J. Banasiak and W. Lamb, Global strict solutions to continuous coagulation???fragmentation equations with strong fragmentation, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, vol.141, issue.03, pp.141-465, 2011.
DOI : 10.1017/S0308210509001255

J. Bertoin, Homogeneous fragmentation processes, Probab. Theory Related Fields, pp.301-318, 2001.
DOI : 10.1007/s004400100152

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Bertoin, Self-similar fragmentations, Annales de l'Institut Henri Poincare (B) Probability and Statistics, vol.38, issue.3, pp.319-340, 2002.
DOI : 10.1016/S0246-0203(00)01073-6

URL : https://hal.archives-ouvertes.fr/hal-00103546

J. Bertoin, Random Fragmentation and Coagulation Processes, 2006.
DOI : 10.1017/CBO9780511617768

URL : https://hal.archives-ouvertes.fr/hal-00103015

L. Beznea, Potential-theoretical methods in the construction of measure-valued Markov branching processes, Journal of the European Mathematical Society, vol.13, pp.685-707, 2011.
DOI : 10.4171/JEMS/264

L. Beznea and N. Boboc, Feyel's techniques on the supermedian functionals and strongly supermedian functions, Pot, Analysis, vol.10, pp.347-372, 1999.

L. Beznea and N. Boboc, Potential Theory and Right Processes, Mathematics and Its Applications, issue.572, 2004.
DOI : 10.1007/978-1-4020-2497-9

L. Beznea and N. Boboc, Fine densities for excessive measures and the Revuz correspondence , Pot, Analysis, vol.20, pp.61-83, 2004.

L. Beznea, N. Boboc, and M. Röckner, Markov processes associated with Lp-resolvents and applications to stochastic differential equations on Hilbert space, Journal of Evolution Equations, vol.6, issue.4, pp.745-772, 2006.
DOI : 10.1007/s00028-006-0287-2

L. Beznea, N. Boboc, and M. Röckner, Quasi-regular Dirichlet forms and L p -resolvents on measurable spaces, Pot, Analysis, vol.25, pp.269-282, 2006.

L. Beznea and O. Lupa?cu, Measure-valued discrete branching Markov processes, Transactions of the American Mathematical Society, vol.368, issue.7, 2013.
DOI : 10.1090/tran/6514

URL : http://arxiv.org/abs/1507.08759

L. Beznea, O. Lupa?cu, and A. Oprina, A unifying construction for measure-valued continuous and discrete branching processes, Complex Analysis and Potential Theory, CRM Proceedings and Lecture Notes, pp.47-59, 2012.

L. Beznea and A. Oprina, Nonlinear PDEs and measure-valued branching type processes, Journal of Mathematical Analysis and Applications, vol.384, issue.1, pp.16-32, 2011.
DOI : 10.1016/j.jmaa.2010.10.034

L. Beznea and M. Röckner, Applications of Compact Superharmonic Functions: Path Regularity and Tightness of Capacities, Complex Analysis and Operator Theory, vol.24, issue.3, pp.731-741, 2011.
DOI : 10.1007/s11785-010-0084-3

L. Beznea and M. Röckner, From resolvents to c??dl??g processes through compact excessive functions and applications to singular SDE on Hilbert spaces, Bulletin des Sciences Math??matiques, vol.135, issue.6-7, pp.844-870, 2011.
DOI : 10.1016/j.bulsci.2011.07.002

J. R. Choksi, Inverse limits of measure spacesOn small particles in coagulationfragmentation equations, Proc. London Math. Soc, vol.8, issue.3, pp.321-342, 1958.

D. A. Dawson and E. Perkins, Superprocesses at Saint-Flour, Probability at Saint-Flour, 2012.

M. Deaconu and N. Fournier, Probabilistic approach of some discrete and continuous coagulation equations with diffusion, Stochastic Process, Appl, vol.101, pp.83-111, 2002.

M. Deaconu, N. Fournier, and E. Tanré, A pure jump Markov process associated with Smoluchowski's coagulation equation, The Annals of Probability, vol.30, issue.4, pp.1763-1796, 2002.
DOI : 10.1214/aop/1039548371

M. Deaconu and E. Tanré, Smoluchowski's coagulation equation: probabilistic interpretation of solutions for constant, additive and multiplicative kernels, Ann. Scuola Norm. Sup. Pisa Cl. Sci, vol.29, pp.549-579, 2000.

C. Dellacherie and P. A. Meyer, Probabilités et potentiel. ch. I-IV, IX-XI, XII-XVI, 1975.

D. Finkelshtein, Y. Kondratiev, and M. J. Oliveira, Glauber Dynamics in the Continuum via Generating Functionals Evolution, Complex Analysis and Operator Theory, vol.9, issue.11, pp.923-945, 2012.
DOI : 10.1007/s11785-011-0170-1

P. J. Fitzsimmons, Construction and regularity of measure-valued markov branching processes, Israel Journal of Mathematics, vol.8, issue.3, pp.337-361, 1988.
DOI : 10.1007/BF02882426

N. Fournier and J. Giet, On small particles in coagulation-fragmentation equations, Journal of Statistical Physics, vol.111, issue.5/6, pp.1299-1329, 2003.
DOI : 10.1023/A:1023060417976

B. Hass, Loss of mass in deterministic and random fragmentations, Stochastic Process, Appl, vol.106, issue.2, pp.245-277, 2003.

N. Ikeda, M. Nagasawa, and S. Watanabe, Branching Markov processes I, Journal of Mathematics of Kyoto University, vol.8, issue.2, pp.233-278, 1968.
DOI : 10.1215/kjm/1250524137

N. Ikeda, M. Nagasawa, and S. Watanabe, Branching Markov Processes III, Journal of Mathematics of Kyoto University, vol.9, issue.1, pp.95-160, 1969.
DOI : 10.1215/kjm/1250524013

B. Jourdain, Nonlinear processes associated with the discrete Smoluchowski coagulationfragmentation equation, Markov Process, pp.103-130, 2003.

B. Jourdain, Uniqueness via probabilistic interpretation for the discrete coagulation fragmentation equation, Communications in Mathematical Sciences, vol.2, issue.5, pp.75-83, 2004.
DOI : 10.4310/CMS.2004.v2.n5.a6

W. Lamb, Existence and uniqueness results for the continuous coagulation and fragmentation equation, Mathematical Methods in the Applied Sciences, vol.27, issue.6, pp.703-721, 2004.
DOI : 10.1002/mma.496

Z. H. Li, Measure-Valued Branching Markov Processes, Probab. Appl, 2011.
DOI : 10.1007/978-3-642-15004-3

J. R. Norris, Smoluchowski's coagulation equation: uniqueness, nonuniqueness and a hydrodynamic limit for the stochastic coalescent, The Annals of Applied Probability, vol.9, issue.1, pp.78-109, 1999.
DOI : 10.1214/aoap/1029962598

M. M. Rao, Projective limits of probability spaces, Journal of Multivariate Analysis, vol.1, issue.1, pp.28-57, 1971.
DOI : 10.1016/0047-259X(71)90028-5

M. Sharpe, General Theory of Markov Processes, 1988.

M. L. Silverstein, Markov processes with creation of particles, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.9, issue.3, pp.235-257, 1968.
DOI : 10.1007/BF00535642