
HAL Id: hal-00947657
https://hal.inria.fr/hal-00947657v2

Submitted on 19 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Universality: Contention-Awareness,
Wait-freedom, Object Progress, and Other Properties

Michel Raynal, Julien Stainer, Gadi Taubenfeld

To cite this version:
Michel Raynal, Julien Stainer, Gadi Taubenfeld. Distributed Universality: Contention-Awareness,
Wait-freedom, Object Progress, and Other Properties. [Research Report] PI-2014, 2014. <hal-
00947657v2>

https://hal.inria.fr/hal-00947657v2
https://hal.archives-ouvertes.fr

Publications Internes de l’IRISA

ISSN : 2102-6327

PI 2014 – January 2014

Distributed Universality: Contention-Awareness, Wait-freedom, Object Progress, and

Other Properties

Michel Raynal* ** Julien Stainer** Gadi Taubenfeld***

Abstract: A notion of a universal construction suited to distributed computing has been introduced by M. Herlihy in his celebrated

paper “Wait-free synchronization” (ACM TOPLAS, 1991). A universal construction is an algorithm that can be used to wait-free

implement any object defined by a sequential specification. Herlihy’s paper shows that the basic system model, which supports

only atomic read/write registers, has to be enriched with consensus objects to allow the design of universal constructions. The

generalized notion of a k-universal construction has been recently introduced by Gafni and Guerraoui (CONCUR, 2011). A k-

universal construction is an algorithm that can be used to simultaneously implement k objects (instead of just one object), with the

guarantee that at least one of the k constructed objects progresses forever. While Herlihy’s universal construction relies on atomic

registers and consensus objects, a k-universal construction relies on atomic registers and k-simultaneous consensus objects (which

are wait-free equivalent to k-set agreement objects in the read/write system model).

This paper significantly extends the universality results introduced by Herlihy and Gafni-Guerraoui. In particular, we present

a k-universal construction which satisfies the following five desired properties, which are not satisfied by the previous k-universal

construction: (1) among the k objects that are constructed, at least ℓ objects (and not just one) are guaranteed to progress forever;

(2) the progress condition for processes is wait-freedom, which means that each correct process executes an infinite number of

operations on each object that progresses forever; (3) if any of the k constructed objects stops progressing, all its copies (one at

each process) stop in the same state; (4) the proposed construction is contention-aware, in the sense that it uses only read/write

registers in the absence of contention; and (5) it is generous with respect to the obstruction-freedom progress condition, which

means that each process is able to complete any one of its pending operations on the k objects if all the other processes hold still

long enough. The proposed construction, which is based on new design principles, is called a (k, ℓ)-universal construction. It uses

a natural extension of k-simultaneous consensus objects, called (k, ℓ)-simultaneous consensus objects ((k, ℓ)-SC). Together with

atomic registers, (k, ℓ)-SC objects are shown to be necessary and sufficient for building a (k, ℓ)-universal construction, and, in that

sense, (k, ℓ)-SC objects are (k, ℓ)-universal .

Key-words: Asynchronous read/write system, universal construction, consensus, k-set agreement, k-simultaneous consensus,

wait-freedom, non-blocking, obstruction-freedom, contention-awareness, crash failures, state machine replication.

Universalité distribuée

Résumé : Cet article explore la notion de construction universelle dans les systèmes distribués. Il présente une construction

k-universelle wait-free qui s’adapte à la concurrence à partir d’objets k-consensus.

Mots clés : Système asynchrone read/write, construction universelle, consensus, k-accord ensembliste, k-consensus simultané,

synchronisation sans attente, synchronisation non-bloquante, adaptivité à la concurrence, crash, réplication de machine d’état.

* Institut Universitaire de France
** ASAP : équipe commune avec l’Université de Rennes 1 et Inria

*** The Interdisciplinary Center, Herzliya, Israel

c©IRISA – Campus de Beaulieu – 35042 Rennes Cedex – France – +33 2 99 84 71 00 – www.irisa.fr

2 M. Raynal, J. Stainer & G. Taubenfeld

1 Introduction

Asynchronous crash-prone read/write systems and the notion of a universal construction This paper considers systems made

up of n sequential asynchronous processes that communicate by reading and writing atomic registers. Up to n−1 processes may crash

unexpectedly. This is the basic (n− 1)-resilient model, also called read/write wait-free model, and denoted here ARWn,n−1[∅]. A

fundamental problem encountered in this kind of systems consists in implementing any object, defined by a sequential specification,

in such a way that the object behaves reliably despite process crashes.

Several progress conditions have been proposed for concurrent objects. The strongest, and most extensively studied condition, is

wait-freedom. Wait-freedom guarantees that every process will always be able to complete its pending operations in a finite number

of its own steps [17]. Thus, a wait-free implementation of an object guarantees that an invocation of an object operation may fail to

terminate only when the invoking process crashes. The non-blocking progress condition (sometimes called lock-freedom) guarantees

that some process will always be able to complete its pending operations in a finite number of its own steps [22]. Obstruction-freedom

guarantees that a process will be able to complete its pending operations in a finite number of its own steps, if all the other processes

“hold still” long enough [18]. Obstruction-freedom does not guarantee progress under contention.

It has been shown in [12, 17, 24] that the design of a general algorithm implementing any object defined by a sequential speci-

fication and satisfying the wait-freedom progress condition, is impossible in ARWn,n−1[∅]. Thus, in order to be able to implement

any such object, the model has to be enriched with basic objects whose computational power is stronger than atomic read/write

registers [17].

Objects that can be used, together with registers, to implement any other object which satisfies a given progress condition PC, are

called universal objects with respect to PC. Previous work provided algorithms, called universal constructions, based on universal

objects, that transform sequential specifications of arbitrary objects into wait-free concurrent implementations of the same objects.

It is shown in [17] that the consensus object is universal with respect to wait-freedom. A consensus object allows all the correct

processes to reach a common decision based on their initial inputs. A consensus object is used in a universal construction to allow

processes to agree –despite concurrency and failures– on a total order on the operations they invoke on the constructed object.

In addition to the universal construction of [17], several other wait-free universal constructions were proposed, which address

additional properties. As an example, a universal construction is presented in [10], where “processes operating on different parts

of an implemented object do not interfere with each other by accessing common base objects”. Other additional properties have

been addressed in [2, 11]. The notion of a universal construction has also been investigated in the context of transactional memories

(e.g., [8, 9, 19, 20, 31] to cite a few).

From consensus to k-simultaneous consensus (or k-set agreement) in read/write systems k-Simultaneous consensus has been

introduced in [1]. Each process proposes a value to k independent consensus instances, and decides on a pair (x, v) such that x is

a consensus instance (1 ≤ x ≤ k), and v is a value proposed to that consensus instance. Hence, if the pairs (x, v) and (x, v′) are

decided by two processes, then v = v′.
k-Set agreement [7] is a simple generalization of consensus, namely, at most k different values can be decided on when using a

k-set agreement object (k = 1 corresponds to consensus). It is shown in [1] that k-set agreement and k-simultaneous consensus have

the same computational power inARWn,n−1[∅]. That is, each one can be solved inARWn,n−1[∅] enriched with the other1. Hence,

1-simultaneous consensus is the same as consensus, while, for k > 1, k-simultaneous consensus is weaker than (k−1)-simultaneous

consensus.

While the impossibility proof (e.g., [17, 24]) of building a wait-free consensus object in ARWn,n−1[∅] relies on the notion of

valence introduced in [12], the impossibility to build a wait-free k-set agreement object (or equivalently a k-simultaneous consensus

object) in ARWn,n−1[∅] relies on algebraic topology notions [5, 21, 30].

It is nevertheless possible to consider system models, stronger than the basic wait-free read/write model, enriched with con-

sensus or k-simultaneous consensus objects. It follows that these enriched system models, denoted ARWn,n−1[CONS] and

ARWn,n−1[k -SC] (1 ≤ k < n), respectively, are computationally strictly stronger than the basic modelARWn,n−1[∅].

Universal construction for k objects An interesting question introduced in [14] by Gafni and Guerraoui is the following: what

happens if, when considering the design of a universal construction, k-simultaneous consensus objects are considered instead of

consensus objects? The authors claim that k-simultaneous consensus objects are k-universal in the sense that they allow to implement

k deterministic concurrent objects, each defined by a sequential specification “with the guarantee that at least one machine remains

highly available to all processes” [14]. In their paper, Gafni and Guerraoui focus on the replication of k state machines. They present

1This is no longer the case in asynchronous message-passing systems, namely k-simultaneous consensus is then strictly stronger than k-set agreement (as shown

using different techniques in [6, 29]).

Collection des Publications Internes de l’Irisa c©IRISA

Distributed Universality 3

a k-universal construction, based on the replication –at every process– of each of the k state machines. This construction is presented

in appendix A.

Contributions This paper is focused on distributed universality, namely it presents a very general universal construction for a set

of n processes that access k concurrent objects, each defined by a sequential specification on total operations. An operation on an

object is “total” if, when executed alone, it always returns [22]. This construction is based on a generalization of the k-simultaneous

consensus object (see below). The noteworthy features of this construction are the following.

• At least ℓ among the k objects progress forever, 1 ≤ ℓ ≤ k. This means that an infinite number of operations is applied to

each of these ℓ objects. This set of ℓ objects is not predetermined, and depends on the execution.

• The progress condition associated with the processes is wait-freedom. That is, a process that does not crash executes an infinite

number of operations on each object that progresses forever.

• An object stops progressing when no more operations are applied to it. The construction guarantees that, when an object stops

progressing, all its copies (one at each process) stop in the same state.

• The construction is contention-aware. This means that the overhead introduced by using synchronization objects other than

atomic read/write registers is eliminated when there is no contention during the execution of an operation (i.e., interval con-

tention). In the absence of contention, a process completes its operations by accessing only read/write registers2. Algorithms

which satisfy the contention-awareness property have been previously presented in [3, 26, 27, 32].

• The construction is generous with respect to obstruction-freedom. This means that each process is able to complete its

pending operations on all the k objects each time all the other processes hold still long enough. That is, if once and again

all the processes except one hold still long enough, then all the k objects, and not just ℓ objects, are guaranteed to always

progress.3

This new universal construction is consequently called a contention-aware obstruction-free-generous wait-free (k, ℓ)-universal con-

struction. Differently, the universal construction presented in [14] is a (k, 1)-universal construction and is neither contention-aware,

nor generous with respect to obstruction-freedom. Moreover, this construction suffers from the following limitations: (a) it does

not satisfy wait-freedom progress, but only non-blocking progress (i.e., infinite progress is guaranteed for only one process); (b) in

some scenarios, an operation that has been invoked by a process can (incorrectly) be applied twice, instead of just once; and (c) the

last state of the copies (one per process) of an object on which no more operations are being executed can be different at distinct

processes. While issue (b) can be fixed (see Appendix A), we do not see how to modify the construction from [14] to overcome

drawback (c).

When considering the special case k = ℓ = 1, Herlihy’s construction is wait-free (1, 1)-universal [17], but differently from ours,

it does not satisfy the contention-awareness property.

To ensure the progress of at least ℓ of the k implemented objects, the proposed construction uses a new synchronization object,

that we call (k, ℓ)-simultaneous consensus object, which is a simple generalization of the k-simultaneous consensus object. This

object type is such that its (k, 1) instance is equivalent to k-simultaneous consensus, while its (k, k) instance is equivalent to

consensus. Thus, when added to the basic ARWn,n−1[∅] system model, (k, ℓ)-simultaneous consensus objects add computational

power. The paper shows that (k, ℓ)-simultaneous consensus objects are both necessary and sufficient to ensure that at least ℓ among

the k objects progress forever.

From a software engineering point of view, the proposed (k, ℓ)-universal construction is built in a modular way. First a non-

blocking (k, 1)-universal construction is designed, using k-simultaneous consensus objects and atomic registers. Interestingly, its

design principles are different from the other universal constructions we are aware of. Then, this basic construction is extended to

obtain a contention-aware (k, 1)-universal construction, and then a wait-free contention-aware (k, 1)-universal construction. Finally,

assuming that the system is enriched with (k, ℓ)-simultaneous consensus objects, 1 ≤ ℓ ≤ k, instead of k-simultaneous consensus

objects, we obtain a contention-aware wait-free (k, ℓ)-universal construction. During the modular construction, we make sure that

the universal construction implemented at each stage is also generous with respect to obstruction-freedom.

2Let us recall that, in worst case scenarios, hardware operations such as compare&swap() can be 1000× more expensive that read or write.
3Generosity is a general notion. Intuitively, an algorithm is generous with respect to a given condition C, if, whenever C is satisfied, the algorithm does more

than what it is required to do in normal circumstances. The condition C specifies the “exceptional” circumstances under which the algorithm does “more”. These

“exceptional” circumstances depend on the underlying system behavior. They can be a specific progress condition (as done in this paper), or the occurrences of

specific synchrony/asynchrony/failures patterns. The notions of a generous algorithm and of an indulgent algorithm (investigated in [16]) can be seen as "dual" one

from the other, in the following sense. Indulgence allows an algorithm to do less (more precisely not to terminate) when the underlying system (captured as an

underlying failure detector) is misbehaving (i.e., doing less), while generosity forces an algorithm to do more when the underlying system is doing more than what is

normally expected.

Collection des Publications Internes de l’Irisa c©IRISA

4 M. Raynal, J. Stainer & G. Taubenfeld

Roadmap The paper is made up of 5 sections. Section 2 presents the computation models and the specific objects used in the paper.

Section 3 presents a non-blocking (k, 1)-universal construction. Then Section 4 extends it so that it satisfies contention-awareness,

wait-freedom, and the progress of at least ℓ out of the k constructed objects. This section shows also that (k, ℓ)-simultaneous

consensus objects are necessary and sufficient for the design of (k, ℓ)-universal constructions. Due to page limitation, the presentation

of an interesting simple variant of the general universal construction which is an obstruction-free (1, 1)-universal construction based

on atomic registers only, is presented in Appendix F. Definitions and notions which can be used to establish a (k, ℓ)-universality

theory are presented in Appendix G. Moreover, all proofs are in appendices. Section 5 concludes the paper.

2 Basic and Enriched Models, and Wait-free Linearizable Implementation

2.1 Basic read/write model and enriched model

The basic model is the wait-free asynchronous read/write model denoted ARWn,n−1[∅] presented in the introduction (see also [4,

25, 28]). The processes are denoted p1, ..., pn. Considering a run, a process is faulty if it crashes during the run, otherwise it is

correct.

In addition to atomic read/write registers [23], two other types of objects are used. The first type does not add computational

power, but provides processes with a higher abstraction level. The other type adds computational power to the basic system model

ARWn,n−1[∅].

Adopt-commit object The adopt-commit object has been introduced in [13]. An adopt-commit object is a one-shot object that

provides the processes with a single operation denoted propose(). This operation takes a value as an input parameter, and returns a

pair (tag, v). The behavior of an adopt-commit object is formally defined as follows:

• Validity.

– Result domain. Any returned pair (tag, v) is such that (a) v has been proposed by a process and (b) tag ∈ {commit, adopt}.

– No-conflicting values. If a process pi invokes propose(v) and returns before any other process pj has invoked propose(v′)
with v′ 6= v, then only the pair (commit, v) can be returned.

• Agreement. If a process returns (commit, v), only the pairs (commit, v) or (adopt, v) can be returned.

• Termination. An invocation of propose() by a correct process always terminates.

Let us notice that it follows from the “no-conflicting values” property that, if a single value v is proposed, then only the pair

(commit, v) can be returned. Adopt-commit objects can be wait-free implemented in ARWn,n−1[∅] (e.g., [13, 28]). Hence, they

provide processes with a higher abstraction level than read/write registers.

k-Simultaneous consensus object A k-simultaneous consensus (k-SC) object is a one-shot object that provides the processes with

a single operation denoted propose(). This operation takes as input parameter a vector of size k, each entry containing a value, and

returns a pair (x, v). The behavior of a k-simultaneous consensus object is formally defined as follows:

• Validity. Any pair (x, v) that is returned by a process pi is such that (a) 1 ≤ x ≤ k and (b) v has been proposed by a process

in the x-th entry of its input vector before pi decides.

• Agreement. If a process returns (x, v) and another process returns (y, v′), and x = y, then v = v′.

• Termination. An invocation of propose() by a correct process always terminates.

LetARWn,n−1[k -SC] denoteARWn,n−1[∅] enriched with k-SC objects. It is shown in [1] that a k-SC object and a k-set agreement

(k-SA) object are wait-free equivalent in ARWn,n−1[∅]. This means that a k-SC object can be built in ARWn,n−1[k -SA], and a

k-SA object can be built in ARWn,n−1[k -SC].

2.2 Correct object implementation

Let us consider n processes that access k concurrent objects, each defined by a deterministic sequential specification. The sequence

of operations that pi wants to apply to an object m, 1 ≤ m ≤ k, is stored in the local infinite list my_listi[m], which can be defined

statically or dynamically (in that case, the next operation issued by a process pi on an object m, can be determined from pi’s view

of the global state). It is assumed that the processes are well-formed: no process invokes a new operation on an object m before its

previous operation on m has terminated.

Collection des Publications Internes de l’Irisa c©IRISA

Distributed Universality 5

Wait-free linearizable implementation An implementation of an object m by n processes is wait-free linearizable if it satisfies

the following properties.
• Validity. If an operation op is executed on object m, then op ∈ ∪1≤i≤nmy_listi[m], and all the operations of my_listi[m]

which precede op have been applied to object m.

• No-duplication. Any operation op on object m invoked by a process is applied at most once to m. We assume that all the

invoked operations are unique.

• Consistency. Any n-process execution produced by the implementation is linearizable [22].

• Termination (wait-freedom). If a process does not crash, it executes an infinite number of operations on at least one object.

Weaker progress conditions In some cases, the following two weaker progress conditions are considered.
• The non-blocking progress condition [22] guarantees that there is at least one process that executes an infinite number of

operations on at least one object.

• The obstruction-freedom progress condition [18] guarantees that any correct process can complete its operations if it executes

in isolation for a long enough period (i.e., there is a long enough period during which the other processes stop progressing).

3 Part 1: A New Non-blocking k-Universal Construction

As mentioned in the Introduction, the construction is done incrementally. In this section, we present and prove the correctness of a

non-blocking k-universal construction, based on new design principles (as far as we know). This construction is built in the enriched

modelARWn,n−1[k -SC]. In Section 4, we extend the construction, without requiring additional computational power, to obtain the

contention-awareness property, and the wait-freedom progress condition (i.e., each correct process can always execute and completes

its operations on any object that progresses forever). Then (k, ℓ)-SC objects are introduced (which are a natural generalization of

k-SC objects), and are used to design a (k, ℓ)-universal construction which ensures that least ℓ objects progress forever. In Section 4,

we also show that (k, ℓ)-SC objects are necessary and sufficient to obtain a (k, ℓ)-universal construction.

3.1 A new non-blocking k-universal construction: data structures

The following objects are used by the construction. Identifiers with upper case letters are used for shared objects, while identifiers

with lower case letters are used for local variables.

Shared objects
• kSC [1..]: infinite list of of k-simultaneous consensus objects; kSC [r] is the object used at round r.

• AC [1..][1..k]: infinite list of vectors of k adopt-commit objects; AC [r][m] is the adopt-commit object associated with the

object m at round r.

• GSTATE [1..n] is an array of SRMW (single-writer/multi-readers) atomic registers; GSTATE [i] can be written only by pi.
Moreover, the register GSTATE [i] is made up of an array with one entry per object, such that GSTATE [i][m] is the sequence

of operations that have been applied to the object m, as currently know by pi; it is initialized to ǫ (the empty sequence).

Local variables at process pi
• ri: local round number (initialized to 0).

• g_statei[1..n]: array used to save the values read (non-atomically) from GSTATE [1..n].
• operi[1..k]: vector such that operi[m] contains the operation that pi is proposing to a k-SC object for the object m (as we will

see in the algorithm, this operation was not necessarily issued by pi).

• my_opi[1..k]: vector of operations such that my_opi[m] is the last operation that pi wants to apply to the object m (hence

my_opi[m] ∈ my_listi[m]).

• ℓ_histi[1..k]: vector with one entry per object, such that ℓ_histi[m] is the sequence of operations defining the history of

object m, as known by pi. Each ℓ_histi[m] is initialized to ǫ. The function append() is used to add an element at the end of a

sequence ℓ_histi[m].

• tagi[1..k] and ac_opi[1..k]: arrays such that, for each objectm, tagi[m] and ac_opi[m] are used to save the pairs (tag, operation)
returned by the last invocation of AC [r][m], during round r.

• outputi[1..k]: vector such that outputi[m] contains the result of the last operation invoked by pi on the object m (this is the

operation saved in my_opi[m]).

Without loss of generality, it is assumed that each object operation returns a result, which can be “ok” when there is no object-

dependent result to be returned (as with the stack operation push() or the queue operation enqueue()).

Collection des Publications Internes de l’Irisa c©IRISA

6 M. Raynal, J. Stainer & G. Taubenfeld

3.2 Eliminating full object histories

Each entry m of the previous atomic variables GSTATE[i], i.e., GSTATE[i][m], and each local variable ℓ_histi[m], contain

sequences of operations successfully applied to m, as known by pi. This implementation has been chosen for its simplicity. A more

space efficient implementation of these objects is described in Appendix C (each object is represented by its last state, and each

process has to manage additional sequence numbers).

3.3 A new non-blocking (k, 1)-universal construction: algorithm

To simplify the presentation, it is assumed that each operation invocation is unique. This can be easily realized by associating

an identity (process id, sequence number) with each operation invocation. In the following, the term “operation” is used as an

abbreviation for “operation execution”.

The function next() is used by a process pi to access the sequence of operationsmy_listi[m]. The x-th invocation ofmy_listi[m].next()
returns the x-th element of this list.

for each m ∈ {1, . . . , k} do my_opi[m]← my_listi[m].next(); operi[m]← my_opi[m] end for.

repeat forever

(1) ri ← ri + 1;

(2) (ksc_obj, ksc_op)← kSC [ri].propose(operi[1..k]);
(3) (tagi[ksc_obj], ac_opi[ksc_obj])← AC [ri][ksc_obj].propose(ksc_op);
(4) for each m ∈ {1, . . . , k} \ {ksc_obj} do (tagi[m], ac_opi[m])← AC [ri][m].propose(operi[m]) end for;

(5) for each j ∈ {1, . . . , n} do g_statei[j]← GSTATE [j] end for; % the read of each GSTATE [j] is atomic %

(6) for each m ∈ {1, . . . , k} do

(7) ℓ_histi[m]← longest history of g_statei[1..n][m] containing ℓ_histi[m];
(8) if (my_opi[m] ∈ ℓ_histi[m]) % my operation was completed %

(9) then outputi[m]← compute_output(my_opi[m], ℓ_histi[m]);
(10) return {(m,my_opi[m], outputi[m])} to the upper layer;

(11) my_opi[m]← my_list[m].next()
(12) end if

(13) end for;

(14) res← ∅;
(15) for each m ∈ {1, . . . , k} do

(16) if (ac_opi[m] /∈ ℓ_histi[m]) % operation was not completed %

(17) then if (tagi[m] = commit) % complete the operation %

(18) then ℓ_histi[m]← ℓ_histi[m].append(ac_opi[m]);
(19) if (ac_opi[m] = my_opi[m]) % my operation was completed %

(20) then outputi[m]← compute_output(ac_opi[m], ℓ_histi[m]);
(21) res← res ∪ {(m,my_opi[m], outputi[m])};
(22) my_opi[m]← my_list[m].next()
(23) end if;

(24) operi[m]← my_opi[m]
(25) else operi[m]← ac_opi[m] % tagi[m] = adopt %

(26) end if

(27) else operi[m]← my_opi[m] % ac_opi[m] ∈ ℓ_histi[m] %

(28) end if

(29) end for;

(30) GSTATE [i]← ℓ_histi[1..k]; % globally update my current view %

(31) if (res 6= ∅) then return res to the upper layer end if

end repeat.

Figure 1: Basic Non-Blocking Generalized (k, 1)-Universal Construction (code for pi)

Initialization The algorithm implementing the k-universal construction is presented in Figure 1. For each object m ∈ {1, ..., k},
a process pi initializes both the variables my_opi[m] and operi[m] to the first operation that it wants to apply to m. Process pi then

enters an infinite loop.

Repeat loop: using the round r objects kSC [r] and AC [r] (lines 1-4) After it has increased its round number, a process pi
invokes the k-simultaneous consensus object kSC [r] to which it proposes the operation vector operi[1..n], and from which it obtains

Collection des Publications Internes de l’Irisa c©IRISA

Distributed Universality 7

the pair denoted (ksc_obj, ksc_op); ksc_op is an operation proposed by some process for the object ksc_obj (line 2). Process pi
then invokes the adopt-commit object AC [r][ksc_obj] to which it proposes the operation output by kSC [r] for the object ksc_op
(line 3). Finally, for all the other objects m 6= ksc_obj, pi invokes the adopt-commit object AC [r][m] to which it proposes operi[m]
(line 4). As already indicated, the tags and the commands defined by the vector of pairs output by the adopt-commit objects AC [r]
are saved in the vectors tagi[1..k] and ac_opi[1..k], respectively. (While expressed differently, these four lines are the only part

which is common to this construction and the one presented in [14].)

The aim of these lines is to implement a filtering mechanism such that (a) for each object, at most one operation can be committed

at some processes, and (b) there is at least one object for which an operation is committed at some processes.

Repeat loop: returning local results (lines 5-13) After having used the additional power supplied by kSC [r], a process pi first

obtains asynchronously the value of GSTATE [1..n] (line 5) to learn an “as recent as possible” consistent global state, which is

saved in g_statei[1..n]. Then, for each object m (lines 6-13), pi computes the maximal local history of the object m which contains

ℓ_histi[m] (line 7). (Let us notice that g_statei[i][m] is ℓ_histi[m].) This corresponds to the longest history in the n histories

g_statei[1][m], ..., g_statei[n][m] which contains ℓ_histi[m]. If there are several longest histories, they all are equal as we will

see in the proof. If the last operation it has issued on m, namely my_opi[m], belongs to this history (line 8), some process has

executed this operation on its local copy of m. Process pi computes then the corresponding output (line 9), locally returns the triple

(m,my_opi[m], outputi[m]) (line 10), and defines its next local operation to apply to the object m (line 11).

The function compute_output(op, h) (used at lines 9 and 20) computes the result returned by op applied to the state of the

corresponding object m (this state is captured by the prefix of the history h of m ending just before the operation op).

Repeat loop: trying to progress on machines (lines 14-29) Then, for each object m, 1 ≤ m ≤ k, pi considers the operation

ac_opi[m]. If this operation belongs to its local history ℓ_histi[m] (the predicate of line 16 is then false), it has already been locally

applied; pi consequently assigns my_opi[m] to operi[m], where is saved its next operation on the object m (line 27).

If ac_opi[m] /∈ ℓ_histi[m] (line 16), the behavior of pi depends on the fact that the tag of ac_opi[m] is commit or adopt. If the

tag is adopt (the predicate of line 17 is then false), pi defines ac_opi[m] as the next operation it will propose for the object m, which

is saved in operi[m] (line 25): it “adopts” ac_opi[m]. If the tag is commit (line 17), pi adds (applies) the operation ac_opi[m] to

its local history (line 18). Moreover, if ac_opi[m] has been issued by pi itself (i.e., ac_opi[m] = my_opi[m], line 19), pi computes

the result locally returned by ac_opi[m] (line 20), adds this result to the set of results res (line 21), defines its next local operation

to apply to the object m (line 22). Finally, pi assigns my_opi[m] to operi[m] (line 24).

Repeat loop: making public its progress (lines 30-31) Finally, pi makes public its current local histories (one per object) by

writing them in GSTATE [i] (line 30), and returns local results if any (line 31). It then progresses to the next round.

3.4 A new non-blocking k-universal construction: proof

Lemma 1 ∀ i,m: (op ∈ GSTATE [i][m])⇒ (∃ j : op ∈ my_listj[m]) (i.e., if an operation op is applied to an object m, then op
has been proposed by a process).

Lemma 2 ∀ i, j,m : (op ∈ my_listj[m])⇒ (op appears at most once in GSTATE [i][m]
)

(i.e., an operation is executed at most

once).

The sequence (opmr)r≥1 of committed operations According to the specification of the adopt-commit object, for any round r
and any object m there is at most one operation returned with the tag commit by the object AC [r][m] to some processes. Let opmr
denote this unique operation if at least one process obtains a pair with the tag commit, and let opmr be ⊥ if all the pairs returned by

AC [r][m] contain the tag adopt.

From the sequence (opmr)r≥1 to the notion of valid histories Considering an execution of the algorithm of Figure 1, the following

lemmas show that, for any process pi and any object m, all the sequences of operations appearing in ℓ_histi[m] are finite prefixes

of a unique valid sequence depending only on the sequence (opmr)r≥1 of committed operations.

More precisely, given a sequence (opmr)r≥1, a history (vhm
x)1≤x≤xmax is valid if it is equal to a sequence (opmr)1≤r≤R from

which the ⊥ values and the repetitions have been removed. More formally, (vhm
x)1≤x≤xmax is valid if there is a round number R

and a strictly increasing function σ : {1, . . . , xmax} → {1, . . . , R} such that for all x in {1, . . . , xmax}: (a) vhm
x = opmσ(x), (b)

vhm
x 6= ⊥, (c) for all x in {1, . . . , xmax − 1}: vhm

x 6= vhm
x+1, and (d) the sets {vhm

1 , ..., vhm
xmax} and {opm1 , ..., opmR } \ {⊥} are

equal.

Collection des Publications Internes de l’Irisa c©IRISA

8 M. Raynal, J. Stainer & G. Taubenfeld

Let us remark that this definition has two consequences: (i) the value of R for which item (d) is verified defines unambiguously

the sequence (vhm
x)1≤x≤xmax (and accordingly this sequence is denoted VHm(R) in the following), and (ii) for any two valid

histories (vhm
x)1≤x≤xmax1 and (vhm

x)1≤x≤xmax2, one is a prefix of the other.

Lemma 3 For any process pi and any object m, at any time the local history ℓ_histi[m] is valid.

The execution on an object m of an operation op, issued by a process pi, starts when the process pi proposes op to a k-

simultaneous consensus object kSC [−][m] for the first time (i.e., when pi makes op public), and terminates when a set res including

(m, op, output[m]) is returned by pi at line 10 or line 31. The next lemma shows that any execution is linearizable.

Lemma 4 The execution of an operation op issued by a process pi on an object m can be linearized at the first time at which a

process pj writes into GSTATE [j][m] a local history ℓ_histj[m] such that op ∈ ℓ_histj[m].

Lemma 5 ∀ r ≥ 1, there is a process pi such that at least one operation op output by kSC [r].propose() at pi (line 2) is such that

the invocation of AC [r][−].propose() by pi returns (commit, op) (line 3 or 4).

Lemma 6 There is at least one object on which an infinite number of operations are executed.

It follows from the previous lemma, and the fact that there is a bounded number of processes, that at least one process executes an

infinite number of its operations on an object. Hence the following corollary.

Corollary 1 The algorithm is non-blocking.

Theorem 1 The algorithm of Figure 1 is a non-blocking linearizable (k, 1)-universal construction.

Generosity wrt obstruction-freedom We observe that the construction of Figure 1 is also obstruction-free (k, k)-universal. That

is, the construction guarantees that each process will be able to complete all its pending operations in a finite number of steps, if all

the other processes “hold still” long enough. Thus, if once in a while all the processes except one “hold still” long enough, then all

the k objects (and not “at least one”) are guaranteed to always make progress.

4 Part 2: A Contention-Aware Wait-free (k, ℓ)-Universal Construction

4.1 A Contention-aware non-blocking k-universal construction

Contention-aware universal construction A contention-aware universal construction (or object) is a construction (object) in

which the overhead introduced by synchronization primitives which are different from atomic read/write registers (like k-SC objects)

is eliminated in executions when there is no contention. When a process invokes an operation on a contention-aware universal

construction (object), it must be able to complete its operation by accessing only read/write registers in the absence of contention.

Using other synchronization primitives is permitted only when there is contention. (This notion is close but different from the notion

of contention-sensitiveness introduced in [32].)

A contention-aware non-blocking (k, 1)-universal construction A contention-aware (k, 1)-universal construction is presented

in Figure 2. At each round r, it uses two adopt-commit objects per constructed object m, namely AC [2ri − 1][m] and AC [2ri][m],
instead of a single one. When considering the basic construction of Figure 1, the new lines are prefixed by N, while modified lines

are postfixed by M.

A process pi first invokes, for each object m, the adopt-commit object AC [2ri − 1][m] to which it proposes operi[m] (new line

N1). Its behavior depends then on the number of objects for which it has received the tag commit. If it has obtained the tag commit
for all the objects m (the test of the new line N2 is then false), pi proceeds directly to the code defined by the lines 5- 31 of the basic

construction described in Figure 1, thereby skipping the invocation of the synchronization object kSC[r] associated with round r.

Otherwise, the test of the new line N2 is true and there is at least one object for which pi has received the tag adopt. This means

that there is contention. In this case, the behavior of pi is similar to the lines 2-4 of the basic algorithm where, at lines 2 and 4,

the input parameter operi[m] is replaced by the value of ac_opi[m] obtained at line N1 (the corresponding lines are denoted 2M

and 4M). Moreover, at line 3, ri is replaced by 2ri (new line 3M). It is possible to reduce the number of uses of underlying k-SC

synchronization objects. Such an improvement is described in Appendix E.

Interestingly, for the case of k = 1, the above universal construction is the first known contention-aware (1, 1)-universal con-

struction.

Theorem 2 The algorithm of Figure 2 is a non-blocking contention-aware (k, 1)-universal construction.

Collection des Publications Internes de l’Irisa c©IRISA

Distributed Universality 9

for each m ∈ {1, . . . , k} do my_opi[m]← my_listi[m].next(); operi[m]← my_opi[m] end for.

repeat forever

(1) ri ← ri + 1;

(N1) for each m ∈ {1, . . . , k} do (tagi[m], ac_opi[m])← AC [2ri − 1][m].propose(operi[m]) end for;

(N2) if (∃m ∈ {1, . . . , k} : tagi[m] = adopt) then

(2M) (ksc_obj, ksc_op)← kSC [ri].propose(ac_opi[1..k]);
(3M) (tagi[ksc_obj], ac_opi[ksc_obj])← AC [2ri][ksc_obj].propose(ksc_op);
(4M) for each m ∈ {1, . . . , k} \ {ksc_obj} do (tagi[m], ac_opi[m])← AC [2ri][m].propose(ac_opi[m]) end for

(N3) end if;

lines 5- 31 of the construction of Figure 1

end repeat.

Figure 2: Contention-aware Non-Blocking (k, 1)-Universal Construction (code for pi)

4.2 On the process side: from non-blocking to wait-freedom

The aim here is to ensure that each correct process executes an infinite number of operations on each object that progresses forever.

As far as the progress of objects is concerned, it is important to notice that, while Lemma 6 shows that there is always at least one

object that progresses forever, it is possible that, in a given execution, several objects progress forever.

Going from non-blocking to wait-freedom requires to add a helping mechanism to the basic non-blocking construction. To that

end, the following array of atomic registers is introduced.

• LAST_OP [1..n, 1..m]: matrix of atomic SWMR (single-writer/multi-readers) registers such that LAST_OP [i,m] contains

the last operation of my_listi invoked by pi. Initialized to ⊥, such a register is updated each time pi invokes my_listi.next()
(initialization, line 11n and line 22). So, we assume that LAST_OP [i,m] is implicitly updated by pi when it invokes the

function next().

Then, for each object m, the lines 24 and 27 where is defined operi[m] (namely, the proposal for the constructed object m submitted
by pi to the next k-SC object) are replaced by the following lines (|s| denotes the size of the sequence s).

(L1) j ← |ℓ_histi [m]| mod n+ 1; next_prop_m← LAST_OP[j,m];
(L2) if next_prop_m /∈ ({⊥} ∪ ℓ_histi[m])
(L3) then operi[m]← next_prop_m
(L4) else operi[m]← my_opi[m]
(L5) end if.

This helping mechanism is close to the one proposed in [17]. It uses, for each object m, a simple round-robin technique on

the process identities, computed from the current state of m as known by pi, i.e., from ℓ_histi[m]. More precisely, the helping

mechanism uses the number of operations applied so far to m (to pi’s knowledge) in order to help the process pj such that j =
|ℓ_hist i[m]| mod n + 1 (line L1). To that end, pi proposes the last operation issued by pj on m (line L3) if (a) there is such an

operation, and (b) this operation has not yet been appended to its local history of m (predicate of line L2). This operation has been

registered in LAST_OP [j,m] when pj executed its last invocation of my_listj[m].next(). If the predicate of line L2 is not satisfied,

pi proceed as in the basic algorithm (line L4).

Theorem 3 When replacing the lines 24 and 27 by lines L1-L5, the algorithms of Figure 1 and Figure 2 are wait-free linearizable

(k, 1)-universal constructions.

Let us remark that requiring wait-freedom only for a subset of correct processes, or only for a subset of objects that progress

forever is not interesting, as wait-freedom for both (a) all correct processes, and (b) all the objects that progress forever, does not

require additional computing power.

4.3 On the object side: from one to ℓ objects that always progress

Definition: (k, ℓ)-Simultaneous consensus Let (k, ℓ)-simultaneous consensus (in short (k, ℓ)-SC), 1 ≤ ℓ ≤ k, be a strengthened

form of k-simultaneous consensus where (instead of a single pair) a process decides on ℓ pairs (x1, v1), ..., (xℓ, vℓ) (all different in

their first component). The agreement property is the same as for a k-SC object, namely, if (x, v) and (x, v′) are pairs decided by

two processes, then v = v′.

Collection des Publications Internes de l’Irisa c©IRISA

10 M. Raynal, J. Stainer & G. Taubenfeld

Notations Let (k, ℓ)-UC be any algorithm implementing the k-universal construction where at least ℓ objects always progress4. Let

ARWn,n−1[(k , ℓ)-SC] beARWn,n−1[∅] enriched with (k , ℓ)-SC objects, andARWn,n−1[(k , ℓ)-UC] beARWn,n−1[∅] enriched

with a (k, ℓ)-UC algorithm.

A contention-aware wait-free (k, ℓ)universal construction A contention-aware wait-free (k, ℓ)-UC algorithm can be imple-

mented as follows on top ofARWn,n−1[(k , ℓ)-SC]. This algorithm is the algorithm of Figure 2, where lines 24 and 27 are replaced

by the lines L1-L5 introduced in Section 4.2, and where the lines 2M, 3M, and 4M, are modified as follows (no other line is added,

suppressed, or modified).

• Line 2M: the k-simultaneous consensus objects are replaced by (k, ℓ)-simultaneous consensus objects, Hence, the result re-

turned to a process is now a set of ℓ pairs, all different in their first component, denoted {(ksc_obj1, ksc_op1), ..., (ksc_objℓ, ksc_opℓ)}.
Let L be the corresponding set of ℓ different objects, i.e., L = {ksc_obj1, ..., ksc_objℓ}. As already indicated, two different

processes can be returned different sets of ℓ pairs.

• Line 3M: process pi executes this line for each object m ∈ L. These ℓ invocations of the adopt-commit object (i.e.,

AC [2ri][ksc_objx].propose(ksc_opx), 1 ≤ x ≤ ℓ) can be executed in parallel, which means in any order. Let us notice

that if several processes invokes AC [2ri][ksc_objx].propose() on the same object ksc_objx, they invoke it with the same

operation ksc_opx.

• Line 4M: AC [2ri][m].propose(operi[m]) is invoked only for the remaining objects, i.e., the objects m such that m ∈
{1, ..., k} \L. As in the algorithm of Figure 2, the important point is that a process invokes AC [2ri][ksc_objx].propose() first

on the set L of the objects output by the (k, ℓ)-SC object associated with the current round, and only after invoke it on the

other objects.

Theorem 4 When considering ARWn,n−1[∅], (k, ℓ)-UC and (k , ℓ)-SC have the same computational power: (a) a wait-free

(k, ℓ)-UC algorithm can be implemented inARWn,n−1[(k , ℓ)-SC], and (b) a wait-free (k , ℓ)-SC object can be built inARWn,n−1[(k , ℓ)-UC

This theorem shows that (k, ℓ)-SC objects are both necessary and sufficient to ensure that at least ℓ objects always progress in

a set of k objects. Let us remark that this is independent from the fact that the implementation of the k-universal construction is

non-blocking or wait-free (going from non-blocking to wait-freedom requires the addition of a helping mechanism, but does not

require additional computational power).

4.4 Relating (k, k − p)-SC and (p+ 1)-SA (i.e., (p+ 1)-SC) for 0 ≤ p ≤ k − 1: a Hierarchy

As indicated in the Introduction and shown in [1], k-set agreement (k-SA), which allows the processes to decide at most k different

values from the proposed values, and k-SC are equivalent in ARWn,n−1[∅]. This equivalence is denoted “≡” in Figure 3.

(k, 1) and (k, k)-simultaneous consensus It follows from its definition that (k, 1)-SC is k-simultaneous consensus (i.e., equivalent

to k-SA). At the other “extreme” case, (k, k)-SC is consensus as shown below.

• To solve consensus from (k, k)-SC, each process proposes its consensus input value in the first entry of its size k input vector,

and decides the output in the first entry of the result vector.

• To solve (k, k)-SC from consensus, a vector of k consensus instances is used. A process proposes a value to each consensus

instance, and the processes decide the same vector of size k, whose x-th entry contains a value proposed by a process to the

x-th consensus instance.

In (k, k)-SC, a process always obtains a vector of size k (one entry per underlying consensus instance). It follows that, from

an intuitive point of view, (k, k)-SC behaves as (1, 1)-SC where a proposed value is a size k vector, i.e., (k, k)-SC behaves as

consensus.

From (k, k − p)-simultaneous consensus to (p + 1)-set agreement (i.e., (p + 1)-simultaneous consensus) Let vi be the value

proposed by pi to the (1 + p)-set agreement; pi proposes the size k vector [vi, ..., vi] to (k, k − p)-SC. Then it decides the maximal

value of the k − p outputs it obtains from (k, k − p)-SC. Hence, for any process pi, at most p values among the k values proposed

are greater than the value decided by pi. It follows that at most p + 1 values are decided, i.e., the values decided by the processes

solves (1 + p)-set agreement.

As (1+p)-set agreement is equivalent to (1+p)-SC in the basic read/write model, it follows that (1+p)-SC can be implemented

in ARWn,n−1[∅] enriched with (k, k − p)-SC objects.

4It is possible to express (k, ℓ)-UC as an object accessed by appropriate operations. This is not done here because such an object formulation would be complicated

without providing us with more insight on the question we are interested in.

Collection des Publications Internes de l’Irisa c©IRISA

Distributed Universality 11

(k, 2)-SC (k, 1)-SC

(k − 1)-SA k-SA

(k, k − 1)-SC (k, k − p + 1)-SC(k, k)-SC (k, k − p)-SC

p-SA2-SA (p + 1)-SA1-SA

1-SC
≡ ≡

(k − 1)-SC k-SC2-SC
≡ ≡

p-SC (p + 1)-SC
≡ ≡

Figure 3: Relations linking (p+ 1)-SA and (k, k − p)-SC, for 0 ≤ p ≤ k − 1

These relations are summarized in Figure 3 which captures the relations linking the computational power of the kSA, k-SC and

(k, ℓ)-SC objects. A→ B means that B can be implemented inARWn,n−1[∅] enriched with A, while A 9 B means that B cannot

be implemented in ARWn,n−1[∅] enriched with A. (Transitive possibility or impossibility reductions are not indicated.)

5 Conclusion

Our main objective was to build a universal construction for any set of k objects, each defined by a sequential specification, where

at least ℓ of these k objects are guaranteed to progress forever. To that end, we have introduced a new object type, called (k, ℓ)-
simultaneous consensus ((k, ℓ)-SC), and have shown that this object is both necessary and sufficient (hence optimal and universal)

when one has to implement such a universal construction. We have related the notions of obstruction-freedom, non-blocking,

and contention-awareness for the implementation of k-universal constructions. The paper has also introduced a general notion of

algorithm generosity, which captures a property implicitly addressed in other contexts. More specifically, we have presented the

following suite of constructions:

• A simple obstruction-free (1, 1)-universal construction based on atomic registers only (Appendix F).

• A contention-aware construction, based on k-SC objects and atomic registers, which is both obstruction-free (k, k)-universal

and wait-free k-universal (Section 3).

• A contention-aware (k, ℓ)-universal construction based on (k, ℓ)-SC objects which is both obstruction-free (k, k)-universal

and wait-free (k, ℓ)-universal (Section 4).

Finally, elements for a theory of (k, ℓ)-universality are presented in Appendix G.

Collection des Publications Internes de l’Irisa c©IRISA

Distributed Universality i

References

[1] Afek Y., Gafni E., Rajsbaum S., Raynal M., and Travers C., The k-simultaneous consensus problem. Distributed Computing, 22(3):185-195,

2010.

[2] Anderson J.H. and Moir M., Universal constructions for large objects. IEEE Transactions of Parallel and Distributed Systems, 10(12):1317-

1332, 1999.

[3] Attiya H., Guerraoui R., Hendler D., and Kutnetsov P., The complexity of obstruction-free implementations. Journal of the ACM, 56(4),

Article 24, 33 pages, 2009.

[4] Attiya H. and Welch J.L., Distributed computing: fundamentals, simulations and advanced topics, (2nd Edition), Wiley-Interscience, 414

pages, 2004 (ISBN 0-471-45324-2).

[5] Borowsky E. and Gafni E., Generalized FLP impossibility results for t-resilient asynchronous computations. Proc. 25th ACM Symposium on

Theory of Computing (STOC’93), ACM Press, pp. 91-100, 1993.

[6] Bouzid Z. and Travers C., Simultaneous consensus is harder than set agreement in message-passing. Proc. 33rd Int’l IEEE Conference on

Distributed Computing Systems (ICDCS’13), IEEE Press, pp. 611-620, 2013.

[7] Chaudhuri S., More choices allow more faults: set consensus problems in totally asynchronous systems. Information and Computation,

105(1):132-158, 1993.

[8] Chuong Ph., Ellen F. and Ramachandran V., A Universal construction for wait-free transaction friendly data structures. Proc. 22th Int’l ACM

Symposium on Parallelism in Algorithms and Architectures (SPAA’10), ACM Press, pp. 335-344, 2010.

[9] Crain T., Imbs D., and Raynal M., Towards a universal construction for transaction-based multiprocess programs. Theoretical Computer

Science, 496:154-169, 2013.

[10] Ellen F., Fatourou P., Kosmas E., Milani A., and Travers C., Universal construction that ensure disjoint-access parallelism and wait-freedom.

Proc. 31th ACM Symposium on Principles of Distributed Computing (PODC), ACM Press, pp. 115-124, 2012.

[11] Fatourou P. and Kallimanis N.D., A highly-efficient wait-free universal construction. Proc. 23th ACM Symposium on Parallel Algorithms and

Architectures (SPAA), ACM Press, pp. 325-334, 2012.

[12] Fischer M.J., Lynch N.A., and Paterson M.S., Impossibility of distributed consensus with one faulty process. Journal of the ACM, 32(2):374-

382, 1985.

[13] Gafni E., Round-by-round fault detectors: unifying synchrony and asynchrony. Proc. 17th ACM Symposium on Principles of Distributed

Computing (PODC), ACM Press, pp. 143-152, 1998.

[14] Gafni E. and Guerraoui R., Generalizing universality. Proc. 22nd Int’l Conference on Concurrency Theory (CONCUR’11), Springer, LNCS

6901, pp. 17-27, 2011.

[15] Guerraoui R., Kapalka M., and Kouznetsov P., The weakest failure detectors to boost obstruction-freedom. Distributed Computing 20(6):415-

433, 2008.

[16] Guerraoui R. and Lynch N.A., A general characterization of indulgence. ACM Transactions on Autonomous and Adaptive Systems, 3(4),

Article 20, 2008.

[17] Herlihy M.P., Wait-free synchronization. ACM Transactions on Programming Languages and Systems, 13(1):124-149, 1991.

[18] Herlihy M.P., Luchangco V., and Moir M., Obstruction-free synchronization: double-ended queues as an example. Proc. 23th Int’l IEEE

Conference on Distributed Computing Systems (ICDCS’03), IEEE Press, pp. 522-529, 2003.

[19] Herlihy M., Luchangco V., Moir M., and Scherer III W.M., Software transactional memory for dynamic-sized data structures. Proc. 22nd

Int’l ACM Symposium on Principles of Distributed Computing (PODC’03), ACM Press, pp. 92-101, 2003.

[20] Herlihy M.P. and Moss J.E.B., Transactional memory: architectural support for lock-free data structures. Proc. 20th ACM Int’l Symposium

on Computer Architecture (ISCA’93), ACM Press, pp. 289-300, 1993.

[21] Herlihy M.P. and Shavit N., The topological structure of asynchronous computability. Journal of the ACM, 46(6):858-923, 1999.

[22] Herlihy M.P. and Wing J.M, Linearizability: a correctness condition for concurrent objects. ACM Transactions on Programming Languages

and Systems, 12(3):463-492, 1990.

[23] Lamport L., On inter-process communications, Part I: Basic formalism. Distributed Computing, 1(2): 77–85, 1986.

[24] Loui M. and Abu-Amara H., Memory requirements for agreement among unreliable asynchronous processes. Advances in Computing Re-

search, 4:163-183, JAI Press, 1987.

[25] Lynch N.A., Distributed algorithms. Morgan Kaufmann, 872 pages, 1996.

[26] Luchangco V., Moir M., and Shavit N., On the Uncontended complexity of consensus. Proc. 17th Int’l Symposium on Distributed Computing

(DISC’03), Springer LNCS 2848, 45-59, 2003.

[27] Merritt M. and Taubenfeld G., Resilient consensus for infinitely many processes. Proc. 17th Int’l Symposium on Distributed Computing

(DISC’03), Springer LNCS 2848, 1-15, 2003.

Collection des Publications Internes de l’Irisa c©IRISA

ii M. Raynal, J. Stainer & G. Taubenfeld

[28] Raynal M., Concurrent programming: algorithms, principles, and foundations. Springer, 515 pages, 2013 (ISBN 978-3-642-32026-2).

[29] Raynal M. and Stainer J., Simultaneous consensus vs set agreement: a message-passing-sensitive hierarchy of agreement problems. Proc.

20th Int’l Colloquium on Structural Information and Communication Complexity (SIROCCO 2013), Springer LNCS 8179, pp. 298-309,

2013.

[30] Saks M. and Zaharoglou F., Wait-free k-set agreement is impossible: the topology of public knowledge. SIAM Journal on Computing,

29(5):1449-1483, 2000.

[31] Shavit N. and Touitou D., Software transactional memory. Distributed Computing, 10(2):99-116, 1997.

[32] Taubenfeld G., Contention-sensitive data structure and algorithms. Proc. 23rd Int’l Symposium on Distributed Computing (DISC’09),

Springer LNCS 5805, pp. 157-171, 2009.

Collection des Publications Internes de l’Irisa c©IRISA

Distributed Universality i

A Gafni and Guerraoui’s Non-blocking k-Universal Construction

A.1 Gafni and Guerraoui’s construction

This section presents Gafni and Guerraoui’s generalized non-blocking k-universal construction introduced in [14], and denoted GG

in the following. To make reading easier, we use the same variable names as in the construction presented in Figure 1 for local and

shared objects that have the same meaning in both constructions. The objects considered in GG are deterministic state machines,

and “operations” are accordingly called “commands”.

Principle The algorithm GG is based on local replication, namely, the only shared objects are the control objects kSC [1..] and

AC [1..][1..k]. Each process pi manages a copy of every state machine m, denoted machinei[m], which contains the last state of

machine m as known by pi. The invocation by pi of machinei[m].execute(c) applies the command c to its local copy of machine

m.

As explained in [14], the use of a naive strategy to update local copies of states machines, makes possible the following bad

scenario. During a round r, a process p1 executes a command c1 on its copy of machine m1, while a process p2 executes a command

c2 on a different machine m2. Then, during round r + 1, p1 executes a command c2′ on the machine m2 without having executed

first c2 on its copy of m2. This bad behavior is prevented from occurring in [14] by a combined used of adopt-commit objects and

an appropriate marking mechanism. When a process pi applies a command c to its local copy of a machine m, it has necessarily

received the pair (commit, c) from the adopt-commit object associated with the current round, and consequently the other processes

have received (commit, c) or (adopt, c). The process pi attaches then to its next command for machine m, namely operi[m], the

indication that operi[m] has to be applied to m after c, so that no process executes operi[m] without having previously executed c.

ri ← 0;

for each m ∈ {1, ..., k} do

machinei[m]← initial state of the state machine m; operi[m]← my_listi[m].first()
end for.

repeat forever

(1) ri ← ri + 1;

(2) (ksc_obj, ksc_op)← kSC [ri].propose(operi[1..k]);
(3) (tagi[ksc_obj], ac_opi[ksc_obj])← AC [ri][ksc_obj].propose(ksc_op);
(4) for each m ∈ {1, ..., k} \ {ksc_obj} do (tagi[m], ac_opi[m])← AC [ri][m].propose(operi[m]) end for;

(5) for each m ∈ {1, ..., k} do
(6) if (ac_opi[m] is marked “to_be_executed_after” operi[m])
(7) thenmachinei[m].execute(operi[m])
(8) end if ;

(9) if (tagi[m] = adopt)
(10) then operi[m]← ac_opi[m]
(11) else machinei[m].execute(ac_opi[m]); % tagi[m] = commit %

(12) if ac_opi[m] = my_listi[m].current()
(13) then operi[m]← my_listi[m].next()
(14) else operi[m]← my_listi[m].current()
(15) end if ;

(16) mark operi[m] “to_be_executed_after” ac_opi[m]
(17) end if

(18) end for

end repeat.

Figure 4: Gafni-Guerraoui’s generalized universality non-blocking algorithm (code of pi) [14]

Algorithm As before,my_listi[m] defines the list of commands that pi wants to apply to the machinem. Moreover,my_listi[m].first()
sets the read head to point to the first element of this list and returns its value; my_listi[m].current() returns the command under

the read head; finally, my_listi[m].next() advances the read head before returning the command pointed to by the read head.

The algorithm is described in Figure 4. as the algorithm of Figure 1, it is round-based and has the same first four lines. When

a process pi enters a new asynchronous round (line 1), it first executes line 2-4, which are the lines involving the k-simultaneous

consensus object and the adopt-commit object associated with the current round r.

After the execution of these lines, for 1 ≤ m ≤ k, (tagi[m], ac_opi[m]) contains the command that pi has to consider for

the machine m. For each of them it does the following. First, if ac_opi[m] is marked “to be executed after” operi[m], pi applies

Collection des Publications Internes de l’Irisa c©IRISA

ii M. Raynal, J. Stainer & G. Taubenfeld

operi[m] to machinei[m] (lines 6-8). Then, if tagi[m] = adopt, pi adopts ac_opi[m] as its next proposal for machine m (lines 9-

10). Otherwise, tagi[m] = commit. In this case pi first applies ac_opi[m] to its local copy of the machine m (line 11). Then,

if ac_opi[m] was a command it has issued, pi computes its next proposal operi[m] for the machine m (lines 12-15). Finally, to

prevent the bad behavior previously described, it attaches to operi[m] the fact that this command cannot be applied to any copy of

the machine m before the command ac_opi[m] (line 16).

A.2 Discussion: Gafni-Guerraoui’s construction revisited

The GG algorithm has two main drawbacks. First, it does not prevent a process from executing twice the same command on a given

machine. Second, it is possible that, when a state machine stops progressing, it stops in different states at different processes. While

the first issue can be easily fixed (see below), the second seems more difficult to fix.

Let us consider the following execution of the GG algorithm (Figure 4). During some round r, a process pi applies a command

c to its local copy of the machine m (hence, pi obtained (commit, c) from AC [r][m], and each other process has obtained either

(commit, c) or (adopt, c)). It follows from line 16 that pi marks its next command on m (c′ = operi[m]) “to be executed after c”.

Let us consider now two distinct scenarios for the round r + 1.

Scenario 1. It is possible that all the processes, except pi, have received (adopt, c) during the round r and propose c to

AC [r + 1][m]. Moreover, according to the specification of an adopt-commit object, nothing prevent AC [r + 1][m] from outputting

(commit, c) at all the processes. In this case pi will execute the command c twice on machinei[m]. This erroneous behavior can

be easily fixed by adding the following filtering after line 8:

if (operi[m] is marked “to_be_executed_after”ac_opi[m])
then do not execute the lines 9-17

end if.

This filtering amounts to check if the command ac_opi[m] has already been locally executed. The fact that ac_opi[m] has been

previously committed is encoded in operi[m] by the marking mechanism.

Scenario 2. Let us again consider the round r + 1, and consider the possible case where the pair (m,−) is not output by

kSC [r + 1] (let us remember that kSC [r + 1] outputs one pair per process and globally at least one and at most k pairs). Accord-

ing to the specification of AC [r + 1][m], it is possible to have (tagj [m], ac_opj [m]) = (adopt, c) at any process pj 6= pi, and

(tagi[m], ac_opi[m]) = (adopt, c′) where c′ is the new command that pi wants to apply to the machine m. Hence, as far as m is

concerned, all the processes execute the lines 9-10, and we are in the same configuration as at the end of round r. It follows that this

can repeat forever. If it is the case, pi has executed one more command on its local copy of machine m than the other processes.

This means that state machine m stops progressing in different states at distinct processes.

B Proofs of the Lemmas and Theorem of Section 3.4

To make this appendix self-contained, some definitions and explanations of Section 3.4 are repeated here.

Lemma 1 ∀ i,m: (op ∈ GSTATE [i][m])⇒ (∃ j : op ∈ my_listj[m]) (i.e., if an operation op is applied to an object m, then op
has been proposed by a process).

Proof Before being written into GSTATE [i][m] (line 31), an operation op is first appended to m’s local history for the first time

at line 18. It follows from lines 2-4 that this operation was proposed to an adopt-commit object by some process pj in operj [m]. If

operj [m] was updated in the initialization phase, at line 24 or line 27, it is an operation of my_listj[m]. If operj [m] was updated at

line 25, it was proposed to an adopt-commit object by another process px, and (by a simple induction) the previous reasoning shows

that this operation belongs then to some my_listz[m]. ✷Lemma 1

Lemma 2 ∀ i, j,m : (op ∈ my_listj[m])⇒ (op appears at most once in GSTATE [i][m]
)

(i.e., an operation is executed at most

once).

Proof Suppose by contradiction that, at a given time and for an object m, a history GSTATE [−][m] contains twice the same

operation op. Let pi be the first process that wrote such a history with op appearing twice in GSTATE [i][m], and let τ be the time

instant at which pi does it. Since GSTATE [i][m] is written only at line 31 with the content of ℓ_histi[m], pi necessarily stored

Collection des Publications Internes de l’Irisa c©IRISA

Distributed Universality iii

before τ an history containing twice op in ℓ_histi[m]. As ℓ_histi[m] is initially empty, it does not contain twice op in the initial

state of pi. Since ℓ_histi[m] is updated only at line 7 or line 18, pi sets it to a history containing twice op at one of these lines.

According to the predicate of line 16, pi cannot append op to ℓ_histi[m] at line 18 if op already appears in that sequence. It follows

that pi updates ℓ_histi[m] before τ at line 7 with one of the longest local histories of m which contains op twice. Consequently,

when pi read (non-atomically) GSTATE at line 5, it retrieved that history from one of the GSTATE [j][m], also before τ . But this

contradicts the fact that no process writes a history containing op twice before τ . It follows that no history containing several times

the same operation can ever be written into one of the registers GSTATE [−][−]. ✷Lemma 2

The sequence (opmr)r≥1 of committed operations According to the specification of the adopt-commit object, for any round r
and any object m there is at most one operation returned with the tag commit by the object AC [r][m] to some processes. Let opmr
denote this unique operation if at least one process obtains a pair with the tag commit, and let opmr be ⊥ if all the pairs returned by

AC [r][m] contain the tag adopt.

From the sequence (opmr)r≥1 to the notion of valid histories Considering an execution of the algorithm of Figure 1, the following

lemmas show that, for any process pi and any object m, all the sequences of operations appearing in ℓ_histi[m] are finite prefixes

of a unique valid sequence depending only on the sequence (opmr)r≥1 of committed operations.

More precisely, given a sequence (opmr)r≥1, a history (vhm
x)1≤x≤xmax is valid if it is equal to a sequence (opmr)1≤r≤R from

which the ⊥ values and the repetitions have been removed. More formally, (vhm
x)1≤x≤xmax is valid if there is a round number R

and a strictly increasing function σ : {1, . . . , xmax} → {1, . . . , R} such that for all x in {1, . . . , xmax}: (a) vhm
x = opm

σ(x), (b)

vhm
x 6= ⊥, (c) for all x in {1, . . . , xmax − 1}: vhm

x 6= vhm
x+1, and (d) the sets {vhm

1 , ..., vhm
xmax} and {opm1 , ..., opmR } \ {⊥} are

equal.

Let us remark that this definition has two consequences: (i) the value of R for which item (d) is verified defines unambiguously

the sequence (vhm
x)1≤x≤xmax (and accordingly this sequence is denoted VHm(R) in the following), and (ii) for any two valid

histories (vhm
x)1≤x≤xmax1 and (vhm

x)1≤x≤xmax2, one is a prefix of the other.

Lemma 3 For any process pi and any object m, at any time the local history ℓ_histi[m] is valid.

Proof Let us suppose by contradiction that a process pj updates ℓ_histj [m] with a sequence that is not valid. Let pi be the first

process that writes an invalid sequence (denoted s) into its variable ℓ_histi[m]. Let ρ be the round and τ the time at which it does it.

Since pi is the first process that writes s into its local history ℓ_histi[m], it cannot do it at line 7 (this would imply that pi
retrieved s in some g_statei[j][m] obtained from its previous non-atomic read of GSTATE –line 5– implying that a process pj
would have written s into its local history ℓ_histj[m] before τ). Consequently pi writes s into ℓ_histi[m] at line 18. It follows that

the adopt-commit object AC [ρ][m] returned to pi the pair (commit, op) (where op is the last operation in s) at line 3 or 4 during

round ρ, hence, opmρ = op.

Let us remind that, by assumption, before pi appended op to ℓ_histi[m] at line 18 of round ρ, ℓ_histi[m] was valid; let s′ denote

that history. Moreover, as pi executes line 18 of round ρ, it fulfilled the condition of line 16, hence we have op /∈ s′. Let R1 be the

smallest (resp. R2 the largest) round number R such that s′ = VH
m(R). It follows from the previous observation that R2 < ρ, and

from the definition of R1, that opmR1
6= ⊥ (opmR1

is the last operation appearing in VH
m(R1) = VH

m(R2)). Let us remark that, since

s′ is valid while s is not, there is necessarily a round number r such that R2 < r < ρ, opmr 6= ⊥ and s′ = VH
m(R2) 6= VH

m(r)
(intuitively, pi “missed” a committed operation). Let r0 be the smallest round number verifying these conditions. According to this

definition, opmr0 6= opmR1
.

Let us first show that opmr0 /∈ VH
m(R1) = VH

m(R2). Suppose by contradiction that it exists a round r1 < R2 such that opmr1 =
opmr0 and consider a process pj executing round r1. The proof boils down to show that such a process pj cannot propose opmr1 = opmr0
to a kSC [r] object with r > r1 + 1 before τ , which entails that this operation cannot be committed during round r0 and leads to

a contradiction. If pj commits opmr1 = opmr0 during that round, then, after the execution of lines 16-28, it has opr1 into its variable

ℓ_histi[m], has set its variable operj [m] to a different operation and will never propose opr1 further in the execution. If pj adopts

opr1 during round r1, then two cases are possible: (a) pj returns from its invocation of AC [r1 + 1][m].propose(−) before that any

process, which has committed opr1 during round r1, invokes kSC [r1+1][m].propose(−), or (b) one of the processes that committed

opr1 during round r1, invokes kSC [r1 + 1][m].propose(−) before pj returns from its invocation of AC [r1 + 1][m].propose(−). In

the case (a), according to the validity properties of the k-simultaneous consensus and adopt-commit objects, pj commits opr1 during

round r1 + 1 and, as before, will not propose this operation further in the execution since it appears in its local history. In the case

(b), one of the processes that committed opr1 during round r1 wrote an history containing it before pj executes line 5 of round r1+1.

If this happens before τ , then both this history and the history of pj are valid, thus pj adopts that history that strictly contains its

own local history. It follows that pj executes lines 16-28 of round r1 + 1 with an history containing opr1 and consequently never

proposes this operation further in the execution. This ends the proof of the fact that opmr0 /∈ VH
m(R1) = VH

m(R2).

Collection des Publications Internes de l’Irisa c©IRISA

iv M. Raynal, J. Stainer & G. Taubenfeld

From the previous remark, it follows that, before τ , pi never retrieves any history VH
m(r) with r ≥ r0 during its non-atomic

read of GSTATE (or it would have set its variable ℓ_histi[m] to one of these histories at line 7 and never reset it to s′, since these

histories contain VH
m(r0), and are consequently strictly longer than s′).

Let us consider the execution of round r0 by pi (since pi reaches line 18 of round ρ > r0, this occurs). Let us suppose that pi
obtains the pair (commit, opmr0) from AC [r0][m]. As, (a) before τ , the values of ℓ_histi[m] are valid (hence they can only increase),

and (b) opmr0 /∈ VH
m(R2), it follows that pi appends opmr0 to ℓ_histi[m] at line 18 of round r0, contradicting the fact that, just before

τ , ℓ_histi[m] = s′ = VH
m(R2). Consequently, according to the definition of r0 and the specification of the adopt-commit object,

AC [r0][m] returns (adopt, opmr0) to pi.
During round r0, since opmr0 6= ⊥, all the processes that do not crash before obtain one of the two pairs (adopt, opmr0) or

(commit, opmr0) from AC [r0][m]. Let C denote the ones that obtain (commit, opmr0), and A the one that obtain (adopt, opmr0).
Among the processes of A, some fulfills the condition of line 16 during round r0, namely those which do not have opmr0 in their

local history. Let A− denote this set of processes and let A+ be A \ A−. As previously shown, pi cannot have opmr0 in ℓ_histi[m]
before τ ; consequently pi ∈ A−. Let µ be the first time at which a process of C ∪ A+ (the set of processes that have opmr0 in their

local histories at the end of round r0) executes line 31 of round r0. Let µ′ be the first time at which one of these processes invokes

kSC [r0 +1][m].propose(−) at round r0 +1. Let τi be the time at which pi terminates its invocation of AC [r0 +1][m].propose(−),
and τ ′i the time at which it terminates its read of line 5 during round r0 + 1.

Let us remark that any process pj of A− (including pi) starts round r0 + 1 with operj [m] = opmr0 . It follows from the k-

simultaneous consensus and adopt-commit specifications and the structure of the lines 2-4, that if τi < µ′ then pi necessarily obtains

the pair (commit, opmr0) from AC [r0 +1][m]. As this happens before τ , opmr0 /∈ ℓ_histi[m] when pi checks the condition of line 16,

and it consequently appends opr0 to ℓ_histi[m] at line 18 of round r0 + 1. This is contradicts the fact that s′ = VH
m(R2), except

for the case r0 + 1 = ρ. But, for r0 + 1 = ρ, we should have opmr0 = opmρ = op, and, by definition of r0, s would be valid, which

contradicts the fact that (due to the definition of s) it is not.

The only remaining case is thus µ′ < τi, but since µ < µ′ and τi < τ ′i , it follows that µ < τ ′i which implies that pi obtains a valid

history containing opr0 during its read of GSTATE at round r0 + 1 and consequently updates ℓ_histi[m] to one of these histories

at line 7, thus before τ . This leads to a contradiction which concludes the proof of the lemma. ✷Lemma 3

The execution on an object m of an operation op, issued by a process pi, starts when the process pi proposes op to a k-

simultaneous consensus object kSC [−][m] for the first time (i.e., when pi makes op public), and terminates when a set res including

(m, op, output[m]) is returned by pi at line 10 or line 31. The next lemma shows that any execution is linearizable.

Lemma 4 The execution of an operation op issued by a process pi on an object m can be linearized at the first time at which a

process pj writes into GSTATE [j][m] a local history ℓ_histj [m] such that op ∈ ℓ_histj [m].

Proof Let op be an operation applied on an object m and pi be the process such that op ∈ my_listi[m]. Let us first show

that op cannot appear in the local history ℓ_histj[m] before being proposed by pi to one of the k-simultaneous consensus objects

kSC [−][m]. Let pj be the first process that adds op to its local history ℓ_histj[m] and τ the time at which this occurs. It follows that

time τ cannot occur at line 7, but occurs when pj executes line 18 when it appends op to ℓ_histj[m] during some round r. Process

pj consequently obtained the pair (commit, op) from the adopt-commit object AC [r][m] at line 3 or line 3 of round r. According to

the validity properties of k-simultaneous consensus and adopt-commit objects and to the structure of the lines 2 to 4, it follows that

a process proposed op to kSC [r][m] before τ .

There are two ways for a process to propose op to kSC [r][m]: either (a) it adopted it at line 25 of round r−1 (if r > 1) or (b) the

process is pi, op ∈ my_listi[m], and pi wrote op into operi at line 24 or line 27 of round r− 1 (if r > 1), or during initialization (if

r = 1). With the same reasoning as in the previous paragraph, case (a) implies that a process proposed op to kSC [r−1][m] before τ .

This can be explained by case (a) at round r− 2 only if r > 2, or by case (b) at round r− 2. By iterating this reasoning, in the worst

case until reaching round 1, it comes that in any case (b) happened, and that pi necessarily proposed op to one of the kSC [−][m]
objects before τ . Consequently, no process pj has op in ℓ_histj[m] before pi proposed it to one of the kSC [−][m] objects, thus the

linearization point of op is after pi has made public the operation op.

On the other hand, if it terminates, the operation op issued by pi ends at lines 10 or 31 after that pi computed an output for

op. It can do it only at lines 9 or 20, and, in both cases, thanks to line 8 or lines 18-19, this happens only when op appears in

ℓ_histi[m]. This implies that pi either obtained a history containing op at line 5 of the same round, or writes a history containing op
in GSTATE [i][m] at line 30 of the same round before executing line 31, which proves that the linearization point of op is before op
terminates at pi (if it ever terminates).

Finally, according to Lemma 3, all the processes construct the same history of operations on m. Since the results locally returned

are appropriately computed with compute_output() on the right prefix of the local history of m, the sequential specification of the

object m is satisfied. This concludes the fact that there is a linearization of the sequence of operations applied on any object m. As

Collection des Publications Internes de l’Irisa c©IRISA

Distributed Universality v

any object m is linearizable, and as linearizability is a local property [22], it follows that the execution is linearizable, which ends

the proof of the lemma. ✷Lemma 4

Lemma 5 ∀ r ≥ 1, there is a process pi such that at least one operation op output by kSC [r].propose() at pi (line 2) is such that

the invocation of AC [r][−].propose() by pi returns (commit, op) (line 3 or 4).

Proof The proof is based on an observation presented in [14]. Let us first notice that, after it has received a pair (ksc_obj1, ksc_op1)
from kSC [r].propose() at line 2, a process pi1 invokes first AC [r][ksc_obj1].propose(ksc_op1) at line 3 before invokingAC [r][ksc_obj].prop
at line 4 for any object ksc_obj 6= ksc_obj1. If the invocation AC [r][ksc_obj1].propose(ksc_op1) issued by pi1 returns the pair

(commit,−), the lemma follows.

Hence, let us assume that the invocation by pi1 of AC [r][ksc_obj1].propose(ksc_op1) at line 3 returns the pair (adopt,−). It

follows from the "non-conflicting values" property of the adopt-commit object AC [r][ksc_obj1], that a process pi2 has necessarily

invokedAC [r][ksc_obj1].propose(op
′), with op′ 6= ksc_op1, and this invocation was issued at line 4 (if both pi1 and pi2 had invoked

AC [r][ksc_obj1].propose() at line 3, they would have obtained the same pair from the object kSC [r] at line 2, and consequently, pi2
could not prevent pi1 from obtaining (commit,−) from the adopt-commit object AC [r][ksc_obj1]). It follows that pi2 starts line 4

before pi1 terminates line 3. The invocation by pi2 of AC [r][−] at line 3 involved some object ksc_obj2 obtained by pi2 from its

invocation of kSC [r].propose() at line 2 (as seen previously, we necessarily have ksc_obj2 6= ksc_obj1).

If the invocation by pi2 of AC [r][ksc_obj2].propose() returns (commit,−), the lemma follows. Otherwise, due to the "non-

conflicting values" property of adopt-commit, there is a process pi3 that prevented pi2 from obtaining (commit,−) from its invo-

cation of AC [r][ksc_obj2].propose() at line 3. let us notice that pi3 6= pi1 (this follows from the observation that pi3 started line 4

before pi2 terminates line 3, which itself started line 4 before pi1 terminates line 3, hence pi3 started line 4 before pi1 terminates

line 3). The execution pattern between pi2 and pi3 is then the same as the previous pattern between pi1 and pi2. While this pattern can

be reproduced between pi3 and another process pi4, then between pi4 and pi5, etc., its number of occurrences is necessarily bounded

because the number of processes is bounded. It then follows that there is a process pix that obtains the pair (commit,−) when it

invokes AC [r][ksc_objix].propose() at line 3 (where ksc_objix is the object returned to pix by its invocation kSC [r].propose() at

line 2). ✷Lemma 5

Lemma 6 There is at least one object on which an infinite number of operations are executed.

Proof This lemma follows from (a) the fact that an operation committed during some round at some process is eventually made

globally visible in GSTATE (lines 17, 18, and 30), (b) Lemma 5 (at every round an operation is committed at some process), and

(c) the fact that the number of objects is bounded. ✷Lemma 6

It follows from the previous lemma, and the fact that there is a bounded number of processes, that at least one process executes an

infinite number of its operations on an object. Hence the following corollary.

Corollary 2 The algorithm is non-blocking.

Theorem 1 The algorithm of Figure 1 is a non-blocking linearizable (k, 1)-universal construction.

Proof The proof follows from the previous lemmas and corollary. ✷Theorem 1

C Eliminating Full Object Histories

For each process pi and object m, the universal construction uses a shared register GSTATE[i][m] to remember the sequence of

all the operations that have been successfully applied to object m, as currently known to pi. We have chosen this implementation

mainly due to its simplicity. While it is space inefficient, it can be improved as follows.

• Recall that we have assumed that all the operations are unique. This can be easily implemented locally, where each process

attaches a unique (local) sequence number plus its id to each operation. The (local) sequence number attached can be the

number of operations the process has invoked on the object so far. Now, instead of remembering (by each process) for

each object m its full history, it is sufficient that each process pi computes and remembers only the last state of m, denoted

ℓ_statei[m], plus the sequence number of the last operation successfully applied to m by each process.

• As far as the function compute_output(op, h) used at line 9 and line 20 is concerned, we have the following, whereOUTPUT [1..n]
is an array made up of one atomic register per process. Immediately after line 18, a process pi executes the following state-

ments, which replace lines 19-23.

Collection des Publications Internes de l’Irisa c©IRISA

vi M. Raynal, J. Stainer & G. Taubenfeld

outputi[m]← compute_output(ac_opi[m], ℓ_statei[m]);
let pj be the process that invoked ac_opi[m];
if (i = j) then lines 21-22

else OUTPUT [j]← outputi[m]
end if.

Finally, when executed by a process pj , line 9 is replaced by outputj[m]← OUTPUT [j].

It is easy to see that these statements implement a simple helping mechanism that allow processes, which invoke append() at line 18,

to pre-compute the operation results for the processes that should invoke compute_output(op, h) at line 9. Consequently, the

distributed universal construction can be easily modified to use this more space efficient representation instead of the “full history"

representation.

D Proofs of the Theorems of Section 4

Theorem 2 The algorithm of Figure 2 is a non-blocking contention-aware (k, 1)-universal construction.

Proof The proof first shows that the modified code provides the same safety guarantees than the previous construction. Namely, for

any m, if a process pi terminates line N3 with tagi[m] = commit, then any process pj executing line N3 ends it with ac_opj [m] =
ac_opi[m]. Let us remark that if pi retrieves the pair (commit, ac_opi[m]) from AC [2ri − 1][m] at line N1, it follows from

the property of the adopt-commit object that any other process pj executing this line finishes it with ac_opj [m] = ac_opi[m].
Consequently all processes executing lines 2M to 4M propose only this value to the k-simultaneous consensus object at line 2M

or to the AC [2ri][m] object at line 4M. Moreover according to the validity of the k-simultaneous consensus object, if a process

retrieves a pair (m, ksc_op) from the k-simultaneous consensus of line 2M then ksc_op = ac_opi[m], thus ac_opi[m] is the only

value that can be proposed to AC [2ri][m] at line 3. It follows that if a process retrieves a pair (commit, op) from AC [2ri − 1][m]
then any process pj that executes lines 2M to 4M finishes line 4M with ac_opj [m] = op, while, thanks to the agreement property

of AC [2ri − 1][m], any process ph that do not execute lines 2M to 4M also ends line N3 with ac_oph[m] = op. Additionally,

if a process obtains a pair (commit, op) from AC [2ri][m] while all processes obtain (adopt,−) from AC [2ri − 1][m], then each

process pj executes lines 2M to 4M and thus, according to the agreement property of AC [2ri][m], obtains a pair (−, op) from it and

finishes line 4M with ac_opj [m] = op.

Moreover, the progress property verified by the previous construction is preserved: for any m, if a process pi which starts line N1

with operi[m] = op, finishes the execution of line N3 before any process pj with operj [m] 6= op executes line N1, then pi ends

line N3 with tagi[m] = commit and ac_opi[m] = op. This comes directly from the validity properties of the k-simultaneous

consensus and adopt-commit objects.

Finally, if a process executes alone, the k-simultaneous consensus object is not used and all the objects progress, while, in case

of contention, as before, at least one object progresses (the first part comes from the validity property of the AC [2ri − 1][−] objects

and the condition stated at line N2; the second part comes from Lemma 5).

Thanks to the previous observations, the lemmas of Theorem 1 hold with the modified code, which ends this proof. ✷Theorem 2

Theorem 3 When replacing the lines 24 and 27 by lines L1-L5, the algorithms of Figure 1 and Figure 2 are wait-free linearizable

(k, 1)-universal constructions.

Proof Let us first observe that the lines 1-N3 of Figure 2 do not access the local variables my_opi[m], and consequently have no

impact on the lines 24 and 27 replaced by the new lines L1-L5.

An increase of a local history ℓ_histi[m] is direct if it occurs at line 18, and indirect if it occurs at line 7. Let us observe that

a direct increase adds one operation to a local history. Moreover, all increases are caused by direct increases, which can then be

propagated by indirect increases.

All the time instants considered in this proof are time instants after which all faulty processes have crashed. Let m be an object

which progresses forever. Let pj be a correct process such that the last operation it has written in LAST_OP [j,m] is never executed.

Let op(j,m) denotes this operation. The proof is by contradiction.

Let r be a round such that (a) op(j,m) has been written in LAST_OP [j,m], and (b) there is a direct increase such that there is

a process pi such that |ℓ_histi[m]| mod n + 1 = j. Let us observe that, as the object m progresses forever and all increases are

due to direct increases, both such a round r and process pi do exist. Moreover, as it is a direct increase, pi executed line 18 from

which it follows that it executes line 24 of round r. Hence, pi executes the new code L1-L5 of the lines 24 and we necessarily have

operi[m] = op(j,m).

Collection des Publications Internes de l’Irisa c©IRISA

Distributed Universality vii

If, during round r, all processes execute the new code L1-L5 of lines 24 or 27, they all starts the next round r + 1 with

operi[m] = op(j,m), and consequently op(j,m) will be committed during round r + 1. In this case, op(j,m) will be executed,

contradicting the initial assumption. Hence, let us assume that a process ph executes line 25 during round r. We have operh[m] =
ac_oph[m], where ac_oph[m] = op is the operation committed by pi at round r. Let us observe that we have then necessarily

|ℓ_histh[m]| = |ℓ_histi[m]| − 1 (pi has added op to ℓ_histi[m] while ph has not yet done it). We consider two cases.
• Process ph terminates line N3 before pi (or any other process which behaves as pi) starts line N1. In this case, ph termi-

nates line N3 with the pair (tagi[m], ac_opi[m]) = (commit, op), and consequently adds op to ℓ_histh[m]. We have now

|ℓ_histh[m]| = |ℓ_histi[m]|, and all the processes px that proceed to the round r + 2, are such that operx[m] = op(j,m). It

follows that op(j,m) will be committed during round r + 2, which contradicts our assumption.

• Process pi (or a process that, during round r, behaves as pi, i.e., which has committed an operation on m –necessarily op–)

starts line N1 before ph (or a process which behaves as ph) has terminated line N3. It follows that ph terminates line N3 with

either ac_oph[m] = op(j,m) or ac_oph[m] = op (the operation stored in operh[m] and committed by pi at round r).

In this case, pi has made public ℓ_histi[m] (line 30) before ph reads GSTATE [i][m] (line 5). Hence, ph reads the local

history ℓ_histi[m], and consequently ℓ_histh[m] contains ℓ_histi[m]. Moreover, we also have op ∈ ℓ_histh[m] when pi
executes the body of the loop of line 15 for object m. We consider two sub-cases.

– ℓ_histh[m] = ℓ_histi[m].

∗ If ac_oph[m] = op: then ac_oph[m] ∈ ℓ_histh[m], and ph executes the new code L1-L5 of line 27. As ℓ_histh[m] =
ℓ_histi[m], we consequently have operh[m] = op(j,m), from which it follows that every process px start the next

round r + 2 with operx[m] = op(j,m); op(j,m) is then committed during the next round, which contradicts our

assumption.

∗ If ac_oph[m] = op(j,m) and the associated tag is adopt: ph executes line 25, and we have operh[m] = op(j,m). If

ac_oph[m] = op(j,m) and the associated tag is commit: the processes commit op(j,m). In both case, op(j,m)is
committed (at the current round or the next one), which contradicts the initial assumption.

– ℓ_histi[m] is a strict prefix of ℓ_histh[m]. In this case, ph does not participate in the commitment of the operation on

m that follows op in ℓ_histh[m]. It perceived it from an indirect increase of ℓ_histh[m].

If follows from the previous reasoning that the initial assumption (namely, op(j,m) is never committed) is contradicted. Conse-

quently op(j,m) is committed. As this is true for any correct process pj and any object m that progresses forever, it follows that any

correct process executes an infinite number of operations on any object that progresses forever. ✷Theorem 3

Theorem 4 When considering ARWn,n−1[∅], (k, ℓ)-UC and (k , ℓ)-SC have the same computational power: (a) a wait-free

(k, ℓ)-UC algorithm can be implemented inARWn,n−1[(k , ℓ)-SC], and (b) a wait-free (k , ℓ)-SC object can be built inARWn,n−1[(k , ℓ)-UC

Proof Proof of (a). The proof that a (k, ℓ)-UC algorithm can be implemented in ARWn,n−1[(k , ℓ)-SC] amounts to show that

(k, ℓ)-SC allows at least ℓ objects to progress forever. If during a given round one of the processes does not verify the condition of

line N2, as noticed in the proof of Theorem 2, all the objects progress. If all the processes execute lines 2M to 4M, then the reasoning

of Lemma 5 holds and at least one process obtains only commit tags at line 3 from the ℓ adopt-commit objects associated with the

ℓ objects for which it obtained operations from the (k , ℓ)-SC object associated with the corresponding round. Consequently, during

any round, at least ℓ objects progress.

Proof of (b). To prove that a (k, ℓ)-SC object can be built in ARWn,n−1[(k , ℓ)-UC], let us consider an algorithm (k, ℓ)-UC

where the k concurrent objects it is instantiated with are atomic read/write registers. Moreover, on each object m, a process pi issues

a write operation followed by read operations. When a process pi wants to propose to the (k, ℓ)-SC object the vector [v1i , ..., v
k
i],

it invokes for each m ∈ {1, ..., k}, the operation write(vmi) on the corresponding object m. Due to the (k, ℓ)-UC algorithm, each

process sees at least ℓ objects progress. As soon as a process pi sees that ℓ objects have progressed, it returns an output vector of size

k containing the ℓ values written in these objects, and⊥ at each of the k−ℓ remaining entries. Hence, a process pi returns a vector of

size k with exactly ℓ non-⊥ entries. Moreover, it follows from the (k, ℓ)-UC algorithm that, the processes see the same sequence of

operations on each object. Hence, if pi returns v 6= ⊥ and pj returns v′ 6= ⊥ for the same entry m of their output arrays, these values

have been written by the same write operation, and are consequently such that v = v′, which concludes the proof. ✷Theorem 4

E Contention Awareness: Reducing the Number of Uses of k-SC Objects

As announced in Section 4.1, it is possible to reduce the number of uses of the underlying k-SC synchronization objects. This is

obtained by replacing the lines N1 until N3 in Figure 2 by the lines as described in Figure 5. There is one modified line (N2M) and

three new lines (NN1, NN2, and NN3).

Collection des Publications Internes de l’Irisa c©IRISA

viii M. Raynal, J. Stainer & G. Taubenfeld

(N1) for each m ∈ {1, . . . , k} do (tagi[m], ac_opi[m])← AC [2ri − 1][m].propose(operi[m]) end for;

(N2M) if (∀m ∈ {1, . . . , k} : tagi[m] = adopt) % ∀m replaces ∃m%

(2M) then (ksc_obj, ksc_op)← kSC [ri].propose(ac_opi[1..k]);
(3) (tagi[ksc_obj], ac_opi[ksc_obj])← AC [2ri][ksc_obj].propose(ksc_op);
(4M) for each m ∈ {1, . . . , k} \ {ksc_obj} do (tagi[m], ac_opi[m])← AC [2ri][m].propose(ac_opi[m]) end for

(NN1) else for each m ∈ {1, . . . , k} do

(NN2) if (tagi[m] = adopt) then (tagi[m], ac_opi[m])← AC [2ri][m].propose(ac_opi[m]) end if

(NN3) end for

(N3) end if.

Figure 5: Efficient Contention-aware Non-Blocking (k, 1)-Universal Construction (code for pi)

More precisely, if after it has used the adopt-commit objects AC [2ri − 1][m], for each constructed object m, pi has received

only tags adopt (modified line N2M), it executes the lines 2M, 3, and 4M, as in basic contention aware construction of Figure 2.

Differently, if it has received the tag commit for at least one constructed object, it invokes AC[2r][m] for all the objects m for which

it has received the tag adopt (new lines NN1-NN3).

F Obstruction-Free Construction Based on Read/write Registers Only

A remark on obstruction-freedom and generosity The reader can check that the three above constructions (Sections 3.3, 4.2

and 4.3), are obstruction-free (k, k)-universal constructions. More precisely, (1) at least one (or ℓ) objects are guaranteed to always

progress under contention, and (2) it is guaranteed that a process will be able to complete its pending operation in a finite number

of steps, if all the other processes “hold still” long enough. It follows from (2) that, if once in a while all the processes except one

“hold still” long enough, then all the k objects are guaranteed to always progress.

my_opi ← my_listi.next(); operi ← my_opi.

repeat forever

(1) ri ← ri + 1;

(3) (tagi, ac_opi)← AC[ri].propose(operi);
(5) for each j ∈ {1, ..., n} do g_statei[j]← GSTATE[j] end for;

(7) ℓ_histi ← longest history in g_statei[1..n] containing ℓ_histi;
(8) if (my_opi ∈ ℓ_histi) % my operation was completed %

(9) then outputi ← compute_output(my_opi, ℓ_histi);
(10) return (my_opi, outputi) to the upper layer;

(11) my_opi ← my_list.next()
(12) end if;

(14) resi ← ⊥;

(16) if (ac_opi 6∈ ℓ_histi) % operation was not completed %

(17) then if (tagi = commit) % complete the operation %

(18) then ℓ_histi ← ℓ_histi.append(ac_opi);
(19) if (ac_opi = my_opi) % my operation was completed %

(20) then outputi ← compute_output(my_opi, ℓ_histi);
(21) res← (my_opi, outputi);
(22) my_opi ← my_list.next()
(23) end if;

(24) operi ← my_opi
(25) else operi ← ac_opi % tagi = adopt %

(26) end if

(27) else operi ← my_opi % ac_opi ∈ ℓ_histi %

(28) end if;

(30) GSTATE[i]← ℓ_histi; % globally update my current view %

(31) if (res 6= ⊥) then return res to the upper layer end if

end repeat.

Figure 6: Obstruction-free (1, 1)-Universal Construction Based on Read/write Registers (code for pi)

A Simple Obstruction-free (1, 1)-Universal Construction Based on Registers Only Since it is known how to solve obstruction-

free consensus using registers only [15], it is possible to obtain an obstruction-free (1, 1)-universal construction by using an

obstruction-free consensus algorithm inside Herlihy’s original (1, 1)-universal construction [17] (or inside the three constructions

Collection des Publications Internes de l’Irisa c©IRISA

Distributed Universality ix

presented above). However, it is possible to obtain a much simpler obstruction-free construction using only adopt-commit objects.

Such a simple construction is described in Figure 6, which is a straightforward adaptation of the construction described in Figure 1,

for k = 1. To make the understanding easier, the lines numbers used in Figure 6 are the same as the ones used in the corresponding

lines of the basic construction of Figure 1.

G Discussion: Elements for a Theory of (k, ℓ)-Universality

This section sketches a few notions for a theory of (k, ℓ)-universal objects.

G.1 Definitions

The following definitions are generalizations of the notions of universal objects and consensus number introduced in [17]. They boil

down to these notions when k = ℓ = 1.

Progress condition The following definitions generalize to the universal construction of k concurrent objects (each defined by

a sequential specification) the definition of the classical wait-freedom, non-blocking, and obstruction-freedom progress conditions

(which corresponds to the case k = ℓ = 1). Given a collection K of k objects, set(K) denotes the set of these k objects.

• A (k, ℓ)-universal construction is ℓ-wait-free if, in every execution and for every process p, there is a set R ⊆ set(K) such

that (a) |R| ≥ ℓ and (b) for every object m ∈ R, process p completes an infinite number of operations on object m.

• A (k, ℓ)-universal construction is ℓ-non-blocking if, in every execution, there is a set R ⊆ set(K) such that (a) |R| ≥ ℓ and

(b) for every object m ∈ R, some process completes an infinite number of operations on object m.

• A (k, ℓ)-universal construction is ℓ-obstruction-free if, in every execution, there is a set R ⊆ set(K) such that (a) |R| ≥ ℓ
and (b) for every object m ∈ R, any process completes an infinite number of operations on object m if all the other processes

“hold still” long enough.

The notion of (k, ℓ)-Universality An object type T is (k, ℓ)-universal for n processes if, for any set of k objects, each defined

by a sequential specification, there is an ℓ-wait-free construction of these k objects from objects of type T and atomic registers. It

follows from this definition that (k, ℓ)-SC objects are (k, ℓ)-universal.

The following corollary is a simple reformulation of Theorem 4.

Corollary 3 Let k ≥ ℓ ≥ 1. The (k, ℓ)-SC object is (k, ℓ)-universal in a system of n processes, for any positive integer n.

The notion of a (k, ℓ)-Consensus Number The (k, ℓ)-consensus number of an object type T , denoted CN k,ℓ(T), is the largest n
for which it is possible to wait-free implement a (k, ℓ)-SC object for n processes using any number of objects of type T and atomic

registers.

Theorem 5 Let k ≥ ℓ ≥ 1. An object type T is (k, ℓ)-universal in a system of n processes if and only if CN k,ℓ(T) ≥ n.

Proof Direction⇒. If an object type T is (k, ℓ)-universal in a system of n processes, then (by definition), it can be used to implement

a (k, ℓ)-universal construction in a system of n processes. It then follows from Theorem 4 that (k, ℓ)-SC object can be ℓ-wait-free

implemented in a system of n processes. Hence, CN k,ℓ(T) ≥ n.

Direction ⇐. As (Corollary 3) (k, ℓ)-SC is (k, ℓ)-universal in a system of n processes, for any positive integer n, any object

that can ℓ-wait-free implement (k, ℓ)-SC must also be (k, ℓ)-universal in a system of n processes. If CN k,ℓ(T) ≥ n, it follows that

(k, ℓ)-SC has an ℓ-wait-free implementation from atomic registers and objects of type T . Hence, T is (k, ℓ)-universal in a system of

n processes. ✷Theorem 5

G.2 The relative power of object types

The importance of the notion of (k, ℓ)-consensus number as a tool for exploring the relative power of different object types ids

captured by the following theorems.

Theorem 6 Let T 1 and T 2 be two object types such that CN k,ℓ(T 1) < CN k,ℓ(T 2). Then, in a system of CN k,ℓ(T 2) processes:

• There is no wait-free implementation of objects of type T 2 from objects of type T 1 and atomic registers.

Collection des Publications Internes de l’Irisa c©IRISA

x M. Raynal, J. Stainer & G. Taubenfeld

• There is a wait-free implementation of objects of type T 1 from objects of type T 2 and atomic registers.

Proof From the definition of a (k, ℓ)-consensus number it follows that it is not possible to wait-free implement a (k, ℓ)-SC object

using objects of type T 1 and registers in a system with CNk,ℓ(T 2) processes. However, it is possible to wait-free implement a

(k, ℓ)-SC object using objects of type T 2 and registers in a system with CNk,ℓ(T 2) processes. Thus, it is not possible to wait-free

implement object of type T 2 from objects of type T 1 and registers.

By Theorem 5, if, in a system with at most n processes, CNk,ℓ(T) = n for an object type T , any set of k objects (each defined

from a sequential specification) has an ℓ- wait-free linearizable implementation using atomic registers and objects of type T . This

implies that there is a wait-free implementation of an object of type T 1 from objects of type T 2 and atomic registers. ✷Theorem 6

The previous theorem addresses the relative power of object types with different (k, ℓ)-consensus numbers. The next theorem is

about object types with the same (k, ℓ)-consensus number.

Theorem 7 Let T 1 and T 2 be two object types such that CN k,ℓ(T 1) = CN k,ℓ(T 2) = n. Then, in a system of at most n processes,

using atomic registers, an object of type T 2 can be wait-free implemented from objects of type T 1 and vice-versa.

Proof By Theorem 5, if, in a system with at most n processes, CNk,ℓ(T) = n for an object type T , then any set of k objects (each

defined sequential specification) has an ℓ-wait-free linearizable implementation using atomic registers and objects of type T . This

implies that there is a wait-free implementation of an object of type T 1 from objects of type T 2 and atomic registers, and vice-versa.

✷Theorem 7

G.3 Hierarchies

For every k ≥ ℓ ≥ 1, the (k, ℓ)-consensus hierarchy (also called (k, ℓ)-wait-free hierarchy) is an infinite hierarchy of object types

such that the the objects at level x of the hierarchy are exactly those types whose (k, ℓ)-consensus number is x.

In the (k, ℓ)-consensus hierarchy (1) no object type at one level together with registers can implement any object type at a higher

level, and (2) each object type at one level together with registers can implement any object type at a lower level. Classifying object

types by their (k, ℓ)-consensus numbers is a powerful technique for understanding the relative power of concurrent objects.

Collection des Publications Internes de l’Irisa c©IRISA

