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To produce the best forecast of a model state using

@ a data assimilation system, which produces analysis state vectors z;
using one or several models, observations and errors description; and

@ a given ensemble of forecasts xﬁ"’), possibly provided by the data

assimilation system.
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Ensemble Forecast of Analyses (EFA)

(m)

X; State vector forecast by model/member m at time t
z; Analysis state vector at time t
Strategy

@ Forecasting the analysis state vector z; computed by the data
assimilation system
o Rationale: The analyses are the best a posteriori knowledge of the state
o Aggregated forecast:

M
5 (m) _(m)
Zt,i = E :Wt,i Xe,i
m=1

o Success if the ensemble forecasts Z; beat any sequence of forecasts xff")

V.
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Ensemble Forecast of Analyses (EFA)

Notation
xﬁ"’) State vector forecast by model/member m at time t
z; Analysis state vector at time ¢

| A

Principle
To produce an aggregated forecast Z; as efficient as possible, using the
linear combination:

M
s (m) _(m)
Zt,i = Z Wi i Xt i
m=1

t—2 t—1 t t+1
(m) (m) (m) (m)
NG NG e NG
~ ~ o~ m ~
th2 — Zt—2 thl — Z¢—1 th — Zt Wt+1 — Z¢y1
Yt—2 — Zt—2 Yt—1 —7 Z¢—1 Yt — Z¢ Yi+1 —7 Zt+1
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EFA Using Machine Learning

Computing the Aggregation Weights

@ Ridge regression with discount in time (A > 0 and § > 0):

veRM s=1 m=1

s<t 8 M 2
Vi wy; = argmin )\HV”% + Z <(ts)2 + 1) (Zs7i = Z v(m)Xs(T)>

Theoretical Comparison With the Best Linear Combination With

Constant Weights

18 My )
m m
T > (Zs,f - Ws,i " Xs,i )
s=1 m=1
1 s<t M 2 Int
— argmin | = Z (zs,,- — Z v(m)xs('7)> <O ()
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EFA Using Filtering

Formulation in Terms of Filtering

@ State equation:

Wo; = C + e;
Wil = AWt7i + (l — A)C + € j

@ “Observations” (i.e., analyses in our case):
Zi i = E¢ iWe i+ 1

B = (D, ™)

) [ N
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EFA Using Filtering

Kalman Filtering

@ Assignment of variances to initial weight errors, (weight) model errors
and analyses errors

@ The filter computes a variance P ; for the weight error at time t

@ The aggregated forecast has variance Et7,-PtE;r7,-

Minimax Filtering

@ Bounds on errors, described by an eIIipsoid
T-1

TQ el+zet10t etl+ZAt ntl—

@ Admissible weights are compatlble with welght model, “observations”
and errors bounds

@ Weights defined such that, for any direction £,

sup r(wie —wy) < sup
€,e0,...,€t—1,M¢,---,M¢ €,e0,...,€t—1,M0,---,M¢

eT(wgrue . Wt)
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Application to Air Quality Forecast

Simulations Description

o Forecasting ground-level ozone at 15h00 UTC (peak) over Europe
@ Ensemble with 20 members

@ One reference member in the ensemble benefits from data
assimilation and actually provides the analyses
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Application to Air Quality Forecast

Simulations Description

o Forecasting ground-level ozone at 15h00 UTC (peak) over Europe
@ Ensemble with 20 members

@ One reference member in the ensemble benefits from data
assimilation and actually provides the analyses

RMSE (ug m—3 ), With Respect to Analyses and Observations

Analyses Observations

Reference model without assimilation 15.8 21.6
Reference model with assimilation 13.5 19.8
EFA with machine learning 11.3 15.6
EFA with filtering 10.9 15.7
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Ozone Maps (ug m—3 ) Averaged For One Year
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Uncertainty Map (Standard Deviation in ug m—3)
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Ozone in One Grid Cell (ug m—3)
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Conclusions

Ensemble Forecast of Analyses

@ With machine learning: guaranteed to beat any linear combination
with constant weights

o With filtering: access to uncertainty quantification

Some Perspectives

@ Machine learning with robust uncertainty quantification

e Some focus on aggregation of fields (with patterns)

@ Ensemble forecast of analyses: Coupling data assimilation and
sequential aggregation. Mallet, JGR, 2010.

@ Ozone ensemble forecast with machine learning algorithms. Mallet,

Stoltz & Mauricette, JGR, 20009.

Air quality simulations with Polyphemus,

http://cerea.enpc.fr/polyphemus/

@ Algorithms from data assimilation library Verdandi,
http://verdandi.gforge.inria.fr/
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Time Evolution of the Weights

Machine Learning and Filtering
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