The Best-partitions Problem: How to Build Meaningful Aggregations ?

Robin Lamarche-Perrin 1 Yves Demazeau 2 Jean-Marc Vincent 3, *
* Auteur correspondant
LIG - Laboratoire d'Informatique de Grenoble
3 MESCAL - Middleware efficiently scalable
Inria Grenoble - Rhône-Alpes, LIG - Laboratoire d'Informatique de Grenoble
Abstract : The design and the debugging of large distributed AI systems require abstraction tools to build tractable macroscopic descriptions. Data aggregation can provide such abstractions by partitioning the systems dimensions into aggregated pieces of information. This process leads to information losses, so the partitions should be chosen with the greatest caution, but in an acceptable computational time. While the number of possible partitions grows exponentially with the size of the system, we propose an algorithm that exploits exogenous constraints regarding the system semantics to find best partitions in a linear or polynomial time. We detail two constrained sets of partitions that are respectively applied to temporal and spatial aggregation of an agentbased model of international relations. The algorithm succeeds in providing meaningful high-level abstractions for the system analysis.
Type de document :
[Research Report] RR-LIG-044, 2013, pp.18
Liste complète des métadonnées
Contributeur : Sylvie Pesty <>
Soumis le : mardi 18 février 2014 - 16:46:55
Dernière modification le : samedi 17 septembre 2016 - 01:38:19
Document(s) archivé(s) le : dimanche 18 mai 2014 - 11:01:59


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00947934, version 1



Robin Lamarche-Perrin, Yves Demazeau, Jean-Marc Vincent. The Best-partitions Problem: How to Build Meaningful Aggregations ?. [Research Report] RR-LIG-044, 2013, pp.18. <hal-00947934>



Consultations de
la notice


Téléchargements du document