.1016/0308-521X(94)90132-Y

G. Waghorn and R. Baldwin, Model of Metabolite Flux Within Mammary Gland of the Lactating Cow, Journal of Dairy Science, vol.67, issue.3, pp.531-544, 1984.
DOI : 10.3168/jds.S0022-0302(84)81336-3

J. Van-milgen, Modeling biochemical aspects of energy metabolism in mammals, JNutr2002, vol.132, issue.10, pp.3195-3202

S. Lemosquet, O. Abdou-arbi, A. Siegel, J. Guinard-flament, J. Van-milgen et al., A generic stoichiometric model to analyse the metabolic flexibility of the mammary gland in lactating dairy cows. In Modelling Nutrient Digestion and Utilization in Farm Animals, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00538138

J. Papin, J. Stelling, N. Price, S. Klamt, S. Schuster et al., Comparison of network-based pathway analysis methods, Trends in Biotechnology, vol.22, issue.8, pp.400-405, 2004.
DOI : 10.1016/j.tibtech.2004.06.010

B. Bequette, N. Sunny, S. El-kadi, and S. Owens, Application of stable isotopes and mass isotopomer distribution analysis to the study of http intermediary metabolism of nutrients, pp.84-50, 2006.

R. Bickerstaffe, E. Annison, and J. Linzell, The metabolism of glucose, acetate, lipids and amino acids in lactating dairy cows, The Journal of Agricultural Science, vol.126, issue.01, pp.71-85, 1974.
DOI : 10.1079/BJN19700072

S. Lemosquet, G. Raggio, G. Lobley, H. Rulquin, J. Guinard-flament et al., Whole-body glucose metabolism and mammary energetic nutrient metabolism in lactating dairy cows receiving digestive infusions of casein and propionic acid, Journal of Dairy Science, vol.92, issue.12, pp.926068-6082, 2009.
DOI : 10.3168/jds.2009-2018

URL : https://hal.archives-ouvertes.fr/hal-00730130

G. Raggio, S. Lemosquet, G. Lobley, H. Rulquin, and H. Lapierre, Effect of Casein and Propionate Supply on Mammary Protein Metabolism in Lactating Dairy Cows, Journal of Dairy Science, vol.89, issue.11, pp.4340-4351, 2006.
DOI : 10.3168/jds.S0022-0302(06)72481-X

H. Swaisgood, Handbook of Milk Composition, 1995.

M. Hanigan, J. France, S. Mabjeesh, W. Mcnabb, and B. Bequette, High Rates of Mammary Tissue Protein Turnover in Lactating Goats Are Energetically Costly, Journal of Nutrition, vol.139, issue.6, pp.1118-1127, 2009.
DOI : 10.3945/jn.108.103002

T. Pfeiffer, I. Sanchez-valdenebro, J. Nuevo, F. Montero, and S. Schuster, METATOOL: for studying metabolic networks, Bioinformatics, vol.15, issue.3, pp.251-257, 1999.
DOI : 10.1093/bioinformatics/15.3.251

R. Scott, D. Beuman, and J. Clark, Cellular Gluconeogenesis by Lactating Bovine Mammary Tissue, Journal of Dairy Science, vol.59, issue.1, pp.50-56, 1976.
DOI : 10.3168/jds.S0022-0302(76)84155-0

R. Schuetz, N. Zamboni, M. Zampieri, M. Heinemann, and U. Sauer, Multidimensional Optimality of Microbial Metabolism, Science, vol.336, issue.6081, pp.601-604
DOI : 10.1126/science.1216882

E. Annison, J. Linzell, S. Fazakerley, and B. Nichols, The oxidation and utilization of palmitate, stearate, oleate and acetate by the mammary gland of the fed goat in relation to their overall metabolism, and the role of plasma phospholipids and neutral lipids in milk-fat synthesis, Biochemical Journal, vol.102, issue.3, pp.637-647, 1967.
DOI : 10.1042/bj1020637

P. Shorten, T. Pleasants, and G. Upreti, A mathematical model for mammary fatty acid synthesis and triglyceride assembly: the role of stearoyl CoA desaturase (SCD), Journal of Dairy Research, vol.71, issue.4, pp.385-397, 2004.
DOI : 10.1017/S0022029904000354

G. Smith, B. Crabtree, and R. Smith, Energy Metabolism in the Mammary Gland, 1983.

E. Annison, J. Linzell, and C. West, Mammary and whole animal metabolism of glucose and fatty acids in fasting lactating goats, The Journal of Physiology, vol.197, issue.2, pp.445-459
DOI : 10.1113/jphysiol.1968.sp008569

W. Wiechert, 13C Metabolic Flux Analysis, Metabolic Engineering, vol.3, issue.3, pp.195-206, 2001.
DOI : 10.1006/mben.2001.0187

S. Crown, W. Ahn, and M. Antoniewicz, Rational design of 13C-labeling experiments for metabolic flux analysis in mammalian cells, BMC Systems Biology, vol.6, issue.1, p.43, 2012.
DOI : 10.1016/j.ymben.2006.01.004

D. Fell and J. Small, Fat synthesis in adipose tissue. An examination of stoichiometric constraints, Biochemical Journal, vol.238, issue.3, pp.781-786, 1968.
DOI : 10.1042/bj2380781

A. Consoli, F. Kennedy, J. Miles, and J. Gerich, Determination of Krebs cycle metabolic carbon exchange in vivo and its use to estimate the individual contributions of gluconeogenesis and glycogenolysis to overall glucose output in man., Journal of Clinical Investigation, vol.80, issue.5, pp.1303-1310, 1987.
DOI : 10.1172/JCI113206

J. Katz, Determination of gluconeogenesis in vivo with 14C-labeled substrates, Am J Physiol, vol.248, issue.4 2, pp.391-399, 1985.

P. Blavy, F. Gondret, H. Guillou, S. Lagarrigue, P. Martin et al., A minimal model for hepatic fatty acid balance during fasting: Application to PPAR alpha-deficient mice, Journal of Theoretical Biology, vol.261, issue.2, pp.266-278, 2009.
DOI : 10.1016/j.jtbi.2009.07.025

URL : https://hal.archives-ouvertes.fr/hal-00559147

M. Covert, C. Schilling, and B. Palsson, Regulation of Gene Expression in Flux Balance Models of Metabolism, Journal of Theoretical Biology, vol.213, issue.1, pp.73-88, 2001.
DOI : 10.1006/jtbi.2001.2405

A. Larhlimi and A. Bockmayr, Minimal metabolic behaviors and the reversible metabolic space, 2009.

J. Edwards, R. Ibarra, and B. Palsson, In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data, Nature Biotechnology, vol.19, issue.2, pp.125-130, 2001.
DOI : 10.1038/84379

O. Adamou, Study of Some Epidemiological Models by the Methods of Computer Algebra, France) and UAM, issue.1, 2009.

W. Stein, The Sage Development Team, Sage Mathematics Software, vol.2012

R. Byrd, J. Gilbert, and J. Nocedal, A trust region method based on interior point techniques for nonlinear programming, Mathematical Programming, vol.89, issue.1, pp.149-185, 2000.
DOI : 10.1007/PL00011391

URL : https://hal.archives-ouvertes.fr/inria-00073794

N. Botkin and V. Turova-botkina, An algorithm for finding the Chebyshev center of a convex polyhedron, Applied Mathematics & Optimization, vol.29, issue.2, pp.211-222, 1994.
DOI : 10.1007/BF01204183

. Nutritionanalyzer, an online tool to explore the flexibility of metabolic models in nutrition studies

G. Lobley, Energy metabolism reactions in ruminant muscle: responses to age, nutrition and hormonal status, Reproduction Nutrition D??veloppement, vol.30, issue.1, pp.13-34, 1990.
DOI : 10.1051/rnd:19900102

URL : https://hal.archives-ouvertes.fr/hal-00899200

. Abdou-arbi, Exploring metabolism flexibility in complex organisms through quantitative study of precursor sets for system outputs, BMC Systems Biology, vol.8, issue.1, p.8, 2014.
DOI : 10.1051/rnd:19900102

URL : https://hal.archives-ouvertes.fr/hal-00947219